
SDK Documentation

form•Z API Outline form•Z SDK (v6.0.0.0 rev 05/30/06) i

Extensions in form•Z

1.0 Introduction

1.1 How do extensions work
1.2 Similarities and differences between Plugins and Scripts
1.3 form•Z menu commands that support extensions

The File menu
The Edit menu
The Display menu
The Palette menu
The Extensions menu

1.4 Common Concepts
1.4.1 UUIDs
1.4.2 form•Z resource files
1.4.3 Platform detection
1.4.4 Memory allocation
1.4.5 Units
1.4.6 Interface
1.4.7 Naming conventions
1.4.8 Error handling

1.5 Data organization
1.5.1 Model object representation
1.5.2 Tracing the topology of an object

1.6 Methods for constructing objects
1.6.1 Point-by-point object construction
1.6.2 Generating objects directly
1.6.3 Constructive solid geometry
1.6.4 Editing objects
1.6.5 Working with object lists
1.6.6 Working with groups

2.0 Writing Plugins
2.1 Introduction
2.2 Plugin file validation
2.3 Plugin entry function
2.4 Working with function sets
2.5 Compilers
2.6 Interface

2.6.1 Alerts
2.6.2 Dialogs
2.6.3 Template function

2.6.3.1 Element creation and variable association
2.6.3.2 Advanced template elements

2.6.4 Interface for time consuming tasks

form•Z API Outline form•Z SDK (v6.0.0.0 rev 05/30/06) ii

2.7 Notification
2.8 Plugin Types (classes)

2.8.1 Attributes
2.8.2 Command plugins

2.8.2.1 System command
2.8.2.2 Project command

2.8.3 File Translator
2.8.4 Object Types
2.8.5 Palette plugins

2.8.5.1 System palette
2.8.5.2 Project palette

2.8.6 Renderer
2.8.7 RenderZone Shader
2.8.8 Tool plugins
2.8.9 Utility plugins

2.8.9.1 System utility
2.8.9.2 Project utility

2.8.10 Surface Styles
3.0 Writing form•Z Scripts

3.1 Introduction
3.2 FSL Language Reference
 3.2.1 Basic language and script structure
 3.2.2 Introductory example
 3.2.3 Types of variables and constants
 3.2.4 Functions
 3.2.5 Declarations of variables
 3.2.6 Expressions
 3.2.7 Assignment statements
 3.2.8 Function calls
 3.2.9 The if statement
 3.2.10 The switch statement
 3.2.11 Loop statements
 3.2.12 Jump statements
 3.2.13 The return statements
 3.2.14 Comments
 3.2.15 Mixed expressions and their rules
 3.2.16 Casting values

3.2.17 Defining constants
3.2.18 Including scripts in other scripts

3.3 Script File Structure
 3.3.1Script header
 3.3.2 Script body
3.4 Using form•Z API and callback functions

form•Z API Outline form•Z SDK (v6.0.0.0 rev 05/30/06) iii

3.5 Interface

3.5.1 Alerts
3.5.2 Dialogs
3.5.3 Template functions

3.5.3.1 Element creation and variable association
3.5.4 Interface for time consuming tasks

3.6 Notification
3.7 Script Types (classes)

3.7.1.Command scripts
 3.7.1.1 System command

3.7.1.1 Project command
3.7.2 Palette scripts

3.7.2.1 System palette
3.7.2.2 Project palette

3.7.3 RenderZone Shader
3.7.4 Tool scripts
3.7.5 Utility scripts

3.7.5.1 System utility
3.7.5.2 Project utility

3.7.6 Object Type scripts
3.8 Developing and debugging scripts

3.8.1 Editing scripts
3.8.1.1 The File menu
3.8.1.2 The Edit menu
3.8.1.3 The Window menu
3.8.1.4 The Search menu
3.8.1.5 The Script menu

3.8.2 Script generation
 3.8.2.1 New script
 3.8.2.2 Common script options
 3.8.2.3 Empty scripts
 3.8.2.4 Render shader scripts
 3.8.2.5 Palette scripts
 3.8.2.6 Command scripts
 3.8.2.7 Tool scripts
 3.8.2.8 Utility scripts
3.8.3 Script debugging

4.0 API Call back reference (ON LINE ONLY)
5.0 API Reference (ON LINE ONLY)

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 1

1.0 Introduction

With version 5.0 form•Z first introduced the ability to add external functionality through
extensions, which can be plugins or scripts. A plugin is written in the C or C++ computer
language and compiled into a shared library (Macintosh) or a dynamic link library (Windows).
These libraries are referred to as the plugin files and they are identified by the .fzp file extension.
A script is written in the form•Z script language (FSL) and identified by the .fsl file extension.
Scripts are compiled into binary files identified by the .fsb file extension.

There are 9 types of extensions: attributes, file translators, object types, renderers,
commands, palettes, RenderZone shaders, tools, and utilities. All of these are available for
plugin development. The latter five are also available for scripts. The rest are too complex for a
script to be able to handle.

The form•Z SDK documentation consists of 5 chapters. This first chapter is the introduction and
discusses issues that affect both plugins and scripts. The second chapter discusses plugin
implementation and the third chapter discusses script implementation. Chapters four and five are
reference manuals available only in an “on line” html form. These manuals can be viewed and
searched using a web browser. We recommend using Internet explorer on Windows and Safari
1.2 (or later) on Macintosh OS X. Chapter 4 contains the reference for the call back functions
discussed in the implementation chapters (2 and 3). Chapter 5 contains the reference for all the
API functions that form•Z provides for extensions to use.

It is not necessary to read the complete documentation. Which parts one reads depends on
whether he/she in interested in developing plugins or scripts. Everybody should read chapter1.
Then, plugin developers should read chapter 2, while script developers should read chapter 3.
From there on, it should not be necessary to exhaustively read chapters 4 and 5. One should
scan through them so that he/she gains a general familiarity with the material to be able to use it
as reference for specific functions that need to be called for a task. In all cases, the sample code
should prove very effective, especially during the early stages of one’s involvement with the API
or script development process. We actually expect that many new plugins and scripts will be
developed by simply changing existing sample code.

Stylistically, different fonts are used throughout the first three chapters to distinguish text from
examples or keywords in the API. The Chicago font is used to identify interface elements in the
form•Z application. The Courier font is used to distinguish keywords and sample code of the
form•Z SDK.

As already mentioned, sample plugins and scripts that are installed along with the form•Z SDK
complement this documentation. These can be very valuable as both starting points for
development as well as examples of how the form•Z API works. The Sample plugin files (.fzp)
can be found in the <formZ application>\plugins\Samples\ folders and the source
files (.c) for the samples can be found in the <formZ application>\formZ SDK\Samples\
folder . The sample scripts (.fsl and .fsb) can be found in the <formZ
application>\Scripts\Samples\ folder.

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 2

1.1 How do extensions work

form•Z automatically recognizes extensions by finding them in designated directories at startup.
The extension search paths determine the locations that are searched. This is a list of directories
on the computer's hard disk (or on the network). By default, form•Z looks for extensions in a
directory called “Plugins” and in a directory called “Scripts” inside of the form•Z application
directory. The extension search paths can be customized by the user in the Extensions
Manager dialog accessed from the Extensions menu.

An extension connects to form•Z by providing a set of call back functions. These functions are
called by form•Z to add the extension into the form•Z interface and to execute the functionality
defined by the extension. Extensions can make use of existing functionality in form•Z using the
form•Z API (Application Programming Interface) functions. This includes standard
functionality, such as the form•Z interface manager, form•Z run time library, math functions, and
data management. The core functions for the form•Z tool set are also available as form•Z API
functions.

1.2 Similarities and differences between plugins and scripts

A script is in essence a simplified version of a plugin. It is intended for a novice programmer to
get started in adding extensions to form•Z without having to set up a full C or C++ based
development environment. Therefore, the language used in a script, the form•Z Script
Language (FSL), follows the C language very closely. It offers the same basic data types, such
as integer and floating point numbers, and the same basic statements, such as loops and
expressions. Similar to a plugin, a script is organized into functions, which are called from form•Z
and which execute the respective functionality of the extension. As in a plugin, a script can call
the majority of the form•Z supplied API functions. A good reason for choosing to develop an
extension with a script instead of a plugin would be for an advanced programmer to try out the
basic functionality of an extension with a script. This can be done, in general, very quickly. Once
the try out stage has been completed, it is fairly straight forward to convert the C like FSL code of
the script to real C or C++ code for use in a plugin.

There are a number of differences between plugins and scripts which are important to understand
before deciding which type of extension is appropriate for a given task. In general scripts are
quicker and easier to develop, however, they offer less functionality and slower performance than
plugins. Professional developers are expected to use plugins more frequently while the casual
developer are expected to favor scripts. Due to their similar nature it is not difficult to transform a
script into a plugin. The following are the issues to consider:

Functionality

Some functionality is not available to scripts either because the complexity of the interface can
not be accommodated in the script language or the nature of the task is such that the
performance of scripts makes them unrealistic. Commands, shaders and utilities can be
developed as plugins and as scripts while attributes, file translators, object types, and renderers
can only be developed as plugins. Some form•Z API functions are also not available to scripts for
similar reasons. The form•Z API reference indicates for each function if it is available for plugins
or scripts (or both). There are a few functions that are available for scripts only.

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 3

The biggest difference in the available API functions is in the interface functions for building
dialogs and palettes. The scripts have a simplified interface that limits the ability of a script to
generate certain complex interfaces. See section 1.4.6 for more details on the interface.

Ease of use

Script development is self-contained within form•Z using the form•Z script editor while plugin
development requires a third party compiler. Script files are cross platform and do not require
separate compilation for each platform as is required for a plugin. The compiled script binary files
(.fsb) can be used on either Macintosh or Windows.

Performance

Scripts are always slower that plugins. Plugins perform better because they are complied in
native machine code and can be optimized for the processor. This performance difference may or
may not be significant, depending on the task that is being performed by the extension. A task
that does not contain a lot of computation in the script itself but rather calls a number of form•Z
API functions will not perform as badly as one that does heavy computation in the script.

1.3 form•Z menu commands that support extensions

The File menu

New Script

A new menu item that has been added as the fourth item in the File menu. When selected, it
opens a new script editor window and makes it the active window. For details on script editing
and the script edit environment, see section 3.7.1.

 Open

This menu can now be used to also open script files (.fsl). When a script file is selected from the
standard file open dialog, a script editor window is opened and becomes the active window. The
contents of the script file (.fsl) are shown in the window. For details on script editing and the script
edit environment, see section 3.7.1.

A number of other items in the File menu are now sensitive to the script editing environment as
described in section 3.7.1.

The Edit menu

Plugins And Scripts

This item has been eliminated from the Edit menu. It has been renamed Extension Manager
and moved to the top of the new Extensions menu.

The Display menu

Renderer extensions now appear in their own group, which is the 4th group of the Display menu.

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 4

The Palette menu

Palette extensions now appear in their own group, which is the 3rd group of the Palette menu.

The Extensions menu

This is a new menu added between the Palettes and the Help menu. It contains 4 items in the
top group. The remainder of the menu may contain additional items or hieractal menus created by
extensions. Selecting one of these items performs the corresponding extension defined action.

 Extensions Manager…

This item invokes the Extensions dialog. This is the same as the previously available Plugins
And Scripts dialog.

Run Utility…

This item is used to run utility extensions. Utility extensions are designed to execute a task which
is either less frequently used or it is not desired to have a menu item for the task appear in the
form•Z interface. Utility plugins are best used on tasks that are linear in nature (like batch
processing). Utility plugins are not loaded by form•Z at startup and are not listed in the
Extensions dialog.

When the Run Utility… item is selected, a standard file open dialog is invoked to select the
extension file to run. A utility can be a plugin file (.fzp) or a script file (.fsl). Once the file is
selected, the utility is executed.

Run Recent Utility

This pop-out menu lists the most recent utilities that were executed using the Run Utility…
command. Selecting the utility file name from the menu immediately executes the utility.

Enable Script Debugger

This item enables and disables the script debugger. For details on debugging scripts, see section
3.7.2.

1.4 Common concepts

There are a number of common concepts that affect plugins and scripts. These are discussed in
the following sections.

1.4.1 UUIDs

A Universal Unique Identifier (UUID) is a 16-byte string that is generated using an algorithm that
guarantees a unique sequence of bytes (string). These ids are unique no matter what machine
they are generated on. UUIDs are used throughout form•Z for uniquely identifying items and
avoiding naming collisions. The use of UUIDs guarantees that plugin developers will not create
identically named plugins or collide with any of the names used by form•Z.

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 5

A UUID can be represented as a series of formatted hexadecimal numbers in between braces
(e.g. “{72c37192-25fc-4443-9bdc-4613a4933764}”). It can also be represented as a string of
hexadecimal characters using the \x escape sequence (e.g.
"\x72\xc3\x71\x92\x25\xfc\x44\x43\x9b\xdc\x46\x13\xa4\x93\x37\x64"). form•Z expects UUIDs in
the latter format. The functions fzrt_UUID_to_string and fzrt_string_to_UUID are
provided for converting between the UUID formats.

A utility is provided for generating UUIDs. The utility is in the form of a plugin called formZ UUID
Generator. This plugin is installed with the form•Z SDK sample plugins. To run the plugin, select
Run Utility… from the Extensions menu and navigate to the /Plugins/Samples/Utilities folder
and select the formZ UUID Generator.fzp plugin. The UUID utility generates a UUID and displays
it in a dialog. The dialog contains two text fields that show the generated UUID in both the
traditional format and the hexadecimal format used by form•Z. The text of the UUID can be
copied from these text fields and inserted in script files or plugin source code as needed.
Pressing the Generate button at the bottom of the dialog can generate a different UUID. The
text fields are updated to contain the new UUID. Selecting OK closes the dialog and terminates
the UUID generator utility.

1.4.2 form•Z resource files

The form•Z resource file format is an ASCII text file that stores the interface strings (resources)
for use in form•Z and extensions. The interface strings are stored in these external files, rather
than in the code itself, so that they can be localized. This avoids the significant overhead of
generating separate applications or extensions for each supported language. The resource file is
essentially a repository of strings, designed by the extension author, which can be used
whenever a string parameter is needed by a function in the form•Z API.

For example, the FUIM (form•Z User Interface Manager) functions (see section 1.4.6) require a
string for the title or text of most interface elements. To create a check box in a dialog, the title for
the check box must be provided by the extension. The string could be embedded directly in the
function call as in the following plugin example that creates a check box named My Option:

fz_fuim_new_check(fuim_tmpl, FZ_FUIM_ROOT, FZ_FUIM_NONE,

FZ_FUIM_FLAG_NONE, "My Option", NULL, NULL);

While this meets the requirements of the creation of the check box, it makes the string part of the
extension and not easily localizable. The preferred solution is to store the string in a form•Z
resource file. The above example could be stored in the file “my_plugin.ENU.fzr” as follows:

FZRF, 40, CHAR=MAC,

STR#, 1,
"My Option",
FZND,

Note that the name of the fzr file must follow the format described below. To use the resource file,
when the check box is created, the string is loaded from the resource file and then passed onto
the check box creation function as follows:

char my_str[256];

 fzrt_fzr_ref_td rsrc_ref;
 fzrt_error_td err = FZRT_NOERR;

if((err = fzrt_fzr_open(floc, "my_plugin", &rsrc_ref)) == FZRT_NOERR)
{

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 6

fzrt_fzr_get_string(rsrc_ref, 1, 1, my_str);
fz_fuim_new_check(fuim_tmpl, FZ_FUIM_ROOT, FZ_FUIM_NONE,

FZ_FUIM_FLAG_NONE, my_str, NULL, NULL);

 fzrt_fzr_close(rsrc_ref);
 }

In this example floc is a reference to the location on the disk where the resource file is located.
The recommended location is the same folder as the extension file (.fzp or .fsl/fsb). The plugin
function fzpl_plugin_file_get_floc and the script function fz_script_file_get_floc
can be used to retrieve the location of the extension on the disk at runtime. These functions are
discussed in chapters two and three respectively. Note that, since most extensions will contain
multiple strings that are loaded at various times, it is more efficient to open the resource file once
in the initialization of the extension and close it when the extension is terminated.

Localization is achieved by the creation of a parallel .fzr file for each desired language. form•Z
automatically loads the translated string based on the language that is in use. The above fzr file
would be translated into the file “my_plugin.ESP.fzr” for a Spanish translation as follows:

FZRF, 40, CHAR=MAC,

STR#, 1,
"Mi Opción",
FZND,

File format

The resource file uses the comma-separated value (CSV) file format that consists of contiguous,
sequential blocks of resource data. The CSV specification is a simple set of rules used to
organize text data in ASCII files. Each text field may be enclosed in quotes but it is not required.
If there is a quote character (") within a text field, it is represented with two quotes (""). Commas
separate each field of a record. The following is a sample fzr file that contains a single string list.

FZRF, 40, CHAR=MAC,

STR#, 1, /* Star Strings */
"Script Star", /* Command name */
"Help for Script Star", /* Help string */
"Script Star Options", /* Tool options name */
"Click a point to place star.", /* Prompt */
"Base Type",
"Radius",
"Ray Ratio",
"Dynamic",
"Preset",
FZND,

form•Z resource files are cross platform, hence they can be created on Macintosh or Windows
and used on either. To support proper translation between character sets on the different
platforms, the file must contain information on the platform that the file was created on (see FZRF
header below). It is important that a file not be edited on different platforms. This will result
in mixed character sets within the file and this is not supported. A file can be converted to a
system’s native format by using the function fzrt_fzr_write_file to write a clean copy of
the file.

The function fzrt_fzr_open opens a fzr file and returns a runtime index for the file. This index
is used in all other functions to reference the file. fzrt_fzr_close should be called when the

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 7

file is no longer needed. Note that, for efficiency, parts or all of the fzr files are cached once they
are opened. It is not efficient to frequently open and close fzr files. It is recommended that an
extension only open and close the file once. There are specific functions for reading each type of
resource stored in the file.

form•Z resource file names must have the format filename.<LANG>.FZR. The file extension is
".FZR" and on a Macintosh the file should have the Finder type, 'TEXT'. <LANG> is a 3-character
constant that defines the language of the file. The following are currently supported:

CHS - Simplified Chinese
CHT - Traditional Chinese
DEU - German
ELL - Greek
ENU - U.S. English
ESP - Spanish
FRA - French
ITA - Italian
JPN - Japanese
KOR - Korean

For example:

"QTVR.ENU.FZR" is the complete filename for the U.S. English version of the QuickTime VR
form•Z resource file, and

"QTVR.ESP.FZR" is the complete filename for the Spanish version of the QuickTime VR form•Z
resource file.

form•Z looks for resource files using the language identifier based on the current language as
selected in the Language preference section of the Preferences dialog. For example if
Spanish is the current language, then form•Z will look for resources in files that end in .ESP.fzr.
Localization is supported using parallel files. That is, for each supported language there is a file
with the same file name, but different language identifier, which contains the same resource data
in the corresponding language. Note that if a resource is not found in the file corresponding to the
current language, form•Z will look for an English resource in a file (.ENU.fzr). When opening
resource files using the fzrt_fzr_open function, only the base file name should be used (i.e.
without the language identifier and .fzr extension).

The content of a resource file is organized in blocks, which can be of different types and are
properly identified.

Block format

Each block in a resource file has three components: a block type identifier, a block ID, and the
block data. A C language style comment enclosed by "/*" "*/" may be included within the block
definition.

The block type is a 4-character constant in the first CSV field of the block. These are predefined
names. There is currently no accommodation for user-defined block types. The supported types
of blocks are described below.

The block ID is the numeric ID of the specific block type. This is an ASCII string of a decimal
number (e.g. 123) in the second CSV field of the block. Block IDs must be unique within a file for
all blocks of the same block type.

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 8

The block data is the resource or string data. The format of the data is dependent on the type of
block as described below. Inclusion of a comment within the block data is allowed only if the block
type specification allows it.

Block specifications

FZRF (form•Z resource format header)

The first block of any form•Z resource file is the FZRF block. If this block is not found at the top of
the file, the fzr file will not be recognized as a valid form•Z resource file. The block ID for the
FZRF block tells form•Z what version of the form•Z resource format specification is used in the
file. This number should always be 40. The data for this block is a sequence of CSV fields in the
format of keyword=value. The following keywords are supported.

CHAR Platform on which the file was created. Along with the language
identifier in the filename, this determines the character set that is
used in STR# and MENU resources. This is required.
Identifiers recognized are: MAC for Macintosh and WIN for Windows.

FVER Identifies the version of the file. This is the version of the data, not of

the file-format. This is ignored by resource functions, but available
through the function fzrt_rsrc_get_info;

A sample form•Z resource format header block looks like this:

FZRF, 40, CHAR=MAC,

STR# (string array)

This block defines an array (list) of strings. The block data contains a list of strings with each
string as a CSV field. The list must end with FZND as a marker to the end of the list. Hard returns
(new lines) are permitted within a string. Comments may be included within the CSV list of
strings. A string value which contains the sub-string "/*" should be enclosed with single quotes so
it is not interpreted as a comment. For example:

STR#, 100,

 string 1 /* first string with comment following*/,
 "string 2 /* with comment-like string */",
 the last string,
 FZND,

Items from STR# resources are accessed in extensions using the function
fzrt_fzr_get_string. The following plugin example shows the loading of a string for the
creation of a check box:

char my_str[256];
 fzrt_fzr_ref_td rsrc_ref;
 fzrt_error_td err = FZRT_NOERR;

err = fzrt_fzr_get_string(rsrc_ref, 100, 1, my_str);
err = fz_fuim_new_check(fuim_tmpl, FZ_FUIM_ROOT, FZ_FUIM_NONE,

FZ_FUIM_FLAG_NONE, my_str, NULL, NULL);

MENU (string array)

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 9

This block defines a menu resource. The block data contains a list of menu item strings with each
string as a CSV field. The list must end with FZND as a marker to the end of the list. Each string
is interpreted as the text for a single menu item. The special string "-" is interpreted as a menu
separator, which is the horizontal line dividing a menu to sections. The first string in the list is the
menu title. Comments are supported as with the STR# block type. For example:

MENU, 101,
menu title,
menu item 1,
menu item 2,
"-" /* separator */,
menu item 3,
FZND

Menu resources are accessed by an extension using the function fzrt_fzr_get_menu. Note
that this function loads all of the items in the list into the menu rather than just one string as with
fzrt_fzr_get_string. The following plugin example shows the loading of a menu for the
creation of a menu in a FUIM template:

fzrt_menu_ptr my_menu;
 fzrt_fzr_ref_td rsrc_ref;
 fzrt_error_td err = FZRT_NOERR;

err = fzrt_fzr_get_menu(rsrc_ref, 101, &my_menu);
err = fz_fuim_new_menu(fuim_tmpl, FZ_FUIM_ROOT, FZ_FUIM_NONE,

FZ_FUIM_FLAG_NONE, my_menu, NULL, NULL);

1.4.3 Platform detection

form•Z runs on Macintosh computers on the OS X operating system and on PC’s running
Windows. The form•Z API is cross platform, however, there are occasions when it is necessary
to know what platform the extension is running on. Plugins and scripts can detect the platform at
runtime using the function fzrt_get_platform. This function returns FZRT_PLATFORM_MAC
or FZRT_PLATFORM_WIN. The function fzrt_get_os_attrs_func can be used to get
specific information about the version of the operating system.

If(fzrt_get_platform()==FZRT_PLATFORM_MAC)
{
 /* Macintosh specific code goes here */
}

If(fzrt_get_platform()==FZRT_PLATFORM_WIN)
{
 /* Windows specific code goes here */
}

Plugins can use compile time platform detection by checking the __PLATFORM__ macro, which
is defined in the header file platform. This has the value of __PLATFORM__ == MACINTOSH for
Macintosh compilation and __PLATFORM__ == WINDOWS for Windows compilation.

#if (__PLATFORM__ == MACINTOSH)
 /* Macintosh specific code goes here */
#endif

#if (__PLATFORM__ == WINDOWS)
 /* Windows specific code goes here */

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 10

#endif

The form•Z SDK is 100% cross platform compatible. There are a few functions that do not
function on one platform or the other due to lack of support in the operating system. These
functions are provided so that plugin source code can remain platform independent. These
functions are documented in the form•Z API reference (chapter 5).

1.4.4 Memory allocation

The form•Z runtime library (fzrt) provides a memory manager that is more efficient than the
operating system (or ANSI) allocations (malloc, NewPtr etc…). The operating system must
manage all of the blocks of memory allocated by an application all at once. When a large number
of blocks are allocated, the time to perform an additional allocation or free can be significantly
slower than the same operation when very few blocks are allocated. This is because each block
of memory that is allocated must be tracked and managed adding additional overhead to the
management.

The form•Z runtime library memory manager uses a concept called memory zones. Memory
zones work by allocating larger (but fewer) blocks of memory from the operating system (a
memory zone) and managing zone blocks individually. The memory zone that is being used must
be provided when allocating or freeing a block of memory. form•Z creates a number of zones that
are used for allocating memory for areas of related functionality.

Memory zones can be static or dynamic. Static zones are created with a fixed size. Multiple
blocks can be allocated from a static zone but the total size of all of the requested blocks can not
exceed the zone size. Dynamic zones are unbounded in their size and can grow to consume all
available memory.

It is strongly recommended that plugins use memory zones when allocating more than 2
persistent memory blocks during the life of the plugin. This will not only make the plugin perform
better, but it will keep the plugin from harming the overall performance of form•Z. Memory zones
are best used for blocks that are persistent. Memory that is needed for a local or temporary
context should be allocated and freed using fzrt_new_ptr and fzrt_dispose_ptr functions.

1.4.5 Units

Internally to form•Z the number 1.0 is an inch or a centimeter (cm). If the working units are set to
English units, then 1.0 = 1 inch and if they are set to Metric units, then 1.0 = 1 cm. The working
units dialog presents a number of options to the user for controlling unit display. All of these
options are just display options to the user. The form•Z user interface manager (fuim)
automatically converts displayed numbers to and from the base unit (inch or cm).

Angles are stored in radians where 1.0 = 1 radian. Angle values can be converted between
radians and degrees using the macros FZ_MATH_DEG_2_RAD and FZ_MATH_RAD_2_DEG.
The working units dialog presents a number of options to the user for controlling angle display. All
of these options are just display options to the user. The form•Z user interface manager (FUIM)
automatically converts displayed numbers to and from radians.

1.4.6 Interface

The form•Z API includes support for common interface features such as dialogs, alerts, palettes,
wait cursor, key cancel detection and progress bars. The form•Z user interface manager (FUIM)

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 11

manages these interfaces. The prefix fz_fuim_ is used for all of the FUIM API entities
(functions, types, constants etc.).

The layout of interface elements (buttons, menus, text, etc.) found in dialogs and palettes is called
a FUIM template. The template contains the definition of the interface elements, the definition of
dependencies between the elements, and the connection to data storage (variables) in the
extension. The form•Z template manager handles the graphic layout of the template
automatically and deals with all platform specific issues. The template definition is hierarchically
organized in the form of a tree. That is, each element has a parent element and may have
multiple sibling elements and child elements. The interface elements are implicitly dependent on
their parent. That is, if the parent element is disabled, all of its descendents are also disabled.

The FUIM template capabilities are very different between plugins and scripts. The script FUIM
templates are simpler to use but do much less. The plugin templates can do all that the scripts
can do plus much more; however, they are a bit more complex to use. The following are the
significant limitations of script FUIM templates:

• Dependency of elements in the template can only be described through the implicit
hierarchy of the elements. Plugins can define additional dependency independent of the
hierarchy tree.

• Complex interface elements like lists (such as those used in form•Z in the Objects and
Lights palettes and in dialogs) and previews (such as those used in form•Z in the
Sweep, Revolve, and Rounding tool dialogs) are not available to scripts.

• Scripts can not create custom interface elements. Custom elements are interface
elements that allow virtually total customization of the interface by a plugin.

Templates are defined through a FUIM template function that is provided to form•Z by the
extension. The template function defines the template by calling form•Z API functions to create
the interface elements, define relationships between items, and bind the data storage (variables)
from the extension to the elements. The template function is provided to form•Z when a dialog is
invoked through a dialog driver, or through specific call back functions provided by form•Z. These
call back functions vary by the type of extension and are discussed in section 2.8 for plugins and
3.7 for scripts.

The details of using the FUIM manager are discussed separately for plugins and scripts. The
Plugin description is in section 2.6 and scripts in section 3.5.

1.4.7 Naming conventions

There are a number of naming conventions used throughout the form•Z SDK to make the code
easier to use and understand. In general, names are descriptive in nature. To keep the names
from becoming too long, each term in a name is abbreviated, if it is more than six characters in
length. Each term in a name is separated by an underbar “_” character.

The naming convention is also used to group similar things together. For example all of the
functions that manage form•Z modeling objects start with fz_objt_. All the object creation
functions start with fz_objt_cnstr_ and the editing functions with fz_objt_edit_. Terms
relative to the content of an entity follow these to complete the names. These include the different
form•Z object types and operations. For example, opts stands for options and parm for
parameter. The following example shows the names for the functions corresponding to the
form•Z Sweep tool.

fz_objt_cnstr_sweep_axial

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 12

fz_objt_cnstr_sweep_2source
fz_objt_cnstr_sweep_2path
fz_objt_cnstr_sweep_boundary
fz_objt_cnstr_sweep_opts_init
fz_objt_cnstr_sweep_opts_get
fz_objt_cnstr_sweep_opts_set
fz_objt_cnstr_sweep_opts_finit
fz_objt_edit_sweep_parm_get
fz_objt_edit_sweep_parm_set

The following additional rules are applied:

• All names defined in the form•Z SDK start with fz_, fzrt_ or fzpl_. For example:

fz_objt_cnstr_sweep_axial
 fzrt_boolean
 fzpl_plugin_add_fset

• Functions, enumerators (enum in C), type names (typedef in C) are in lower case letters . For
example:

fz_objt_cnstr_sweep_axial
fz_objt_sweep_type_enum

• Structure names end in _td (in C all structures are defined by typedef’s). For example:
fz_xyz_td
fz_rgb_td

• Function types end in _func. For example:
fz_fuim_item_func
fz_fuim_item_cust_func

• Pointer types end in _ptr. For example:
fzrt_floc_ptr
fz_fuim_tmpl_ptr

• Enumerated lists (enum) end with in _enum. For example:
fz_fuim_icon_enum
fz_objt_sweep_type_enum

• Constants (#define in C) are in all capital letters. For example:
FZRT_NOERR
FZPL_VERS_MAKE

• Members of enumerated lists (enum) are in all capital letters. For example:
 FZ_OBJT_SWEEP_TYPE_AXIAL
 FZ_OBJT_SWEEP_TYPE_2SOURCE
 FZ_OBJT_SWEEP_TYPE_2PATH
 FZ_OBJT_SWEEP_TYPE_BOUNDARY

1.4.8 Error handling

The API and call back functions provided by form•Z for both plugins and scripts perform rather
extensive checks in order to protect the system from crashes that may be caused by bad data or
other undesirable conditions. When improper conditions are encountered, an error message is
returned by the function and needs to be properly handled by an extension. How this ought to be
done is discussed in this section.

Errors generated by form•Z API functions

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 13

With a few exceptions almost all form•Z API functions return an error code. When writing a
plugin, the error code is of type fzrt_error_, which is defined as a long integer. When writing
a script, the return type is a long integer. Note that there is no real difference between these two
declarations, since fzrt_error_ is essentially a long. Thus functions that return error codes
are typically declared as long, which works fine with assignments to both long and fzrt_error_
variables.

When an API function executes successfully, ity returns an error code of FZRT_NOERR, which is
defined as 0 (zero). If it does not return FZRT_NOERR, some error occurred in the API function
and it returns the respective error code. When an extension calls a form•Z API function, it is
recommended to always check for errors and to structure the flow of the code accordingly, as
shown in the following plugin example:

fzrt_error_td rv;
fz_xyz_td wdh,origin;
fz_objt_ptr obj;

 wdh.x = 10.0;
 wdh.y = 10.0;
 wdh.z = 50.0;

 origin.x = 100.0;
 origin.y = 100.0;
 origin.z = 0.0;

 rv = fz_objt_cnstr_cube(windex,&wdh,&origin,NULL,&new_obj);
 if (rv == FZRT_NOERR)
 {
 rv = fz_objt_add_objt_to_project(windex,new_obj);
 }

Note that a script example would be identical with the above plugin example, except for the
declaration of the error variable rv, which would be:

long rv; instead of fzrt_error_td rv;

In the example above, of course, there is little chance for an error, because the input parameters
to the fz_objt_cnstr_cube function are hard-coded values, which will always succeed. The
only possibility for an error would be if the system runs out of memory. In other instances,
however, the input parameters for API functions may come from other sources, such as user
input. In these cases, the values may not always be clean and error checking becomes important
for the stability of the plugin or script.

Errors generated by callback functions

In general, it is not that critical for an extension to know what kind of error occurred. What is more
important is to pass back to form•Z the error codes from API functions that are executed inside of
an extension's callback function. As with the API functions, the error codes that callback functions
return are assigned to fzrt_error_td variables in plugins or to long variables in scripts.

Depending on what kind of callback function is called, form•Z will take a different action, when an
error occurrs. If the callback function is executed at startup time and an error occurs, the
respective plugin or script will not be loaded. For example, a plugin may be opening a resource
file in the tool's init function in order to extract the strings needed for dialogs. If the resource file

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 14

cannot be found, an error is generated and should be passed back to form•Z. Below is such an
example for a tool script.

long fz_tool_cbak_init()
{
 long err = FZRT_NOERR;
 fzrt_floc_ptr floc;

 if ((err = fzrt_file_floc_init(floc)) == FZRT_NOERR &&
 (err = fz_script_file_get_floc(floc)) == FZRT_NOERR)
 {
 err = fzrt_fzr_open(floc,"tool_star",star_rsrc_ref);
 fzrt_file_floc_finit(floc);
 }

 return(err);
}

Since the tool cannot exist without strings, if the resource file with the strings is not found and
fz_tool_cbak_init returns an error, form•Z will not load the tool script.

For other callback functions, form•Z may not execute a certain functionality, if an error occurs.
That is the case, for example, when the copy attribute callback function returns an error. The
attribute simply will not be copied.

If an error occurs in one of the major call back functions, listed below for the different extension
types, form•Z will post an error message in a dialog.

Tool
 fz_tool_cbak_prompt
 fz_tool_cbak_click
 fz_tool_cbak_select

Project command
 fz_cmnd_cbak_proj_select

System command
 fz_cmnd_cbak_syst_select

Project utility
 fz_util_cbak_proj_main

System utility
 fz_util_cbak_syst_main

File translator
 fz_ffmt_cbak_basic_read
 fz_ffmt_cbak_basic_write
 fz_ffmt_cbak_data_model_read
 Any of the data model write functions that write to the file.

 fz_ffmt_cbak_imag_vect_read_frame
 fz_ffmt_cbak_imag_vect_read
 Any of the image vect write functions that write to the file.

 fz_ffmt_cbak_imag_bmap_read_info

fz_ffmt_cbak_imag_bmap_read

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 15

 Any of the image bmap write functions that write to the file.

Note that, for structured file translators , there are several callback functions that write data to a
file. If any one of these functions returns an error, the export is aborted and the error is posted to
the user.

form•Z will not post an error for functions not listed above. It is the responsibility of the plugin to
inform the user of significant errors. This is described in more detail in the next section.

Retrieving more detail about an error

In some instances it may be desirable to post an error inside an extension. For example, when
the initialization of a plugin at load time fails for very specific reasons, the plugin may choose to
notify the user about the error. In this case, the return value of the form•Z API function that
caused the error is passed into the API function fzrt_error_get_info, which returns error
details. Among those is a string, which can be used in an alert dialog. For example :

long fz_tool_cbak_init()
{
 long err = FZRT_NOERR;
 fzrt_floc_ptr floc;
 string str1,str2;

 if ((err = fzrt_file_floc_init(floc)) == FZRT_NOERR &&
 (err = fz_script_file_get_floc(floc)) == FZRT_NOERR)
 {
 err = fzrt_fzr_open(floc,"tool_star",star_rsrc_ref);
 fzrt_file_floc_finit(floc);
 }

 /* AN ERROR OCCURRED. POST IT TO THE USER */

if (err != FZRT_NOERR)
 {

 strcpy(str1 ,"Unable to open tool_star resource file. Reason :");
fzrt_error_get_info(err, str2,255,NULL, NULL,NULL, NULL,NULL,0, NULL);
 strcat(str1,str2);

fz_fuim_alrt_std_confirm(str1, FZ_FUIM_ALRT_CONFIRM_OK);
}

 return(err);
}

In the second part of the above call back function, code is provided for properly issuing a
message, if the value of err is not FZRT_NOERR. First, strcpy (the string copy) function
assigns a string to str1. Note that this string contains an incomplete message and needs some
explanation of a reason to be added to its end. The explanation string is picked by the
fzrt_error_get_info function and stored in string variable str2. Next, strcat (the
string concatenate function) concatenates str2 into str1. The message is now complete and
fz_fuim_alrt_std_confirm displays it in a dialog.

Care should be taken when posting errors. Only significant errors should be posted and they
should be posted once only. For example, if an error occurs inside a loop, the alert dialog should
not be posted for each iteration of the loop, even if the error occurs multiple times. This would
require the user to repeatedly hit the OK button in the alert dialog. As a rule of thumb, an
extension should post those errors that are not obvious to a user. The posted message should
assist the user in not repeating the error a second time.

Errors created by a plugin

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 16

A plugin can define its own error codes and associated strings. This allows form•Z to post the
appropriate error message, if a plugin fails, not because an error was returned by an API function
called by the plugin, but because of an error condition that occurred directly in the plugin. To
facilitate this form•Z defines an error context specifically for plugins,
FZRT_ERROR_CONTEXT_PLUGIN. Plugin defined error codes can be any long integer value.
When setting an error to a plugin defined error code, fzrt_error_set or
fzrt_error_set_with_detail should be called with the err parameter set to the plugin
defined error code, the context parameter set to FZRT_ERROR_CONTEXT_PLUGIN, and the
context_id parameter set to the plugin’s runtime ID, as follows:

#define MY_ERROR_CODE 1

err = fzrt_error_set(MY_ERROR_CODE, FZRT_ERROR_SEVERITY_ERROR,

FZRT_ERROR_CONTEXT_PLUGIN, plugin_runtime_id);

In order for form•Z to supply a string to an error alert dialog, the plugin must supply a function
which maps the error code to a string. This is an example of such a function:

#define MY_MESSAGES 1

fzrt_boolean my_error_str_func(

long err,
char *str,
short str_len)

{
 char msg[256];

 /* Get the string from the plugin's resource file. */
 fzrt_fzr_get_string(_fz_rsrc_ref, MY_MESSAGES, err, msg);
 strncpy(str, msg, str_len);

 /* If we sucessfully got the string, return TRUE; otherwise, return FALSE.
*/
 return(msg[0] == '\0' ? FALSE : TRUE);
}

The err parameter is the plugin defined error code, str is the string explaning the error, and
str_len is the maximum length of str in bytes. Error strings should be stored in form•Z
resource (.fzr) files, so that they may be localized easier.

The my_error_str_func function is registered with form•Z through the err_str_fcn
parameter of fzpl_plugin_register as follows:

err = fzpl_plugin_register(
 MY_PLUGIN_ID,
 my_plugin_name,
 MY_PLUGIN_VERSION,
 MY_PLUGIN_VENDOR,
 MY_PLUGIN_URL,
 FZFN_TOOL_TYPE,
 FZFN_TOOL_VERSION,
 my_error_str_func,
 0,
 NULL,
 &plugin_runtime_id);

Error Logging

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 17

When fzrt_error_set or fzrt_error_set_with_detail are called, the error is logged
to the file, “formz log.txt” in the form•Z application folder. This provides a history of all errors that
occurred whether they result in an error being displayed to the user or not. For each error, this
file is opened, the error is appended to the end of the file, then the file is closed. This makes sure
the file is written to disk in the case of a crash. This file is not deleted between runs of form•Z.
Therefore, it is a good idea to periodically delete this file. If the file doesn’t exist, form•Z will
create a new one.

This file contains the time the error was set, the error string, the error severity, the error context
and context id and the error code. A single entry in the error log looks something like this:

Tue Apr 27 12:51:28 2004
 69533) An object with no faces encountered.
 error code = 4 severity = Error context = Plugin:Wavefront OBJ File
translator detail id = 1108

The first line contains the date and time when fzrt_error_set or
fzrt_error_set_with_detail was called. The second line contains the id of the error (the
falue returned from fzrt_error_set or fzrt_error_set_with_detail) and the error
string. The third line (which wraps around in the above example) contains the error code (passed
into fzrt_error_set or fzrt_error_set_with_detail), the severity, the context and the
detail id which is only set by fzrt_error_set_with_detail. If fzrt_error_set was
called, the detail id will be 0. The Wavefront File Translator sample plugin assigns a unique detail
id for each error it generates. This can help identify where in the code an error occurred.

1.5 Data organization

Information in form•Z is divided between system and project. System data is global and does not
change regardless of which project is active. The preferences, key shortcuts, and tool options are
examples of system information. Project information has an instance of the data per project. The
user interacts with the project information of the active project through the form•Z interface. The
working units and project colors are examples of project level information.

Some project information has a single instance for the entire project and other information has an
instance per project window. The working units and project colors are examples of a single
instance. When these options are changed, all windows of the project are affected. The window
options, rulers, underlay and display options are examples of information that has an instance per
project window. That is, each window maintains its own individual setting for these options.

Extensions can get and set a variety of data and perform operations at the system and project
level through form•Z API functions. form•Z project data is referenced from the runtime index of a
form•Z project window. This parameter is always called windex and is present as the first
parameter in many of the form•Z API functions. Project level call back functions receive the
windex parameter from form•Z. The plugin or script should use this value when calling any
form•Z API function that requires a windex parameter. Since the windex value is a runtime value
it will vary from session to session and will be different for each window of a project. This value
should not be stored in a persistent fashion (global variable or file).

The provided windex will often be the windex of the active project window, however, this is not
always the case as form•Z may perform operations on the non active project window. The windex
parameter can represent a special project such as the clipboard which is a hidden project
managed by form•Z. Multi-threading is expected to be supported in the future which will enable

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 18

background processing and hence the windex parameter would represent a window that is being
processed in the background.

System level plugins and scripts do not get the windex parameter, however, they can traverse the
list of projects using the form•Z API functions, as shown in the following example.

fzrt_error_td my_walk_project_windows_func(void)
{

long windex,start_windex,nprojs,l;
fzrt_error_td err= FZRT_NOERR;

if((err = fz_proj_get_count(&nprojs)) == FZRT_NOERR)
{

for(i=0;i< nprojs;i++)
{
 if((err = fz_proj_get_windex(i, &windex)) == FZRT_NOERR)

 {
 start_windex = windex;

do
{

if((err = fz_wind_get_next(windex, &next))) == FZRT_NOERR)
{

 windex = next;
 }

} while(windex != start_windex && err == FZRT_NOERR);
}

 }
}

}

1.5.1 Model object representation

form•Z offers a large number of API functions which allow a plugin or script developer to
construct and modify objects. In all of these functions, parameters are passed to the function,
which describe the shape of the object to be constructed or the type of changes to be made to the
object. In either case, the developer never has to worry about the actual structure of the object, as
this is taken care of in the API function. For example, the API function that moves an object
fz_objt_edit_move_objt not only moves the geometry of the object, but also moves
associated object data, such as attributes with positional values, parameters of controlled objects
etc. While using API functions is a safe way to create and edit objects, there may be instances,
where the content of an object must be accessed directly. For example, there may not be an API
function, which constructs an object of a particular shape, or there may not be an API function,
which changes the shape of an object in a particular way. For these cases, form•Z offers API
functions which give the developer direct access to the underlying data structures of an object.

Object topology and geometry

Before these API functions are discussed, it is necessary to understand the structure of a form•Z
object. The user interface of form•Z already reveals the basic object structure. There are 5 levels
of topology, which correspond to the 5 levels of the pick tool : point, segment, outline, face, and
object. Note that the group level is not part of the object, as it is its own organizational level,
which does not contain any geometric data.

Each object consists of one or more faces. A face, by its nature, is a closed shape. However, by
convention, it may also be open, as in the case of an open line. If the object model type is
facetted, all closed faces are assumed to define a plane. However, faces may also be non planar,
in which case the actual plane definition is ambiguous. Such faces may be triangulated, which

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 19

decomposes them into smaller planar faces. If the object model type is smooth, a face's
underlying geometry may be a plane, a cylinder or cone, a sphere, a torus, or a spline surface.
Open faces do not define a surface, and they are called wires. There may also be closed wire
faces, which are faces of smooth objects, whose surface has been removed.

A face is defined by one or more outlines. The first outline is always the outer boundary of a
face's geometric surface. If a face has more than one outlines, the remaining outlines define
holes, which are contained within the outer boundary. The directions of the outlines are
significant. The outer outline is always defined in clockwise direction, when looking down on the
face's surface. All hole outlines have a counter clockwise direction. This is shown in the figure
below.

The topology of a 2d surface with three holes

An outline is defined by a linked list of segments or edges. If the face is an open wire, there is a
start and an end segment. Otherwise, the segments form a closed loop. If the object model type
is facetted, a segment is always a straight line. In other words, the segment's geometry is defined
by its start and end point and the line between those is assumed to be straight. If the object
model type is smooth, the line between the segment's start and end points may be a straight line,
an arc, or a spline curve. A segment can be thought of as having a direction, as it always point
from its start point to its end point. The end point of a segment is always identical with the start
point of the next segment. Segments also may have a coincident partner segment, which runs in
the opposite direction. We call this a segment’s reversely coincident segment. This is the case in
an object that consists of several faces, which are stitched together, as in any solid object, for
example. In such an object, a user will only see one segment, where there are really two
segments in the object's data structure. Since they are occupying the same 3d space, only one
can be shown. For example, a cube appears to have 12 segments for a user, but really has 24
segments in its data structure (6 faces with one outline each = 6 outlines with 4 segments each =
24 segments). Faces, which do not have a neighboring face are defined by segments, which do
not have a reversely coincident segment. For example, a simple rectangle object has 4
segments.

The final topological level is the point or vertex. Each segment has a start and end point, which it
references through an index. Note, that points are shared by segments. For example, a cube has
8 points, but 24 segments. That means, that three segments have the same start point. This can
easily be verified, by drawing an exploded view of the topology of a cube object, as shown in the
figure below.

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 20

The topology of a cube

Smooth versus facetted objects

The topology described above fits both smooth and facetted objects. By convention, in form•Z,
smooth objects, in addition to their smooth topology, they also carry the corresponding facetted
topology. In other words, they are stored with two representations. form•Z may use either
topology, depending on the operation involved. For example, when a modeling operation is
executed on a smooth object, the smooth topology is used. This allows, for example, a Boolean
union between two smooth objects to result in a smooth object. When a smooth object is drawn
on the screen, many rendering modes use the facetted topology or a combination of smooth and
facetted topology. For example, Quick Paint shows only the facetted faces of a smooth object.
Wireframe display draws the facetted faces in a lighter color and draws the edges of the smooth
faces in a darker color. The facetted topology of a smooth object is always kept up to date by
form•Z to faithfully represent the smooth shape of the object. The end user, is therefore never
allowed to manipulate the facetted topology of a smooth object directly, as any change would be
wiped out the next time form•Z regenerates the facets of a smooth object. Nevertheless, the
facetted topology is completely defined in a smooth object and can be accessed by a plugin or
script developer, as if the object were a facetted object.

1.5.2 Tracing the topology of an object

A plugin or script developer may want to trace the topology of an object for either extracting
information from the various levels or for applying some opertation. form•Z offers a number of
API functions for that purpose.

Tracing faces

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 21

To traverse all faces of an object, a simple for loop can be written. The example below extracts
the geometry type of each face of an object. Note, that the function that retrieves the number of
faces of an object takes an argument, which determines whether the facetted or smooth number
of faces is retrieved. If FZ_OBJT_MODEL_TYPE_UNSPEC is passed for the argument, the function
returns the number of smooth faces, if the object is smooth, or the number of facetted faces, if the
object is facetted. If the object is smooth, it may be desirable to trace the facetted representation
of the smooth object. In this case, the argument must be passed as
FZ_OBJT_MODEL_TYPE_FACT. If the developer wants to trace the smooth faces of a smooth
object, the argument can be set to FZ_OBJT_MODEL_TYPE_SMOD or
FZ_OBJT_MODEL_TYPE_UNSPEC . For facetted object, the FZ_OBJT_MODEL_TYPE_SMOD is
invalid and will result in an error code passed back by the API.

fz_objt_get_face_count(windex,obj,FZ_OBJT_MODEL_TYPE_UNSPEC,&nface);

for(i = 0; i < nface; i++)
{
 /* GET THE GEOMETRY TYPE OF THE FACE */

fz_objt_alys_get_face_geom_type(windex,obj,i,&geom_type);

/* DO SOMETHING WITH IT */
...

}

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 22

Tracing outlines

To access the outlines of an object, two methods may be used. The outlines can be accessed
directly from the object. Note that in the API, Outlines are referred to as curves. In this case, the
loop looks similar to the face loop:

fz_objt_get_curve_count(windex,obj,FZ_OBJT_MODEL_TYPE_UNSPEC,&ncurv);

for(i = 0; i < ncurv; i++)
{
 /* GET THE PERIMETER OF AN OUTLINE */

fz_objt_alys_get_curve_circumference(windex,obj,i,&circ);

/* DO SOMETHING WITH IT */
...

}

In the form•Z representations, all outlines belonging to the same face are linked with “previous”
and “next” pointers. Each face also contains a pointer to its first outline, which is always an outer
outline. This is linked to the remainder outlines, which are all holes, if they exist at all. The
second method for tracing the outlines is based on this structure of the faces and is illustrated by
the following example:

fz_objt_get_face_count(windex,obj,FZ_OBJT_MODEL_TYPE_UNSPEC,&nface);

for(i = 0; i < nface; i++)
{
 /* GET THE FIRST CURVE OF THE OBJECT */
 fz_objt_face_get_cindx(windex,obj,i,
 FZ_OBJT_MODEL_TYPE_UNSPEC,&chead);
 cindx = chead;

 do
 {
 /* DO SOMETHING WITH THE CURVE */
 ...

 /* GET THE NEXT CURVE */
 fz_objt_curv_get_next(windex,obj,cindx,
 FZ_OBJT_MODEL_TYPE_UNSPEC,&cindx);

 } while (cindx != chead);
}

Note, that the outline loop is a do while loop, as the outlines of a face form a circular linked list.

Tracing segments

As with the outlines, the segments of an object may be traced in two ways: directly or through the
topology hierarchy. A direct loop is shown below:

fz_objt_get_segt_count(windex,obj,FZ_OBJT_MODEL_TYPE_UNSPEC,&nsegt);

for(i = 0; i < nsegt; i++)
{

fz_objt_alys_get_segt_length(windex,obj,i,&length);
}

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 23

To trace along the topological hierarchy, the nested outline loop from above is expanded with
another nested loop for all the segments of each outline. This again is based on that all the
segments of an outline are linked with each other and each outline contains a pointer to its first
segment. The second method of tracing is illustrated in the following example:

fz_objt_get_face_count(windex,obj,FZ_OBJT_MODEL_TYPE_UNSPEC,&nface);

for(i = 0; i < nface; i++)
{
 /* GET THE FIRST CURVE OF THE OBJECT */
 fz_objt_face_get_cindx(windex,obj,i,
 FZ_OBJT_MODEL_TYPE_UNSPEC,&chead);
 cindx = chead;

 do
 {
 /* GET THE FIRST SEGMENT OF THE CURVE */
 fz_objt_curv_get_sindx(windex,obj,cindx,
 FZ_OBJT_MODEL_TYPE_UNSPEC,shead);

 sindx = shead;

 do
 {
 /* DO SOMETHING WITH IT */
 ...

 /* GET THE NEXT SEGMENT */
 fz_objt_segt_get_next(windex,obj,sindx,
 FZ_OBJT_MODEL_TYPE_UNSPEC,sindx);

 } while (sindx != shead && sindx != -1);

 /* GET THE NEXT CURVE */
 fz_objt_curv_get_next(windex,obj,cindx,
 FZ_OBJT_MODEL_TYPE_UNSPEC,&cindx);

 } while (cindx != chead);
}

Again, the segment loop is implemented as a do while loop, as segments are also forming a
linked list. The list may be closed, if the curve is a closed curve. In this case, the next segment of
the last segment of a curve points to the first segment of the curve. Thus the terminating condition
sindx != shead of the while loop. A linked segment list may also be open, if the curve is an
open curve. in this case, the last segment does not point to another segment, but returns -1 for
the next segment index. The terminating condition for the do while loop is expanded with sindx
!= -1, for open curves.

There is one significant difference when tracing segments of an open curve of smooth and
facetted objects. For a facetted object, the last segment of an open curve does not have a valid
end point, only a start point. That is, there is an invisible "dummy" segment at the end of an open
curve. For example, a simple vector line with three visible segments really has four segments.
The last only serves the purpose to store the point index of its start point, since there are four
points in a three segment open wire and segments of facetted objects only store the point index
of the segment start, not the segment end. In a smooth object however, there is no dummy
segment at the end of open curves. A smooth segment stores both, start and end point indices.

Tracing points

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 24

To get to the points of an object, the nested outline and segment loops can be used or the points
can be accessed directly as before.

 fz_objt_get_pnt_count(windex,obj,FZ_OBJT_MODEL_TYPE_UNSPEC,&ncord);

 for(i = 0; i < ncord; i++)
 {
 fz_objt_point_get_xyz(windex,obj,i,FZ_OBJT_MODEL_TYPE_UNSPEC,&pnt);
 }

The nested loops are as follows :

fz_objt_get_face_count(windex,obj,FZ_OBJT_MODEL_TYPE_UNSPEC,&nface);

for(i = 0; i < nface; i++)
{
 /* GET THE FIRST CURVE OF THE OBJECT */
 fz_objt_face_get_cindx(windex,obj,i,
 FZ_OBJT_MODEL_TYPE_UNSPEC,&chead);
 cindx = chead;

 do
 {
 /* GET THE FIRST SEGMENT OF THE CURVE */
 fz_objt_curv_get_sindx(windex,obj,cindx,
 FZ_OBJT_MODEL_TYPE_UNSPEC,shead);

 sindx = shead;

 do
 {
 /* GET THE SEGMENT'S START POINT INDEX */
 fz_objt_segt_get_start_pindx(windex,obj,sindx,

FZ_OBJT_MODEL_TYPE_UNSPEC,pindx);

 /* GET THE POINT'S COORDINATE VALUE */
 fz_objt_point_get_xyz(windex,obj,pindx,
 FZ_OBJT_MODEL_TYPE_UNSPEC,&pnt);

 /* GET THE NEXT SEGMENT */
 fz_objt_segt_get_next(windex,obj,sindx,
 FZ_OBJT_MODEL_TYPE_UNSPEC,sindx);

 } while (sindx != shead && sindx != -1);

 /* GET THE NEXT CURVE */
 fz_objt_curv_get_next(windex,obj,cindx,
 FZ_OBJT_MODEL_TYPE_UNSPEC,&cindx);

 } while (cindx != chead);
}

Note that the latter example traces each point of an object more than once, when the same point is an initial
point of more than one segment, which is the norm. To trace the points only once, the code needs to be
extended to include some marking method that will allow passing a point if it has already been traced.

Tracing through all faces of a smooth face

A developer may want to access all the facetted faces, which represent a face of a smooth object.
This can be done with the following code :

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 25

 fz_objt_face_smod_get_fact_faces(windex,obj,findx,&fstart,&nface);

 for(j = fstart; j <= fstart + nface; j++)
 {
 fz_objt_face_get_cindx(windex,obj,j,FZ_OBJT_MODEL_TYPE_FACT,&cindx);

 /* ETC */
 ...
 }
}

Note, that the call to fz_objt_face_get_cindx now uses the FZ_OBJT_MODEL_TYPE_FACT
identifier, as the face index is guaranteed to be that of a facetted face.

Getting the sample points of smooth segments

The segments of smooth objects may be curved. For example a segment may have an arc or a
spline curve as the underlying geometry. To display such a segment for example, it is necessary
to generate sample points that represent the shape of the segment. This is not unlike the facetted
faces of a smooth object, which represent the shape of the smooth geometry. form•Z stores the
sample points of smooth segments and they can be accessed with a form•Z API call. This is
shown below:

 fz_objt_segt_get_num_wire_pnts(windex,obj,sindx,&npnts);
 for(i = 0; i < npnts; i++)
 {

fz_objt_segt_get_wire_pnt(windex,obj,sindx,i,&pt_xyz);
...

 }

Note, that the fz_objt_segt_get_num_wire_pnts function only works on smooth objects
and the sindx parameter (which is the index of the segment) passed in must be that of a smooth
segment. The coordinate value of a sample point on a smooth segment is retrieved with the
function call fz_objt_segt_get_wire_pnt. Again, the object must be a smooth object and
the segment index passed in must be that of a smooth segment.

1.6 Methods for constructing objects

Objects can be constructed in three distinctly different ways. . The first method constructs an
object one face at a time. That is, a set of coordinate points in 3D space are defined and are then
conncted to form segments, outlines, and faces. At the end the faces are linked to form an
object, which is also made a member of a project. .That is, the new object is initially tagged as a
temporary object and it becomes permanent when it is made part of a project by calling the
fz_objt_add_to_project function. This is the most general method for generating objects as
it can produce objects of any shape. However, it is restricted to facetted objects only and is
typically tedious to execute. This method is discussed in more detail in section 1.6.1.

The second method derives specific shapes of objects directly, based on sets of parameters
provided. It is based on the many API functions that form•Z offers, which more or less
correspond to the construction tools available through the graphic interface of the program.
Examples would be all the primitives, an object of revolution from a given profile shape and an
axis, a swept object from a source and a path shape, etc. Here again, the new object is always
initially tagged as a temporary object and it becomes permanent after it is made a member of a
project.

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 26

The third method is known as constructive solid geometry (CSG). It consists of first generating
a number of basic shapes and then using Boolean or other sculpting operations to construct a
new object. This process takes advantage of the fact that form•Z can generate both temporary
and permanent objects. The original basic objects that are used as operands are temporary
objects and are never given the status of a permanent object. They can thus be easily deleted
after they have performed their job, thus avoiding overloading the program memory. Only the final
object is kept by being elevated from temprorary to permanent status, by calling the
fz_objt_add_to_project function. After this call, the object shows up in the Objects palette,
is drawn on the screen, and an undo record is generated for it, which allows a user to reverse the
creation of the object.

1.6.1 Point-by-point object construction

Just as it is possible to trace the topology of an object directly, it is also possible to construct the
topology and geometry of an object one ntity at a time. However, as it has already been
mentioned, this is only possible for facetted objects, not for smooth objects. The latter have to be
generated using one of the other two methods.

The low level construction of an object involves three major steps :

1. A new, empty object is created.
2. The points of the object are generated and loaded.
3. The segments, outlines, and faces of the object are constructed.

Creating a new object is done with function:

fz_objt_cnstr_objt_new(windex,&obj);

This new object is empty. It does not contain any faces, outlines, segments, or points.

The points for the object are loaded with function:

fz_objt_fact_add_pnts(windex,obj,pnts,npts);

The coordinate values of the points are generated and stored in an array of type fz_xyz_td.
The size of the array is passed in via the last function argument. Once the object contains points,
they must be connected to form segments, outlines, and faces. This is done with function:

fz_objt_fact_create_face(windex,obj,pindx,npts,&findx); for closed faces
or
fz_objt_fact_create_wire_face(windex,obj,pindx,npts,&findx); for open faces.

These function calls create one face at a time. For multiple faces, they must be called repeatedly,
until all points are connected properly. The arguments to these functions are an array of point
indices and a counter that indicates how many point indices are used. The function then
constructs one face with one outline, connecting the points, identified in the point index array in
the order they appear in the array. After the last face is created, the segments of the object are
linked together with function:

fz_objt_fact_link_faces(windex,obj);

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 27

This sets the reversely coincident links of each segment. A complete construction of a cube using
low level API functions is shown below. A more elaborate example can be found in the star
plugin, which creates the faces of a star shaped objects using this method.

 long pindx[4];
 fz_xyz_td pts[8];
 fz_objt_ptr obj;

 /* MAKE A NEW EMPY OBJECT */

fz_objt_cnstr_objt_new(windex,&obj);

 /* ADD 8 POINTS */
 pts[0] = {10,10, 0};
 pts[1] = {60,10, 0};
 pts[2] = {60,60, 0};
 pts[3] = {10,60, 0};
 pts[4] = {10,10,50};
 pts[5] = {60,10,50};
 pts[6] = {60,60,50};
 pts[7] = {10,60,50};

fz_objt_fact_add_pnts(windex,obj,pts,8);

 /* CREATE 6 FACES TO MAKE A CUBE */
 pindx[0] = 0; pindx[1] = 1; pindx[2] = 2; pindx[3] = 3;

fz_objt_fact_create_face(windex,obj,pindx,4,NULL);
pindx[0] = 0; pindx[1] = 4; pindx[2] = 5; pindx[3] = 1;
fz_objt_fact_create_face(windex,obj,pindx,4,NULL);

 pindx[0] = 1; pindx[1] = 5; pindx[2] = 6; pindx[3] = 2;
 fz_objt_fact_create_face(windex,obj,pindx,4,NULL);
 pindx[0] = 2; pindx[1] = 6; pindx[2] = 7; pindx[3] = 3;
 fz_objt_fact_create_face(windex,obj,pindx,4,NULL);
 pindx[0] = 3; pindx[1] = 7; pindx[2] = 4; pindx[3] = 0;
 fz_objt_fact_create_face(windex,obj,pindx,4,NULL);
 pindx[0] = 4; pindx[1] = 7; pindx[2] = 6; pindx[3] = 5;
 fz_objt_fact_create_face(windex,obj,pindx,4,NULL);

 /* LINK FACES */
 fz_objt_fact_link_faces(windex,obj);

 /* ADD OBJECT PERMANENTLY TO THE PROJECT */
 fz_objt_add_objt_to_project(windex,obj);

1.6.2 Generating objects directly

An object can be generated directly by calling one of the many API functions that are made
available to both plugin and script developers. These functions correspond to the object
generation operations that are available in the regular form•Z code. New such functions can also
be written as plugins or scripts and made available to other plugins and scripts .

One of the simplest forms is, of course, the cube. An example of how to generate a cube directly
follows. Recall that the example in the previous section, which discusses the point-by-point
construction method, also generated a cube and you can now compare the two methods.

 /* CREATE A CUBE */

wdh = {50,50,50};

 fz_objt_cnstr_cube(windex,wdh,NULL,NULL,obj1);

fz_objt_add_objt_to_project(windex, obj1);

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 28

The cube is constructed by calling function fz_objt_cnstr_cube, after x, y, and z values are
assigned to variable wdt, which is of type fz_xyz_td. The latter variable is included in the argument list
of the call of the function, which also includes windex and obj1.

windex is the index of a window and determines the window (and project) on which the new object will
be displayed, once it becomes a permanent object.

obj1 is a pointer to an object structure, where the new object will be stored after its generation.

The two NULL values included in the function call correspond to variables that would normally carry

translation (motion) and rotation parameters. Since no values are provided by the call these default to 0
values, which have no effect on the new object.

The object is first generated as a temporary object. The call to the fz_objt_add_objt_to_project
function makes it permanent, which causes it to be displayed on the screen, listed in the Objects palette, and
an undo record is created for it.

1.6.3 Constructive solid geometry

The method of constructive solid geometry comprises the generation of objects from other objects
by applying different operations to them, most typically Boolean operations. While the method
initially refers to solids only and operations that apply to solids, it can be extended to a broader
range of object types.

An example of generating a simple object using the (CSG) method is shown below. The sample
code creates two cuboids, which overlap to form a cross. They are unioned together to create the
final shape. At the end, the cross is added to the project while the two temporary objects are
deleted.

 /* CREATE TWO CUBES WHICH OVERLAP */

wdh = {100,50,50};
 fz_objt_cnstr_cube(windex,wdh,NULL,NULL,obj1);
 wdh = {50,100,50};
 fz_objt_cnstr_cube(windex,wdh,NULL,NULL,obj2);

 /* UNION THE TWO CUBES TOGETHER */

fz_objt_list_create(objt_list);
 fz_objt_edit_bool_union(windex,obj1,obj2,FALSE,objt_list);
 fz_objt_list_get_objt(objt_list,0,cross_obj);
 fz_objt_list_delete(objt_list);

 /* DELETE THE CUBES AND ADD THE CROSS TO THE PROJECT */

fz_objt_edit_delete_objt(windex,obj1);
 fz_objt_edit_delete_objt(windex,obj2);
 fz_objt_add_objt_to_project(windex,cross_obj);

The calls in the first part are similar to the ones in the example of the previous section. In the second part,
objt_list, which is a list of objects, is created first and is used by the fz_objt_edit_bool_union
function (which executes the union of the two cubes) to store the resulting object. Even though in this case
only one object is returned as the result of the union operation, the Boolean operations may return more than
one object as their result. Because of this a list is used in order to be able to store all the objects. The
object is read out of the list using the fz_objt_list_get_objt function. It is now called cross_obj.
After it is read and the list is not needed anymore it is deleted to save memory.

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 29

In the third part of the example, the two cubes are deleted, again to save memory, since they are not needed
anymore. The new object, cross_obj, is made part of the project, is displayed on the screen and in the
Objects palette, and becomes undoable.

1.6.4 Editing objects

As with constructing objects, form•Z offers a large number of API functions which can change the
shape of existing objects. These functions generally fall into two categories. Simple editing
operations work on the object directly. They can be performed on any object. To move an object
would be an example of a simple editing operation. The second type of editing operations are API
functions, which retrieve and set the parameters of controlled objects. These API functions all
follow a similar pattern. The API function to change the radius of an existing sphere object falls
into this category.

The constructive solid geometry method that involves Boolean operations executed over solid
objects may be considered as a third category of special complex editing operations. However,
we have preferred to view it as a special construction method, as was discussed in the previous
section.

Simple editing operations

Simple editing operations perform basic changes on an object. In general, any kind of object is
allowed to be passed in as an argument to the respective form•Z API. The sample code below
shows how to create a cube, copy it, move it and then delete it afterwards. The move, copy and
delete API functions are simple editing operations.

 /* CREATE A SIMPLE CUBE */
 wdh = {10.0, 10.0, 10.0};
 fz_objt_cnstr_cube(windex,wdh,NULL,NULL,obj);

 /* MAKE A COPY */
 fz_objt_edit_copy_objt(windex,obj,TRUE,copy_obj);

/* MOVE THE COPY */
trl = {100.0, 0.0, 0.0};

 fz_objt_edit_move_objt(windex,copy_obj,trl);

 /* DELETE THE ORIGINAL CUBE */

fz_objt_edit_delete_objt(windex,obj);

Changing object parameters

Controlled objects in form•Z maintain the parameters with which they were initially created.
These parameters can later be edited to modify the shape of the object. This can be achieved, for
example, through the respective Edit dialog , which is invoked from the Query dialog by
pressing the Edit button. form•Z offers two API functions for each object type: one to get and
one to set a parameter. The functions all follow the same pattern. The only difference is that the
parameter identifiers passed to the functions are unique for each object type. For example, to get
the radii and partial on/off parameters of a sphere object the following call is made in a plugin.

fz_type_td data;
 fz_xyz_td radii;
 fzrt_boolean partial;

 fz_objt_edit_sphr_parm_get(windex,obj,FZ_OBJT_SPHR_PARM_RADII,&data);

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 30

 fz_type_get_xyz(&data,&radii);
 fz_objt_edit_sphr_parm_get(windex,obj,FZ_OBJT_SPHR_PARM_PARTIAL,&data);
 fz_type_get_boolean(&data,&partial);

The object passed to fz_objt_edit_sphr_parm_get must be a sphere object, otherwise an
error will be generated. The x, y, and z radii of the sphere are initially stored in the data parameter
and are retrieved with the API call fz_type_get_xyz. Depending on which parameter of a
controlled object is retrieved, the data argument will contain values of a different type. For the
radii parameter, it is an fz_xyz_td. For the partial on/off parameter, it is a Boolean value, etc.
Which value type is associated with which parameter can be found in the html documentation of
the get/set function for each object type. When using the get / set function in a script, it is not
necessary to use the data argument, but the variable in which the value will be stored is passed
directly to the get/set function. The same code from above written in a script looks as follows :

 fz_xyz_td radii;
 fzrt_boolean partial;

 fz_objt_edit_sphr_parm_get(windex,obj,FZ_OBJT_SPHR_PARM_RADII,radii);
 fz_objt_edit_sphr_parm_get(windex,obj,FZ_OBJT_SPHR_PARM_PARTIAL,partial);

Setting an object parameter is very similar to getting it. For a plugin, the data argument is first
filled with a value and then passed to the set function.

fz_type_td data;
 fz_xyz_td radii;
 fzrt_boolean partial;

 radii.x = 10.0;
 radii.y = 10.0;
 radii.z = 10.0;
 fz_type_set_xyz(&radii,&data);
 fz_objt_edit_sphr_parm_set(windex,obj,FZ_OBJT_SPHR_PARM_RADII,&data);

partial = TRUE;
fz_type_set_boolean(&partial,&data);

 fz_objt_edit_sphr_parm_set(windex,obj,FZ_OBJT_SPHR_PARM_PARTIAL,&data);

 fz_objt_edit_parm_regen(windex,obj);

For a script the same code would look as follows :

 fz_xyz_td radii;
 fzrt_boolean partial;

 radii.x = 10.0;
 radii.y = 10.0;
 radii.z = 10.0;
 fz_objt_edit_sphr_parm_set(windex,obj,FZ_OBJT_SPHR_PARM_RADII,radii);

partial = TRUE;
 fz_objt_edit_sphr_parm_set(windex,obj,FZ_OBJT_SPHR_PARM_PARTIAL,partial);

 fz_objt_edit_parm_regen(windex,obj);

Note, that when setting an object parameter, it is necessary to call the api function
fz_objt_edit_parm_regen, to regenerate the shape of the object. This allows a plugin or
script to change several object parameters at the same time and only regenerating the shape one
time.

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 31

1.6.5 Working with object lists

Some editing operations create new objects. For example, the Boolean difference
(fz_objt_edit_bool_difference), takes two operands, and may yield zero or more new objects.
Since it is usually not known before the operation is executed how many new objects are created,
the resulting objects are stored in a list. The calling code must first create an empty object list. It
is then passed as an argument to the edit function. The number of objects and object pointers
can be extracted from the list. Finally, the calling code must delete the object list. An example for
the use of an object list is shown below :

fz_enty_list_ptr obj_list;
fz_objt_ptr new_obj;
long i,num_new_objs;

fz_objt_list_create(&obj_list);

fz_objt_edit_bool_difference(windex,obj1,obj2,obj_list);

num_new_objs = fz_objt_list_count(obj_list);
for(i = 0; i < num_new_objs; i++)
{
 fz_objt_list_get_objt(obj_list,i,&new_obj);

 /* DO SOMETHING WITH THE NEW OBJECT */

}

fz_objt_list_delete(&obj_list);

An object list may be reset with the API call fz_objt_list_reset. Resetting the list means
that it is emptied and made ready to be used with another operation. That is, the list is not
deleted, but all the objects it contains are removed from it. After resetting it, the list is at the same
state it was when it was freshly created. This allows a reuse of the same list for a number of
different editing operations in a row. Note that resetting the list does not delete the objects in the
list themselves. This can be done using the function fz_objt_edit_delete_objt for each
object in the list prior to resetting the list.

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 32

1.6.6 Working with groups

A group table is a generic mechanism that organizes entities in a hierarchical fashion. Grouping is
currently supported for three sets of entities : objects, lights and layers. The grouping hierarchy is
visualized in the respective palette, for example the Objects palette. A few naming conventions are
outlined below which help in understanding the api functions that deal with groups :

Root : A group which is at the top of the group hierarchy. From the root all other groups can be accessed.
Child : A given group that is contained in another group.
Parent : A group that contains a given group. The given group is a child of the parent.
Sibling : A group that has the same parent as another group.
Node : A group that contains at least one other group
Leaf : A group that does not contain any other groups. However, it references exactly one entity, such as
an object, layer or light.

A set of api functions are provided by form•Z, that allow the developer to traverse the group hierarchy and
manipulate groups. In the naming and documentation of the api function the above outlined terms are
used extensively to categorize the different kinds of groups. The data struture of a group table is called :

fz_grup_table_ptr

To get the group table for objects, the api function fz_objt_grup_get_table is used.
fz_layr_get_grup_table gets the layer group table of a project and fz_lite_get_grup_table
gets the light group table. Once a group table is retrieved with any of these three api functions, a set of
group table api functions work on that table, regardless of which set of entities it organizes (objects, lights
or layers).

An individual group is represented by the data type :

fz_grup_ptr

The internal structure of a group table and the hierarchy shown to the user in the palette differ slightly from
each other and it is important to understand the differences to use the group table api functions properly.
At the top of each group table is the root group. It contains everything shown in a particular palette, but the
root itself is not displayed in the palette. For a given group table, the root is retrieved with the api call
fz_grup_get_root. To get to all the groups contained inside another group, a simple loop can be
written :

fz_grup_table_ptr gtable,
fz_grup_ptr root,grup;

fz_objt_grup_get_table(windex,>able);
fz_grup_get_root(windex,gtable,&root);

fz_grup_get_child(windex,gtable,root,&grup);
while (grup != NULL)
{
 …

fz_grup_get_next(windex,gtable,grup,&grup);
}

In the example above, first the group table for objects is retrieved with fz_objt_grup_get_table.
Next, the root group for that group table is acquired with fz_grup_get_root. The first group inside the
root group is returned by fz_grup_get_child. The while loop iterates through all sibling groups of the
first child of the root. The example above would access all groups that are shown on the first "level" in the

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 33

Objects palette. Usually, groups are nested inside other groups. In order to traverse all groups in a nested
structure. the above sample code needs to be modified as a recursive function :

void my_group_traverse(

long windex,
fz_grup_table_ptr gtable,
fz_grup_ptr parent
)

{ fz_grup_ptr grup;
 fz_grup_type_enum grup_type;
 fz_objt_ptr obj;

fz_tag_td entity_tag;

 fz_grup_get_child(windex,parent,&grup);

while (grup != NULL)
{

 fz_grup_get_type(windex,gtable,grup,&grup_type);

 /* IT IS A NODE GROUP, */
if (grup_type == FZ_GRUP_TYPE_NODE)

 {
 /* CALL my_group_traverse RECURSIVELY */

my_group_traverse(windex, gtable, grup);
 }
 /* IT IS A LEAF NODE */

else
 {
 /* GET THE TAG OF THE REFERENCED OBJECT */
 fz_grup_get_leaf_tag(windex,gtable,grup,&entity_tag);

 /* GET THE OBJECT FROM THE TAG */
 fz_objt_tag_to_ptr(windex,&entity_tag,&obj);

 /* DO SOMETHING WITH THE OBJECT */
 …
}

 /* GET THE NEXT SIBLING OF THE CURRENT GROUP */
 /* IT WILL BE NULL FOR THE LAST GROUP, WHICH WILL */
 /* STOP THE LOOP */

fz_grup_get_next(windex,gtable,grup,&grup);
}

}

To initiate the traversal of all groups, the recursive function shown above can be called with the root group
as input :

fz_objt_grup_get_table(windex,>able);
fz_grup_get_root(windex,gtable,&root);
my_group_traverse(lwindex, gtable, root);

In addition to the root not being shown in the palette, there is a second important difference between the
palette and the group table. A leaf is a group, which does not contain any other groups. Its sole purpose is
to establish the link to the entity that is referenced (i.e. the object, layer or light). A leaf group is also not
shown in the palette. This may be confusing at first, because in the palette it appears that an object that is
inside a group, should be referenced by that group. THIS IS NOT THE CASE ! The group visible in the
palette contains an invisible leaf group, which in return references the object. A diagram of a group table
and the corresponding palette is shown below. The diagram uses circles for nodes and squares for leafs.

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 34

Note, that only the groups in circles appear in the palette, except, of course, for the root, which is a special
node.

The dashed line in the diagram represents the border between the group world and the world of the
referenced entities, in this case the objects. The generic group api functions operate entirely inside the
group world, and therefore can be used with any of the three grouping structures (objects, lights and
layers). Sometimes it is necessary to cross the border from objects into the group world. That is, the
developer wants to know, which group contains a given object. For this purpose, the object api function
fz_objt_get_grup_tag needs to be used (similar functions exist for layers and lights). The tag
returned by the function belongs to a leaf group, which can easily be seen in the diagram, but not in the
palette. In order to get to the group in the palette, that is shown as containing that object, the parent of the
leaf group needs to be retrieved. This is shown in the sample code below :

1.0 Introduction form•Z SDK (v6.0.0.0 rev 05/30/06) 35

fz_tag_td grup_tag;
fz_grup_ptr leaf_grup,grup;

fz_objt_get_grup_tag(windex,obj,&grup_tag);
fz_grup_tag_to_ptr(windex,gtable,&grup_tag,&leaf_grup);
fz_grup_get_parent(windex,gtable,leaf_grup,&grup);

A common mistake would be to not get the parent of the leaf group and then to try to access information
about the group. For example, a developer may want to get the name of the group which contains a given
object. If the api function fz_objt_grup_get_parm_data would be called with a leaf node as input to
get the name, an empty string would result.

The existence of leaf groups also allows the developer to move a referenced entity from one node group
to another. Instead of offering separate api functions that would, for example, move an object (or layer or
light) to a new node, one generic group api function is sufficient. fz_grup_move_by_parent specifies a
new parent group for a given group. If the given group is a leaf node, the action performed is equivalent to
the user moving an object inside another node group. One can also move an object outside of any node
group by specifying the root group as the new parent of the leaf group. If the given group is a node group,
it is equivalent to the user moving a group in the palette inside another group.

While fz_objt_get_grup_tag crosses from the object world into the group world, the group api
function fz_grup_get_leaf_tag goes the opposite direction. Note, that it is a generic group function.
It retrieves the tag of the references entity. To get the entity pointer one must call the appropriate
conversion function, as shown in the sample code below :

 /* GET THE GROUP TYPE */

fz_grup_get_type(windex,gtable,grup,&grup_type);

if (grup_type == FZ_GRUP_TYPE_LEAF)

 {
 /* GET THE TAG OF THE REFERENCED OBJECT */
 fz_grup_get_leaf_tag(windex,gtable,grup,&entity_tag);

/* GET THE OBJECT FROM THE TAG */
fz_objt_tag_to_ptr(windex,&entity_tag,&obj);

/* DO SOMETHING WITH THE OBJECT */
…

}

If the sample code were to work with lights, it would be the same, except, that fz_lite_tag_to_ptr
would be used.

2.0 Writing Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 36

2.0 Writing form•Z Plugins

2.1 Introduction

A form•Z plugin is an extension to form•Z in the form of a compiled machine code. A single
plugin represents a group of functionality that appears to the user as a single package. This
allows the user to enable or disable the plugin in the Extensions dialog. The plugin is written in
the C or C++ computer language and compiled into a shared library (Macintosh) or a dynamic link
library (Windows). These libraries are referred to as the plugin file and they must have a .fzp
extension (and ‘fzpl’ signature on Macintosh) to identify them as a form•Z plugin. A single plugin
file may contain multiple plugins. This allows for multiple plugins to be delivered in a single .fzp
file.

form•Z automatically recognizes plugins by finding them in designated directories at startup. The
default directory is the “Plugins” folder the form•Z application folder. The plugin directories and
associated options are controlled in the Extensions dialog. When form•Z finds a file with the .fzp
extension (or ‘fzpl’ signature) it validates the plugin. The validation process prevents a non-plugin
file with a .fzp extension from producing undesirable results. Once the plugin is validated, form•Z
communicates with the plugin file through the plugin file entry function. The entry point is a
function in the plugin file which receives and handles a number of messages from form•Z. The
plugin file entry function is called to register the plugins and their functionality. The plugin file
entry function is also called when form•Z quits to unregister the plugins in the file.

The remainder of the communication between form•Z and a plugin is done through pointers to
functions. The function pointers are grouped in C language structures called function sets. Each
function set contains functions of related subjects. Function sets are divided into two types: API
and call back. API function sets contain functions that form•Z provides for the plugin to use. Call
back function sets contain functions that are implemented by the plugin. These functions are
called by form•Z as needed to perform the plugins tasks. Call back functions are registered with
form•Z during plugin registration through the plugin file entry function. The form•Z plugin
manager (FZPL) is used to manage the plugin file and the access and definition of function sets.

form•Z uses UUID’s (Universal Unique Identifier) throughout for uniquely identifying items and
avoiding naming collisions. A UUID is a 16-byte string that is generated using an algorithm that
guarantees a unique sequence of bytes (string). Plugins must use UUID’s in various places to
guarantee that they do not collide with other plugins or form•Z. For example, when a plugin is
registered it must provide A UUID. This distinguishes it from other plugins and also allows form•Z
to retain information about the plugin (for example, its user controlled enable state in the
Extensions dialog). form•Z comes with a utility plugin to automatically generate UUIDs which is
of particular use for extension developers. It is not recommended to create a UUID by “making
one up” without a computer.

2.0 Writing Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 37

2.2 Plugin File Validation

form•Z validates each plugin file to be sure that it is in fact a form•Z plugin and not another file
that has been given the .fzp extension. This prevents form•Z from crashing when attempting to
load an invalid file. form•Z looks for three exported symbols in the plugin file shared library
(Macintosh) or a dynamic link library (Windows). The first is a global string variable called
fz_descriptor with a value of "formZ_Plugin". The second is a global plugin manager version
variable named fz_API_version. The value of this variable is the version of the form•Z plugin API
that the plugin was built with. The value of this symbol is used by form•Z to properly handle API
version differences between a plugin and form•Z. If the version is greater than the version
supported by form•Z, then the plugin file will not be loaded. The third validation is the presence of
the plugin entry function that must be named fz_plugin_entry. All three of these symbols must be
present in the plugin file and exported.

The definition of these exported symbols should look like the following:

FZPL_PLUGIN_DATA(char) fz_descriptor[] = "formZ_Plugin";

FZPL_PLUGIN_DATA(fzpl_vers_td) fz_API_version = FZPL_VERS_MAKE(5,0,0,0);

FZPL_PLUGIN_FUNC(fzrt_error_td) fz_plugin_entry(

const fzpl_fset_glue_fset * const fzpl_glue,
fzpl_command_td message,
const fzpl_host_config_td * const hostConfig);

These are defined for the plugin developer in the provided C header file “fz_plugin_glue_api.h”.
This file should be included in one (and only one) of the plugin source C files.

2.3 Plugin File Entry Function

The plugin file entry function is used by the plugin manager (FZPL) to establish the
communication between form•Z and the plugin. This function receives and handles a number of
messages from form•Z. A return value of FZRT_NOERR indicates that the message was handled
properly. A return message of anything other than FZRT_NOERR indicates that the message was
not handled properly.

FZPL_PLUGIN_FUNC(fzrt_error_td) fz_plugin_entry(

const fzpl_fset_glue_fset * const fzpl_glue,
fzpl_command_td message,
const fzpl_host_config_td * const hostConfig)

{
 fzrt_error_td err = FZRT_NOERR;

 switch (message)
 {
 case FZPL_PLUGIN_CHECK:
 ...
 break;

 case FZPL_PLUGIN_INITIALIZE:
 ...
 break;

 case FZPL_PLUGIN_EXIT:
 ...
 break;

2.0 Writing Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 38

 }
 return (err);
}

fzpl_glue

This parameter is a function set (structure of function pointers) that connects the plugin and
form•Z together. The functions in this function set include functions for accessing other function
sets, defining call back function sets for form•Z and for registering an unregistered plugin with
form•Z. This function set is fully documented in the API Reference.
message

This parameter is the message or command that is sent from form•Z. There are currently three
messages that are sent to the entry function:

FZPL_PLUGIN_CHECK

This message is sent at startup of form•Z and indicates that a plugin file should check to see if
there is any condition that would prevent the plugin from functioning properly. This includes
checking things like the version of form•Z that’s loading it, validating any licensing being used,
allocating any needed global memory, loading resources, and determining if all the required
form•Z API function sets are available. If there is anything that could prevent the plugin(s) from
operating correctly, an error should be returned so form•Z can unload the plugin file. Otherwise
FZRT_NOERR should be returned to indicate that the plugin(s) should be loaded.

FZPL_PLUGIN_INITIALIZE

This message is sent at startup of form•Z, after the FZPL_PLUGIN_CHECK message. This
message indicates that the plugins in the file should be registered and any needed call back
function sets should be defined. If an error occurs it should be returned from the entry function
and the plugin will be unloaded. However, it is preferable that potential errors and dependencies
are checked in the FZPL_PLUGIN_CHECK message as this is more efficient.

The function fzpl_plugin_register must be called for each plugin in the plugin file to
register the plugin with form•Z. The registration process installs the plugin into the form•Z
Extensions Manager and facilitates the binding of the plugin implemented callback function sets
(see section 2.4). Each call to fzpl_plugin_register creates a plugin entry in the Extensions
manager. All of the functionality that is associated with a plugin can be enabled and disabled by
the user in the Extensions Manager dialog.

The following code snippet shows a call to fzpl_plugin_register for a tool plugin.

err = fzpl_glue->fzpl_plugin_register(

MY_PLUGIN_UUID, /* UUID for my plugin */
my_name, /* name string for my plugin */
MY_PLUGIN_VERSION, /* version of my plugin */
MY_PLUGIN_VENDOR, /* name string for my company */

 MY_PLUGIN_URL, /* url string for my company */
 FZ_TOOL_EXTS_TYPE, /* UUID of formZ tool plugin */

FZ_TOOL_EXTS_VERSION, /* version of formZ tool plugin*/
 my_plugin_error_string_func, /* error string function */

0, /* number of dependencies */
NULL, /* pointer to dependency list */
&my_plugin_runtime_id); /* runtime id for my plugin */

2.0 Writing Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 39

The first parameter is a UUID for the plugin. This distinguishes the plugin form any other
extension. The second parameter is the name of the plugin. The plugin name should be loaded
from a form•Z resource file (.fzr) through the fzrt_fzr_get_string function. This allows the
name of the plugin to be localized. The name of the plugin is shown in the Extensions Manager
dialog. The form•Z resource file format and functions are fully documented in section 1.4.2.

err = fzrt_fzr_get_string(my_plugin_rsrc_ref,
MY_STRINGS,
MY_NAME_STR,
my_name);

The third parameter is the version of the plugin and shown in the Extensions Manager dialog.
The fourth parameter is the name of the vendor (author) of the plugin. The vendor name is shown
in the Extensions Manager dialog. The fifth parameter is the URL for the vendor (e.g.
www.mygreatplugin.com). The URL is displayed in the Plugin Information dialog accessed
from the Extensions Manager.

The sixth parameter is the UUID of the type of the plugin. form•Z supports a variety of plugin
types as described in section 2.6. The seventh parameter is the version for the implementation of
the type of the plugin. This informs form•Z what version of the SDK the plugin was built with. The
UUID and version definitions can be found in the form•Z API header files.

The eighth function is a function name (pointer) for a function that accesses error messages for
the plugin. The function is registered with the form•Z runtime error manager by the plugin
manager.

fzrt_boolean my_plugin_error_string_func(long err, char *str, short str_len)
{
 char msg[STRING_SIZE];

 fzrt_fzr_get_string(my_plugin_rsrc_ref, MY_ERROR_STRINGS, err, msg);
 strncpy(str, msg, str_len);

 return(TRUE);
}

The ninth and tenth parameters are used when plugins depend on each other. Since the loading
order of plugins is not guaranteed to be consistent, plugin to plugin dependencies can not be
checked until all plugins are registered. The eighth parameter is the number of dependent plugins
and the ninth is a list of information about dependent plugins (one record per dependent plugin).
Note that dependent plugins need access to some common information (usually in a C header
file) so that they can have basic information about the dependent plugin. At a minimum, this
information needs to include the UUID of the plugin, the name of the plugin, the version of the
plugin, and the plugin’s vendor name and URL. If a dependent plugin is missing, form•Z will issue
an error alerting the user of the problem and the depending plugin will not be loaded.

The following code snippet shows a call to fzpl_plugin_register for a tool plugin dependent
on another plugin identified by DEPEND_PLUGIN_ID, DEPEND_PLUGIN_VERSION,
DEPEND_PLUGIN_NAME, and DEPEND_VENDOR_URL.

Long num_depends = 1;
fzpl_plugin_dependency_td depends[1];

fzrt_UUID_copy(DEPEND_PLUGIN_ID, depends[0].plugin_id);

2.0 Writing Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 40

strncpy(depends[0].plugin_name,DEPEND_PLUGIN_NAME,FZPL_NAME_SIZE);
strncpy(depends[0].plugin_vendor_name,DEPEND_VENDOR_NAME,FZPL_NAME_SIZE);
strncpy(depends[0].plugin_URL,DEPEND_VENDOR_URL,FZPL_NAME_SIZE);

 depends[0].plugin_version = DEPEND_PLUGIN_VERSION;

err = fzpl_glue->fzpl_plugin_register(
MY_PLUGIN_ID, /* UUID for my plugin */
my_name, /* name string for my plugin */
MY_PLUGIN_VERSION, /* version of my plugin */
MY_PLUGIN_VENDOR, /* name string for my company */

 MY_PLUGIN_URL, /* url string for my company */
 FZ_TOOL_EXTS_TYPE, /* UUID of formZ tool plugin */

FZ_TOOL_EXTS_VERSION, /* version of formZ tool plugin*/
 my_plugin_error_string_func, /* error string function */

num_depends, /* number of dependencies */
depends, /* pointer to dependency list */
&my_plugin_runtime_id); /* runtime id for my plugin */

The final parameter is the runtime id of the plugin which is returned from the function. The runtime
id is generated by the plugin manager and is used in subsequent plugin manager function calls.

FZ_PLUGIN_EXIT

This message is sent when form•Z is unloading all plugins (at quit or exit). This indicates that the
plugins should release any memory, resources, or API function sets that were loaded during the
FZPL_PLUGIN_CHECK or FZPL_PLUGIN_INITIALIZE messages or during the execution of the
plugin.

hostConfig

This parameter is a structure that contains information about the form•Z application that is using
the plugin file (name, version, etc). This structure is fully documented in the API Reference.

2.4 Working with function sets

A function set is a structure that contains function pointers of related functionality within form•Z.
Function sets are divided into two types: API and call back. API function sets contain functions
that form•Z provides for the plugin to use. Call back function sets contain functions that are
implemented by the plugin. The form•Z plugin manager manages function sets.

Each function set’s structure is defined in its respective C header file. form•Z function set
structure names are of the form “fz_..._fset”. Since function sets will change over time as
form•Z functionality is added or changed, it is important that a plugin request the version of the
function set that it is complied for. When new functions are added to a function set, they are
always added to the end of the function set and the function set version is incremented. Existing
functions will always be present and the names will never change. In the rare event that a
function becomes deprecated (no longer supported), it will still exist in the function set, but it will
always return an error. This system of function set management insures that plugins will not be
broken by the evolution of form•Z. it also enables plugins to take advantage of new functionality
as it becomes available.

For each function set, the C language header file that contains the structure definition, contains 3
constants that are used to identify the function set. The type of the function set is a UUID that
uniquely identifies the function set. The name of the function set is the textual description of the
function set. The version is the version for the function set definition. These constants should be

2.0 Writing Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 41

used in plugin manager calls (fzpl) when referring to the corresponding function set. The
constants for the math function set are shown below.

#define FZ_MATH_FSET_TYPE \
 "\x67\x12\xef\xc6\xd4\x77\x46\xfc\xa6\xc6\x6d\xea\x20\xff\x81\x63"
#define FZ_MATH_FSET_NAME "formZ math funcs"
#define FZ_MATH_FSET_VERSION FZPL_VERS_MAKE(1,0,0,1)

Accessing an API function set and calling functions

API function sets contain functions that form•Z provides for the plugin to use. Calling the plugin
glue function “fzpl_fset_acquire” acquires a function set for use within the plugin. This locates the
function set and fills the plugin’s copy of the function set structure. The plugin can declare the
function structure as a global variable so that the functions can be accessed throughout the
plugin. If a plugin requests a function set that is not available, or a version of a function set that is
not available, an error is returned. The following shows a call to access the math function set.

fz_math_fset math_funcs; /* global */

...

fzrt_error_td err;

 err = fzpl_glue->fzpl_fset_acquire(

FZ_MATH_FSET_TYPE, /* UUID of math function set */
FZ_MATH_FSET_VERSION, /* version of math function set */
FZRT_UUID_NULL,
FZPL_TYPE_STRING(fz_math_fset), /* type string for function set */
sizeof(math_funcs), /* size of function set

structure*/
 (fzpl_fset_td *) &math_funcs); /* address of function set */

The first parameter is the type constant (UUID) of the function set. The second parameter is the
version constant for the function set. The third parameter is the UUID of the module that defines
the function set. FZRT_UUID_NULL should be used for form•Z function sets. Function sets can
be used to share functionality between plugins as described in a following section. In this case
the parameter is used to identify the plugin that created the function set. The fourth parameter is
a string that identifies the name of the function set structure. The macro FZPL_TYPE_STRING
converts the type name into a string. This parameter makes sure that the structure type provided
matches the expected type. The fifth parameter is the size of the structure. . The C macro
sizeof() should always be used to get the proper size for the plugins instance of the structure.
The final parameter is the address of the plugin’s instance of the structure. This is the structure in
the plugin that is filled with the contents of the function set. The fzpl_fset_acquire function is
fully documented in the API Reference.

Once a function set is acquired, the function pointers can be used to call the desired function. The
following is an example of call to the math function to set an identity matrix.

fz_mat4x4_td mat;

math_funcs.fz_math_4x4_set_identity(&mat);

When a function set is no longer needed, it can be released by calling the plugin glue function
fzpl_fset_release. This unloads the function set from the plugin and informs the plugin

2.0 Writing Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 42

manager that you no longer need this functionality. If a function from a plugin set is only needed
once, then it is recommended to acquire the function set, call the function, and then release the
function set. As most plugins will call multiple functions from multiple function sets throughout the
plugin, it is recommended to load all required function sets in the entry function while handling the
FZPL_PLUGIN_CHECK message and to release all function sets in the entry function while
handling the FZ_PLUGIN_EXIT message. The following is an example of call to
fzpl_fset_release to release the math function set.

fzpl_glue->fzpl_fset_release((fzpl_fset_td *)&math_funcs);

Defining a call back function set

Call back function sets contain functions that are defined by the plugin. These functions are called
by form•Z as needed to perform the plugins tasks. Call back functions are registered with form•Z
in the entry function while handling the FZPL_PLUGIN_INITIALIZE message. Calling the plugin
glue function “fzpl_plugin_add_fset” defines a function set. The following is an example of
the definition of a project function set for a tool called star.

 err = fzpl_glue->fzpl_plugin_add_fset(

star_tool_plugin_runtime_id,
FZ_TOOL_CBAK_FSET_TYPE,
FZ_TOOL_CBAK_FSET_VERSION,
FZ_TOOL_CBAK_FSET_NAME,

 FZPL_TYPE_STRING(fz_tool_cbak_fset),
sizeof (fz_tool_cbak_fset),

 star_tool_fill_fset,
FALSE);

The first parameter is the runtime id of the plugin which is returned from a previous call to
fzpl_plugin_register which registered the plugin with the plugin manager. The second
parameter is the type constant (UUID) of the function set. The third parameter is the version
constant for the function set. The fourth parameter is a string that identifies the name of the
function set structure. The macro FZPL_TYPE_STRING converts the type name into a string. This
parameter makes sure that the structure type provided matches the expected type. The fifth
parameter is the size of the structure. The C macro sizeof() should always be used to get the
proper size for the plugins instance of the structure. The sixth parameter is the name of (pointer
to) a plugin-defined function that fills the function set structure (see next section). The final
parameter is reserved for future use and should always be FALSE. The fzpl_fset_acquire
function is fully documented in the API Reference.

The plugin manager calls the fill function when form•Z requests the functions from the plugin.
This function fills the function set structure with the names of (pointers to) the plugin defined
functions. The following is how the star tool fill function would look. In this function the call to the
glue function fzpl_fset_def_check is used to be sure that the proper data was requested by
form•Z. The fill function (fzpl_fset_def_get_fset_func) is fully documented in the API
Reference.

fzrt_error_td star_tool_fill_fset (
const fzpl_fset_def_ptr fset_def,
fzpl_fset_td * const fset)

{
 fzrt_error_td err = FZRT_NOERR;
 fz_tool_cbak_fset *tool_func;

 err = plugin_stuff.fzpl_glue->fzpl_fset_def_check (

2.0 Writing Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 43

fset_def,
FZ_TOOL_CBAK_FSET_VERSION,
FZPL_TYPE_STRING(fz_tool_cbak_fset),
sizeof (tool_func),
FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 tool_func = (fz_tool_cbak_fset *)fset;

 tool_func->fz_tool_cbak_info = star_tool_info;
 tool_func->fz_tool_cbak_name = star_tool_name;
 tool_func->fz_tool_cbak_uuid = star_tool_uuid;
 tool_func->fz_tool_cbak_icon_file = star_tool_icon_file;

 ...
 }

 return err;
}

In this example, each of the functions star_tool_info, star_tool_name, etc., for which
there is an assignment, would need to be implemented by the plugin developer. Note that,
depending on the requirements of a function set, some functions in a call back function set may
be optional. This means that the implementation of the function is at the discretion of the plugin
developer. In the case of optional functions, form•Z detects the presence of (or lack thereof) the
optional functionality and handles it accordingly. If a required function is not provided, then the
plugin will not load. If a function is not provided, its value in the function set is defined to be NULL.
All functions in a function set are initialized to NULL in fzpl_fset_def_check() so optional
functions do not need to be explicitly set to NULL by the plugin if they are not provided. Please
see the specific documentation for the each call back function set for details of what is required
and what is optional.

Sharing function sets between plugins

Although the primary function of function sets is to provide a linkage between form•Z and a
plugin, function sets can be used to shared functionality between plugins. In this case, the
definition of the function set structure and required constants is done in a header file that is
accessible to both plugins. The plugin which is to publish or define the function set calls the
function fzpl_plugin_add_fset to define the function set using the function set information
from the common header file. The plugin which wants to subscribe or use the function set calls
fzpl_fset_acquire using the function set information from the common header file and the
UUID of the plugin that created the function set.

2.5 Compilers

It is important that form•Z plugins are built with a compiler that is compatible with the form•Z
header files. The sample code included with the form•Z SDK contains project files to build the
sample plugin files. These project files are for the following recommended compilers. The
following are the currently supported compilers:

Macintosh

form•Z is a Mach O application on the Macintosh platform. form•Z is built with CodeWarrior 9.2
and this is the recommended compiler for building form•Z plugins on the Macintosh. CodeWarrior

2.0 Writing Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 44

8.3 has also been tested for building form•Z plugins and was found to work properly. We did
observe problems debugging plugins under CodeWarrior 8.3 on OS X. These problems do not
occur with CodeWarrior 9.2.

Windows

form•Z is built with Microsoft Visual C 6.0 and this is the recommended compiler for building
form•Z plugins on Windows. Microsoft Visual C 7.1has also been tested for building form•Z
plugins and was found to work properly.

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 45

2.6 Interface

The form•Z API includes support for common interface features such as dialogs, alerts, palettes,
wait cursor, key cancel detection and progress bars. The form•Z user interface manager (FUIM)
manages these interfaces. The prefix fz_fuim_ is used for all of the FUIM API entities
(functions, types, constants etc.).

The layout of interface elements (buttons, menus, text, etc.) found in dialogs and palettes is called
a FUIM template. The template contains the definition of the interface elements, the definition of
dependencies between the elements, and the connection to data storage (variables) in the
extension. The form•Z template manager handles the graphic layout of the template
automatically and deals with all platform specific issues. The template definition is hierarchically
organized in the form of a tree. That is, each element has a parent element and may have
multiple sibling elements and child elements. The interface elements are implicitly dependent on
their parent. That is, if the parent element is disabled, all of its descendents are also disabled.

Templates are defined through a FUIM template function that is provided to form•Z by the
extension. The template function defines the template by calling form•Z API functions to create
the interface elements, define relationships between items, and bind the data storage (variables)
from the extension to the elements. The template function is provided to form•Z when a dialog is
invoked through a dialog driver, or through specific call back functions provided by form•Z. These
call back functions vary by the type of extension and are discussed in section 2.7.

Note that for clarity the strings in the example in this section are shown directly in the code rather
than using the recommend method of retrieving the strings from .fzr files, as described in section
1.4.2.

2.6.1 Alerts

Alerts are simple dialogs that get the user’s attention by beeping and presenting information or
posing questions. They are frequently used for error notification or for asking the user to make
decisions at critical times. Alerts usually consist of a simple message and one or more buttons for
the user to select the desired response. An icon is shown in the alert to indicate that the alert
represents an error, a question or just useful information. The alert is closed when the user
selects one of its buttons. A set of standard alerts is provided and custom alerts can be created
using a set of functions to build and display the alert as follows

Standard confirmation alert

long fz_fuim_alrt_std_confirm(
 char *prmt_str,
 fz_fuim_std_conf_enum confirm_flags
);

This alert contains a single prompt text string and up to two buttons. This is useful for
posting a simple notification or asking a simple OK/Cancel or Yes/No question. The
prmt_str parameter is the prompt text for the alert. The confirm_flags parameter
indicates which buttons the alert should have as follows:

FZ_FUIM_ALRT_CONFIRM_OK: The alert has a single button with a title of OK.
FZ_FUIM_ALRT_CONFIRM_OK_CANCEL: The alert has a button with a title of OK
and a button with a title of Cancel.

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 46

FZ_FUIM_ALRT_CONFIRM_YES_NO: The alert has a button with a title of Yes
and a button with a title of No.

The alert remains on the screen until the user selects one of the buttons in the alert. The
function returns FZRT_STD_OK if an OK or Yes button is pressed or FZRT_STD_CANCEL
if a Cancel or No button is pressed. The following as and example of a standard
confirmation alert used to ask the user if they wish to proceed with an operation.

long rv;

rv = fz_fuim_alrt_std_confirm(

“Are you sure you want to proceed?”,
FZ_FUIM_ALRT_CONFIRM_OK_CANCEL);

if(rv == FZRT_STD_OK)
{
 /* perform action here */
}

Standard name alert

long fz_fuim_alrt_std_name (
 char *prmt_str,
 char *name,
 long max_len
);

This alert contains a single prompt text string, an editable name text field and the
standard OK and Cancel buttons. This is useful for asking the user for simple text input.
The prmt_str parameter is the prompt text for the alert. The name parameter is the
string shown in the edit field. This parameter contains the desired default or current value
for the name string. When the dialog is dismissed, this parameter contains the string that
was entered in the text field. The max_len parameter is the length of the name string (in
bytes). The alert remains on the screen until the user selects one of the buttons in the
alert. The function returns FZRT_STD_OK if the OK button is pressed or
FZRT_STD_CANCEL if the Cancel button is pressed. The following as an example of a
standard name alert used to change an object name for a given object (obj) of a project
window (windex);.

long rv;
char name[256];

if(fz_objt_attr_get_objt_name (windex, obj, name) == FZRT_NOERR)
{ rv = fz_fuim_alrt_std_name (

“New object name:”,
name,
256);

if(rv == FZRT_STD_OK)
{

 fz_objt_attr_set_objt_name(windex, obj, name);
}

 }

Standard error alert

fzrt_boolean fz_fuim_alrt_std_error(
 fzrt_error_td err_id,
 long where_id,

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 47

 char *where_str
);

This alert is used for displaying error messages. This is used for posting error messages
returned from form•Z API functions or errors in an extension that registered the error with
the fzrt_error_set function. form•Z will post error messages for extensions that
return errors from their call back functions, however, there are times where it may be
desirable for an error alert to be displayed from an extension directly.

The alert contains a single prompt text string and the standard OK button. The err_id
parameter is the error value returned from a form•Z API function or fzrt_error_set
function call in an extension. The where_id parameter is a numeric indicator of where in
the extension the error occurred. Each call to the fz_fuim_alrt_std_error function
should have a unique numeric value in this parameter so that the location in the
extension code where the error occurred can be identified. The where_str is an optional
parameter that complements where_id. This string can be used to give additional
details of where in the extension the error occurred.). The alert remains on the screen
until the user selects the OK button in the alert.

err = fz_objt_attr_set_objt_name(windex, obj, name);

if(err != FZRT_NOERR)
{ fz_fuim_alrt_std_error(err, 1, “Attempting to change name”);
}

Custom alerts

Custom alerts are constructed by initializing an alert pointer, then adding prompt text item(s) and
button item(s). The alert is then displayed to the user and disposed when it is closed. The alert
remains on the screen until the user selects one of the buttons in the alert.

Custom alert initialization

fzrt_error_td fz_fuim_alrt_ptr_init (
 fz_fuim_alrt_ptr *fuim_alrt,
 fz_fuim_alrt_flag_enum flags,
 fz_fuim_alrt_icon_enum alrt_icon,
 char *alrt_title
);

This function creates the alert pointer. The alert pointer is a form•Z opaque data structure
used to manage alerts. The pointer is returned in the fuim_alrt parameter. The flags
parameter indicates optional control for the display of the alert. The default value for no
options is FZ_FUIM_ALRT_FLAG_NONE. The value FZ_FUIM_ALRT_FLAG_BVRT can be
used to indicate that the buttons in the alert should appear vertically stacked rather than
the default horizontal layout. The alrt_icon parameter tells form•Z which standard icon
should be shown in the alert. The valid values are FZ_FUIM_ALRT_ICON_STOP,
FZ_FUIM_ALRT_ICON_ASK and FZ_FUIM_ALRT_ICON_INFO. The alrt_title
parameter is the text for the title of the alert. This is shown in the title bar of the alert
dialog. This parameter is optional.

Custom alert strings

fzrt_error_td fz_fuim_alrt_ptr_add_str(
 fz_fuim_alrt_ptr fuim_alrt,

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 48

 long flags,
 char *str
);

This function adds a string to the alert. The fuim_alrt parameter is the alert pointer
created by the fz_fuim_alrt_ptr_init function. The flags parameter is currently
not used and should always be set to 0. The str parameter is the text for the string that is
to be shown in the alert.

Custom alert buttons

fzrt_error_td fz_fuim_alrt_ptr_add_button(
 fz_fuim_alrt_ptr fuim_alrt,
 long button_id,
 fz_fuim_alrt_butn_opts_enum button_opts,

fz_fuim_alrt_button_enum button_kind,
 char *str
);

This function adds a button to the alert. The fuim_alrt parameter is the alert pointer
created by the fz_fuim_alrt_ptr_init function. The button_id should be set to
a unique numeric value for each button. This value is used to identify which button the
user selects when the alert is displayed on the screen. The button_opts parameter
indicates optional control for the button. The value FZ_FUIM_ALRT_BUT_NONE is used
too indicates no options. The value FZ_FUIM_ALRT_BUT_DEF can be used to indicate
that the button is the default button. The default button is the button that is selected if the
return or enter key is pressed while the alert is displayed on the screen. The value
FZ_FUIM_ALRT_BUT_DEF_CANCEL can be used to indicate that the button is the cancel
button. The cancel button is the button that is selected if the escape (esc) key (or any
user defined cancel key shortcut) is pressed while the alert is displayed on the screen.
The button_kind parameter indicates what title should be used for the button. The
following values are available:

FZ_FUIM_ALRT_BUTTON_OK: Button is named “OK”.
FZ_FUIM_ALRT_BUTTON_CANCEL: Button is named “Cancel”.
FZ_FUIM_ALRT_BUTTON_YES: Button is named “Yes”.
FZ_FUIM_ALRT_BUTTON_NO: Button is named “No”.
FZ_FUIM_ALRT_BUTTON_QUIT: Button is named “Quit”.
FZ_FUIM_ALRT_BUTTON_CUSTOM: The title is specified in the str parameter.

Custom alert display

long fz_fuim_alrt_driver (
 fz_fuim_alrt_ptr fuim_alrt
);

This function displays the alert on the screen. The fuim_alrt parameter is the alert
pointer created by the fz_fuim_alrt_ptr_init function. The alert remains on the
screen until the user selects one of the buttons in the alert. The value returned from this
function is the ID of the user sleeted button. The ID is the value of the button_id
parameter that was used to create the button with the
fz_fuim_alrt_ptr_add_button function.

Custom alert disposal

void fz_fuim_alrt_ptr_finit(

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 49

 fz_fuim_alrt_ptr fuim_alrt
);

 This function disposes the alert pointer and all memory used by the alert.

The following example shows a custom alert that asks the user if they want to delete selected
objects. Note that for clarity the strings in this example are shown directly rather than the
preferred method of storing them in .fzr files as described in section 1.4.2.

fz_fuim_alrt_ptr fuim_alrt;
long hit;

 /* initalize the alert */
 fz_fuim_alrt_ptr_init(&fuim_alrt, 0, FZ_FUIM_ALRT_ICON_STOP, NULL);

 /* add the message */
 fz_fuim_alrt_ptr_add_str(fuim_alrt, 0,

“Are you sure you want to delete the selected objects?”);

 /* add the “Delete“ and “Keep” buttons */

fz_fuim_alrt_ptr_add_button(fuim_alrt, 1, FZ_FUIM_ALRT_BUT_DEF,
FZ_FUIM_ALRT_BUTTON_CUSTOM, “Delete”);

 fz_fuim_alrt_ptr_add_button(fuim_alrt, 2, FZ_FUIM_ALRT_BUT_DEF_CANCEL,
FZ_FUIM_ALRT_BUTTON_CUSTOM, “Keep”);

 /* display the alert to the user */
 hit = fz_fuim_alrt_driver(fuim_alrt);

 /* dispose the alert */
 fz_fuim_alrt_ptr_finit(&fuim_alrt);

 /* handle the users choice */
 if(hit == 1)
 {
 /* Delete objects here */

}

2.6.2 Dialogs

Dialogs are invoked by calling a dialog driver function. The driver creates the window for the
dialog and calls a FUIM template function provided by the plugin to create the content of the
dialog. The driver displays the dialog on the screen and the user dismisses handles user
interaction with the template until the dialog.

There are three dialog driver functions that work in identical fashion. The three dialog driver
variants correspond to the three variants of template functions available as described in the next
section. The driver that is used is based on the needs of the template function. By default the
driver functions return FZRT_STD_OK if an OK button is pressed or FZRT_STD_CANCEL if a
Cancel button is pressed to dismiss the dialog. The template function can customize the values
that are returned by the driver. The tree driver functions are as follows.

short fz_fuim_dlog_drive(
 fz_fuim_setup_func fuim_setup
);

short fz_fuim_dlog_drive_data(
 fz_fuim_setup_data_func fuim_setup_data,

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 50

void *data
);

short fz_fuim_dlog_drive_windex(
 long windex,
 fz_fuim_setup_windex_func fuim_setup_windex,
 void *data
);

The first is the basic driver function. The fuim_setup parameter is a function pointer for the
template function. The second version of the function adds a pointer to plugin supplied data
(data). The template manager passes on this pointer to the template function. The third variant
adds the project window index (windex). This parameter is the project window index to be used
for project references in the template function.

2.6.3 Template Function

The FUIM template function defines a template by calling form•Z API functions to create the
interface elements, define relationships between items, and bind the data storage (variables) to
the user interface elements. There are three variants of the template function. All three variants
function in the same fashion, however they vary in the parameters that they receive.

typedef fzrt_error_td (FZRT_SPEC *fz_fuim_tmpl_func)(
 fz_fuim_tmpl_ptr tmpl_ptr
);

This is the basic template function. The tmpl_ptr parameter is an opaque pointer that is created
by form•Z and used to manage the template. The template pointer parameter is used as the first
parameter to all FUIM API functions. This function should return FZRT_NOERR if the template is
successfully created. Any other return value indicates that template creation failed.

typedef fzrt_error_td (FZRT_SPEC *fz_fuim_tmpl_data_func)(
 fz_fuim_tmpl_ptr tmpl_ptr,
 fzrt_ptr tmpl_data
);

This is the same as basic template function with the addition of the tmpl_data parameter. This
parameter is a generic pointer used as a reference to data that is needed by the template. This
pointer must be supplied by the function that that is driving the template.

typedef fzrt_error_td (FZRT_SPEC *fz_fuim_tmpl_windex_func)(
 long windex,
 fz_fuim_tmpl_ptr tmpl_ptr,
 fzrt_ptr tmpl_data
);

This is the same as data template function with the addition of the windex parameter. This
parameter is the project window index to be used for project references in the template function.
This template function variant is used when operating on project or window level data where the
windex is needed to access project or window data. The value for windex supplied by the function
that that is driving the template.

The first function that should be called inside of a template function is fz_fuim_tmpl_init.

fzrt_error_td fz_fuim_tmpl_init(
 fz_fuim_tmpl_ptr fuim_tmpl,
 char *titl_str,
 short tmpl_flags,

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 51

 fzrt_UUID_td uuid,
 long version
);

This function initializes the template definition. The fuim_tmpl parameter is the template
pointer. The titl_str parameter is the name of the template. For dialogs, this is the title that
appears in the title bar of the dialog window. This parameter is not used for palettes. The
tmpl_flags parameter is currently unused and should always be 0. The uuid parameter is the
ID of the template. This is an optional parameter. When a UUID is provided, the form•Z template
manager stores information about the state of the template for reuse each time the template is
used. This includes remembering which tab is active for tab elements and items that are
collapsed in palettes. The version parameter complements the UUID and is only used when a
UUID is provided. This number informs the form•Z template manager what version of the
template is in use. This number should be set to zero for the first implementation of a template
and then increased when changes are made to the implementation of the template (i.e. elements
changed, removed or added). This version change informs the template manager that the
template has changed and that it should no longer use the saved state from the previous
implementation.

2.6.3.1 Element creation and variable association

Each interface element in the template is referred to as a template item. Items are referenced by
their ID that is assigned by the plugin when the item is created. IDs must be unique within each
template. All items except groups, dividers, and images have are said to have a value. The value
can be a specific numeric value or a range of values depending on the interface element. Items
that have values can associate a plugins variable with the item. When the user changes the
interface element, the associated variable is updated to the defined value.

The next section describes the common aspects of template item creation. The following section
describes how variables are associated with items. The remainder of the sections describes each
type of element, the function that is used to create the item and what types of association are
supported.

Item creation

There is a single function for creating an item of each type of interface element. All of the creation
functions return the ID of the new item. If the item can not be created, the value FZ_FUIM_NONE
is returned. All of the item creation functions start with fz_fuim_new_ and contain the following
common parameters:

fz_fuim_tmpl_ptr fuim_tmpl

The fuim_tmpl parameter is the template pointer.

short parent

The parent parameter is the ID of the parent item of the item being created. The value
FZ_FUIM_ROOT should be used if the item is at the top of the template’s hierarchy.

short id,

The id parameter is the ID of item being created. This value must be unique within each
template and be in the range of 0 to 32767. The template manager can create a unique
ID automatically by specifying the value FZ_FUIM_NONE for this parameter. The

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 52

generated ID is returned as the return value from the item creation function. Automatic
generation should NOT be used when the item_func parameter is used as the item
function needs to have predefined IDs to function properly.

long flags

The flags parameter is a bit encoded parameter that specifies optional control for the
item being created. These values should be combined using the bitwise or (|)operator
(e.g. FZ_FUIM_FLAG_BRDR | FZ_FUIM_FLAG_SMAL). The following values are
supported:

FZ_FUIM_FLAG_NONE: Indicates no flags.
FZ_FUIM_FLAG_HORZ: Indicates that the child items of the new item should
have a horizontal layout. If this is not specified, they have the default vertical
layout.
FZ_FUIM_FLAG_BRDR: Indicates that the item should be drawn with a boarder
around it.
FZ_FUIM_FLAG_INDT: Indicates that the item’s position should be indented from
the position of its parent. The indentation moves the item towards the right if it is
in a vertical layout and towards the bottom if it is in a vertical layout.
FZ_FUIM_FLAG_GFLT: Indicates that the sibling items of the new item should
have a horizontal layout next to the new item.
FZ_FUIM_FLAG_HTOP: Items in a horizontal layout are by default center
aligned. If this value is provided, all of the child items that are in a horizontal
layout will be bottom aligned. Should not be used with FZ_FUIM_FLAG_HBOT.
FZ_FUIM_FLAG_HBOT: Items in a horizontal layout are by default center
aligned. If this value is provided, all of the child items in a horizontal layout will be
bottom aligned. Should not be used with FZ_FUIM_FLAG_HTOP.
FZ_FUIM_FLAG_VCNT: Items in a vertical layout are by default left aligned. If
this value is provided, all of the child items in a vertical layout will be center
aligned. Should not be used with FZ_FUIM_FLAG_VRGT.
FZ_FUIM_FLAG_VRGT: Items in a vertical layout are by default left aligned. If
this value is provided, all of the child items in a vertical layout will be right aligned.
Should not be used with FZ_FUIM_FLAG_VCNT.
FZ_FUIM_FLAG_SMAL: Indicates that the item should be shown in a reduced
width.
FZ_FUIM_FLAG_EQSZ: Indicates that all of the child item should be shown made
to be the same size. The size of the largest child is calculated and all child items
are set to be the same size.
FZ_FUIM_FLAG_JRGT: Indicates that the new item should be right justified. If
this is not set then the default left justification is used.
FZ_FUIM_FLAG_DIMM: Indicates that the item should be shown always dimmed
and inactive.
FZ_FUIM_FLAG_FRAM: Indicates that a boarder should be drawn around all of
the child items of the new item.
FZ_FUIM_FLAG_PASS: This is a special flag only used by text items. It indicates
that the text is a password field and it should not show the text directly. When this
option is selected, the text is shown with a “*” for each character in the string.

fz_fuim_item_func item_func

The item_func parameter is an optional parameter for a function pointer to an item
function. The template manager calls the item function at various times to either to
retrieve information about the item or notify the item about an action related to the item.

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 53

The item function should return TRUE the action was handled and FALSE if it was not.
When the function handles the action, then the template manager does not. The item
function has the following prototype and parameters:

typedef short fz_fuim_item_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 long action,
 short item_id,
 void *item_data,
 fz_fuim_type_td *action_data
);

fz_fuim_tmpl_ptr fuim_tmpl

The fuim_tmpl parameter is the template pointer. The action parameter is the
action that is being requested or sent to the item function. The following actions
are currently supported.

long action

FZ_FUIM_ACTN_GET_ACTIV: This action is sent by the template manager to
find out if the item is active or not. This message is useful to make items
dependent on each other, which are not descendants of each other in the
template’s hierarchy. An active item is indicated by the value of 0 in the
fuim_short field of the item_data parameter (item_data->fuim_short
== 0). An inactive item is indicated by the value of 255 in the fuim_short field
of the item_data parameter(item_data->fuim_short == 255).
FZ_FUIM_ACTN_BLESS: This action is sent by the template manager for button
items to find out if the item should be blessed as the default OK action for a
dialog or the default cancel action for a dialog. The OK action is executed when
the return or enter key is pressed in a dialog. The default cancel action is
executed when the <esc> key or a cancel key shortcut is selected. By default the
OK button and Cancel button perform these actions. A different button can be
assigned these actions by returning FZRT_STD_OK or FZRT_STD_CANCEL in the
fuim_short field of the item_data parameter.
FZ_FUIM_ACTN_GET_VALUE: This action is sent by the template manager to get
the value of an item. The value should be returned in the item_data parameter.
The field corresponding to the type of variable that is associated with the item
should be used (i.e. if the associated variable is of type long, the fuim_long
field should be used).
FZ_FUIM_ACTN_PICT_SCALE: This action is sent by the template manager for
picture items to desired scale for the item. The desired scale value should be
returned in the fuim_float field of the item_data parameter.
FZ_FUIM_ACTN_HIT: This action is sent to the item function when an item is hit
(clicked on). This is most useful for button items when some action needs to be
performed to handle the button click.
FZ_FUIM_ACTN_SET_VALUE: This action indicates that the item’s value should
be set to the provided value in the data parameter. The field corresponding to
the type of variable that is associated with the item should be used (i.e. if the
associated variable is of type long, the fuim_long field should be used).
FZ_FUIM_ACTN_NEW_VALUE: This action indicates that the item’s value has
changed.

short item_id

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 54

The item_id parameter is the ID of item being processed by the item function.

void *item_data

The item_data parameter is a pointer to item specific data that is defined when
the item is created. This pointer is stored by the template manager and provided
to the item function.

fz_fuim_type_td *action_data

The action_data parameter is a pointer to a union of the basic types
supported by the template manager. This parameter is used to pass data in and
out the item function. The field that contains the data is dependent on the value
of the action parameter as described above. The following is the definition of the
union:

typedef union fz_fuim_type_td
{ fzrt_boolean fuim_boolean;
 char fuim_char;
 unsigned char fuim_uchar;
 short fuim_short;
 unsigned short fuim_ushort;
 long fuim_long;
 unsigned long fuim_ulong;
 float fuim_float;
 double fuim_double;
} fz_fuim_type_td;

void *item_data

The item_data parameter is only used when the item_func parameter is provided.
This parameter is optional. When it is provided, the template manager passes it into the
item_data parameter of the item function.

Most of the functions also contain a titl_str parameter. This string is the title of the item in the
template. It is recommended that the strings be stored in .fzr files and loaded from this file so that
they can be localized.

Variable association

Most FUIM items displayed to the user have some sort of input or value associated with them,
which the user can change, usually within some range of valid values. This means that variables
must be associated with these FUIM items. A variable’s value can be a specific value or a range
of values. Items that have values

Unary

Specific values

Specific values are used for interface elements that are binary. That is, they only have two states
; on (TRUE or 1) and off (FALSE or 0). These are check boxes, radio buttons, icons and custom
items (depending on the implementation). There are three methods for defining the specific
values: unary, binary and encoded. In the unary case the FALSE value is always 0 and the TRUE
value is supplied by the plugin. In a binary case, both the FALSE value and the TRUE value are
supplied. The encoded method compares the variable with a supplied bit mask. That is, the

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 55

FALSE value is occurs when all of the masked bits are off in the variable and TRUE is defined
when all of the bits are on.

There are 21 functions that are used to associated a specific value; seven for each method

fz_fuim_item_unary_bool fz_fuim_item_binary_bool fz_fuim_item_encod_bool
fz_fuim_item_unary_char fz_fuim_item_binary_char fz_fuim_item_encod_char
fz_fuim_item_unary_uchar fz_fuim_item_binary_uchar fz_fuim_item_encod_uchar
fz_fuim_item_unary_short fz_fuim_item_binary_short fz_fuim_item_encod_short
fz_fuim_item_unary_ushort fz_fuim_item_binary_ushort fz_fuim_item_encod_ushort
fz_fuim_item_unary_long fz_fuim_item_binary_long fz_fuim_item_encod_long
fz_fuim_item_unary_ulong fz_fuim_item_binary_ulong fz_fuim_item_encod_ulong

All of the functions for each method have the same parameters and work identically. Each variant
is provided for the type of the variable that is being associated (long, short etc.). For example if
the plugin variable is a short, then the function fz_fuim_item_unary_short, or
fz_fuim_item_binary_short, or fz_fuim_item_encod_short is used.

typedef void fz_fuim_item_unary_short(
 fz_fuim_tmpl_ptr fuim_tmpl,
 short item_id,
 short *data_ptr,
 short true_value
);

The fuim_tmpl parameter is the template pointer where the item is found. The item_id
parameter is the ID of the item that is being associated. The data_ptr parameter is the pointer
to the plugin variable that is being associated. The type for this variable matches the type
specified in the function name. The true_value parameter is the value that the variable
(*data_ptr) must have for the element to be in its TRUE state. That is when *data_ptr ==
true_value, the items value is TRUE and when *data_ptr != true_value, the item’s
value is FALSE.

typedef void fz_fuim_item_binary_short(
 fz_fuim_tmpl_ptr fuim_tmpl,
 short item_id,
 short *data_ptr,
 short true_value,
 short false_value
);

The fuim_tmpl parameter is the template pointer. The item_id parameter is the ID of the item
that is being associated. The data_ptr parameter is the pointer to the plugin variable that is
being associated. The type for this variable matches the type specified in the function name. The
true_value parameter is the value that the variable (*data_ptr) must have for the element to
be in its TRUE state. That is when *data_ptr == true_value, the items value is TRUE. The
false_value parameter is the value that the variable (*data_ptr) must have for the element
to be in its FALSE state. That is when *data_ptr == false_value, the item’s value is
FALSE.

typedef void fz_fuim_item_encod_short(
 fz_fuim_tmpl_ptr fuim_tmpl,
 short item_id,
 short *data_ptr,
 fzrt_boolean true_value,
 short bit_mask
);

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 56

The fuim_tmpl parameter is the template pointer. The item_id parameter is the ID of the item
that is being associated. The data_ptr parameter is the pointer to the plugin variable that is
being associated. The type for this variable matches the type specified in the function name. The
true_value parameter is the value (TRUE or FALSE) that the variable (*data_ptr) when
masked with the bit mask (bit_mask) for the element to be in its TRUE state. That is when
(*data_ptr & bit_mask) == true_value, the items value is true and when (*data_ptr
& bit_mask)!= true_value, the item’s value is FALSE. Note that the macro
FZ_FUIM_BIT_TO_MASK is provided for turning bit values in into a bit mask.

Range values

Range association is used for interface elements that can represent more than a single specific
value. These are menus, sliders, scroll bars, tabs, frames , text fields and custom items
(depending on the implementation). There are nine functions that are used to associate a specific
value to an item. Six of these items are used for integer values:

fz_fuim_item_range_char
fz_fuim_item_range_uchar
fz_fuim_item_range_short
fz_fuim_item_range_ushort
fz_fuim_item_range_long
fz_fuim_item_range_ulong

All of these functions have the same parameters and work identically. Each variant is provided for
the type of the variable that is being associated. For example if the plugin variable is a short, then
the function fz_fuim_item_range_short is used.

void fz_fuim_item_range_short(
 fz_fuim_tmpl_ptr fuim_tmpl,
 short item_id,
 short *data_ptr,
 short min_value,
 short max_value,
 fz_fuim_format_int_enum format,
 short flags
);

The fuim_tmpl parameter is the template pointer. The item_id parameter is the ID of the item
that is being associated. The data_ptr parameter is the pointer to the plugin variable that is
being associated. The type for this variable matches the type specified in the function name. The
min_value parameter is the minimum value for the range and max_value parameter is the
maximum value. The type for these variables matches the type specified in the function name.
The format parameter is used if the associated item contains a text string. The current values
for this parameter are as follows:

FZ_FUIM_FORMAT_INT_DEFAULT: The value is displayed as a whole number in decimal
notation
FZ_FUIM_FORMAT_INT_DATE_NATIVE: The value is displayed as a date (day, month
and year) according to the current date format of the OS.
FZ_FUIM_FORMAT_INT_TIME_NATIVE: The value is displayed as a time of day (hours,
minutes and seconds), according to the current date format of the OS.
FZ_FUIM_FORMAT_INT_DURN_HHMMSS: The value is displayed as a duration (hours,
minutes and seconds), separated by colons.

The flags parameter can be used to add additional control as follows:

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 57

FZ_FUIM_RANGE_NONE: no flags (default).
FZ_FUIM_RANGE_MIN: Clamp input to the specified minimum value in text fields. This
prevents a value less than the specified minimum value from being entered by the user.
If the user enters a smaller value, it will be changed to the minimum.
FZ_FUIM_RANGE_MIN_INCL: The specified minimum value is inclusive. If this is not set
it is exclusive.
FZ_FUIM_RANGE_MAX: Clamp input to the specified maximum value in text fields. This
prevents a value greater than the specified maximum value from being entered by the
user. If the user enters a larger value, it will be changed to the maximum.
FZ_FUIM_RANGE_MAX_INCL: The specified maximum value is inclusive. If this is not set
it is exclusive.

There are two functions used for floating point values:

fz_fuim_item_range_float
fz_fuim_item_range_double

All of these functions have the same parameters and work identically. Each variant is provided for
the type of the variable that is being associated. For example if the plugin variable is a double,
then the function fz_fuim_item_range_double is used.

void fz_fuim_item_range_double(
 fz_fuim_tmpl_ptr fuim_tmpl,
 short item_id,
 double *data_ptr,
 double min_value,
 double max_value,
 fz_fuim_format_float_enum format,
 short flags
);

All of the parameters are the same as the integer variations except for format. The format
parameter is used if the associated item contains a text string. The following are currently
supported:

FZ_FUIM_FORMAT_FLOAT_DEFAULT: The floating-point value is displayed as a fraction,
with the whole and fractional part of the number separated by a decimal point.
FZ_FUIM_FORMAT_FLOAT_DISTANCE: floating point value is displayed as a distance
value. The formatting is determined by the setting in the Working Units dialog. For
example, when English units are selected the default linear distances are displayed with
the feet and inch notation.
FZ_FUIM_FORMAT_FLOAT_ANGLE: The floating-point value is displayed as an angle.
The variable's value is expected to be in radians. The display of an angle is shown in
degrees in the text field.
FZ_FUIM_FORMAT_FLOAT_PERCENT: The floating-point value is displayed as a
percentage value. That is, the variable's value is multiplied by 100 before it is displayed in
the text field. This allows a value to be stored in a variable in a normalized range (0.0 to
1.0) but display it to the user as a percentage (0.0 to 100.0).
FZ_FUIM_FORMAT_FLOAT_CURRENCY_NATIVE: The floating point value is displayed as
a currency, formatted according to the language setting of the operating system.
FZ_FUIM_FORMAT_FLOAT_AREA_SQIN: The floating point value is displayed as an area
value, converted to and formatted as square inches. The floating point value is assumed
to represent square inches in an english project or square centimeters in a metric project.
FZ_FUIM_FORMAT_FLOAT_AREA_SQFT: The floating point value is displayed as an area
value, converted to and formatted as square feet. The floating point value is assumed to
represent square inches in an english project or square centimeters in a metric project.

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 58

FZ_FUIM_FORMAT_FLOAT_AREA_SQYD: The floating point value is displayed as an area
value, converted to and formatted as square yards. The floating point value is assumed to
represent square inches in an english project or square centimeters in a metric project.
FZ_FUIM_FORMAT_FLOAT_AREA_ACRE: The floating point value is displayed as an area
value, converted to and formatted as acres. The floating point value is assumed to
represent square inches in an english project or square centimeters in a metric project.
FZ_FUIM_FORMAT_FLOAT_AREA_SQMI: The floating point value is displayed as an area
value, converted to and formatted as square miles. The floating point value is assumed to
represent square inches in an english project or square centimeters in a metric project.
FZ_FUIM_FORMAT_FLOAT_AREA_SQMM: The floating point value is displayed as an area
value, converted to and formatted as square millimeters. The floating point value is
assumed to represent square inches in an english project or square centimeters in a
metric project.
FZ_FUIM_FORMAT_FLOAT_AREA_SQCM: The floating point value is displayed as an area
value, converted to and formatted as square centimeters. The floating point value is
assumed to represent square inches in an english project or square centimeters in a
metric project.
FZ_FUIM_FORMAT_FLOAT_AREA_SQMT: The floating point value is displayed as an area
value, converted to and formatted as square meters. The floating point value is assumed
to represent square inches in an english project or square centimeters in a metric project.
FZ_FUIM_FORMAT_FLOAT_AREA_SQKM: The floating point value is displayed as an area
value, converted to and formatted as square kilometers. The floating point value is
assumed to represent square inches in an english project or square centimeters in a
metric project.
FZ_FUIM_FORMAT_FLOAT_VOLUME_CUIN: The floating point value is displayed as a
volumetric value, converted to and formatted as cubic inches. The floating point value is
assumed to represent cubic inches in an english project or cubic centimeters in a metric
project.
FZ_FUIM_FORMAT_FLOAT_VOLUME_CUFT: The floating point value is displayed as a
volumetric value, converted to and formatted as cubic feet. The floating point value is
assumed to represent cubic inches in an english project or cubic centimeters in a metric
project.
FZ_FUIM_FORMAT_FLOAT_VOLUME_CUYD: The floating point value is displayed as a
volumetric value, converted to and formatted as cubic yards. The floating point value is
assumed to represent cubic inches in an english project or cubic centimeters in a metric
project.
FZ_FUIM_FORMAT_FLOAT_VOLUME_GAL: The floating point value is displayed as a
volumetric value, converted to and formatted as gallons. The floating point value is
assumed to represent cubic inches in an english project or cubic centimeters in a metric
project.
FZ_FUIM_FORMAT_FLOAT_VOLUME_CUMM: The floating point value is displayed as a
volumetric value, converted to and formatted as cubic millimeters. The floating point value
is assumed to represent cubic inches in an english project or cubic centimeters in a
metric project.
FZ_FUIM_FORMAT_FLOAT_VOLUME_CUCM: The floating point value is displayed as a
volumetric value, converted to and formatted as cubic centimeters. The floating point
value is assumed to represent cubic inches in an english project or cubic centimeters in a
metric project.
FZ_FUIM_FORMAT_FLOAT_VOLUME_LITR: The floating point value is displayed as a
volumetric value, converted to and formatted as liters (cubic decimeter). The floating point
value is assumed to represent cubic inches in an english project or cubic centimeters in a
metric project.

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 59

FZ_FUIM_FORMAT_FLOAT_VOLUME_CUMT: The floating point value is displayed as a
volumetric value, converted to and formatted as cubic meters. The floating point value is
assumed to represent cubic inches in an english project or cubic centimeters in a metric
project.
FZ_FUIM_FORMAT_FLOAT_WEIGHT_OZ: The floating point value is displayed as a
weight value, converted to and formatted as ounces. The floating point value is assumed
to represent grams.
FZ_FUIM_FORMAT_FLOAT_WEIGHT_LBS: The floating point value is displayed as a
weight value, converted to and formatted as pounds (16 ounces). The floating point value
is assumed to represent grams.
FZ_FUIM_FORMAT_FLOAT_WEIGHT_ETON: The floating point value is displayed as a
weight value, converted to and formatted as english tons. The floating point value is
assumed to represent grams.
FZ_FUIM_FORMAT_FLOAT_WEIGHT_G: The floating point value is displayed as a weight
value, converted to and formatted as grams. The floating point value is assumed to
represent grams.
FZ_FUIM_FORMAT_FLOAT_WEIGHT_KG: The floating point value is displayed as a
weight value, converted to and formatted as kilo grams. The floating point value is
assumed to represent grams.
FZ_FUIM_FORMAT_FLOAT_WEIGHT_MTON: The floating point value is displayed as a
weight value, converted to and formatted as metric tons. The floating point value is
assumed to represent grams.

There is one function for strings:

void fz_fuim_item_range_string(
 fz_fuim_tmpl_ptr fuim_tmpl,
 short item_id,
 char *data_ptr,
 short min_value,
 short max_value,
 short flags
);

The fuim_tmpl parameter is the template pointer. The item_id parameter is the ID of the item
that is being associated. The data_ptr parameter is the pointer to the plugin string variable
that is being associated. The min_value parameter is the minimum number of characters in the
string and max_value is maximum number of characters in the string. The flags parameter is
as in the integer range functions.

Check box

short fz_fuim_new_check(
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 short id,
 long flags,
 char *titl_str,
 fz_fuim_item_func item_func,
 void *item_data
);

A check box is an interface element that can be in either an "on" (true/1) or "off" (false/0) state.
Clicking on a check box changes its state from "on" to "off", or from "off" to "on". The title string is
shown to the right of the check box graphic. Variables are associated with check box items using

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 60

fz_fuim_item_unary_*, fz_fuim_item_binary_*, or fz_fuim_item_encod_*
functions.

The following is an example of a check box with a short value associated with it such that the
check is on when the variable is 2 and off when the variable is 1.

short item;
short my_variable = 2;

/* Create a check box item */
item = fz_fuim_new_check(fuim_tmpl, FZ_FUIM_ROOT, FZ_FUIM_NONE,

FZ_FUIM_FLAG_NONE, “My Check Box”, NULL, NULL);

/* Associate my_variable with the item, */
/* my_variable == 2 for check on, my_variable == 1 for off */
fz_fuim_item_binary_short(fuim_tmpl, item, &my_variable, 2, 1);

Radio button

short fz_fuim_new_radio(
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 short id,
 long flags,
 char *titl_str,
 fz_fuim_item_func item_func,
 void *item_data
);

Radio buttons are like check boxes except that they are used in a set and are mutually exclusive
in the set: when one is switched "on", all others in the set are switched "off". This function creates
a single radio button. A set of radio buttons is defined by the creation of each button in the set
and then associating them with the same variable (see next section on binding). The title string is
shown to the right of the radio button graphic. Variables are associated with check box items
using fz_fuim_item_unary_*, fz_fuim_item_binary_*, or fz_fuim_item_encod_*
functions.

The following is an example of a three radio buttons with a short value associated with them such
that the radio buttons are mapped to the values of 2, 3, and 7. That is when the first button is
selected, the variable is set to 2, when the second is selected the variable is set to 3 and when
the third is selected the variable is set to 7.

short item;
short my_variable = 2;

/* Create a radio button box item and variable with the item with a value of 2
*/
item = fz_fuim_new_radio(fuim_tmpl, FZ_FUIM_ROOT, FZ_FUIM_NONE,

FZ_FUIM_FLAG_NONE, “My Radio 1”, NULL, NULL);
fz_fuim_item_unary_short(fuim_tmpl, item, &my_variable, 2);

/* Create a radio button box item and variable with the item with a value of 3
*/
item = fz_fuim_new_radio(fuim_tmpl, FZ_FUIM_ROOT, FZ_FUIM_NONE,

FZ_FUIM_FLAG_NONE, “My Radio 2”, NULL, NULL);
fz_fuim_item_unary_short(fuim_tmpl, item, &my_variable, 3);

/* Create a radio button box item and variable with the item with a value of 7
*/
item = fz_fuim_new_radio(fuim_tmpl, FZ_FUIM_ROOT, FZ_FUIM_NONE,

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 61

FZ_FUIM_FLAG_NONE, “My Radio 3”, NULL, NULL);
fz_fuim_item_unary_short(fuim_tmpl, item, &my_variable, 7);

Button

short fz_fuim_new_button(
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 short id,
 long flags,
 char *titl_str,
 fz_fuim_item_func item_func,
 void *item_data
);

Buttons are interface items that perform an action when they arc clicked on. The action is handled
in the FZ_FUIM_ACTN_HIT action of the item_func described in a following section. The title
string is shown in graphics of the button. This item can not be associated with a variable as it
does not change in value.

The following is an example of a button.

short item;

/* Create a button item */
item = fz_fuim_new_button(fuim_tmpl, FZ_FUIM_ROOT, 100 /* item id */,

FZ_FUIM_FLAG_NONE, “My Button”, my_button_func, NULL);

With the following item function to handle the click in the button.

short my_button_func (
 fz_fuim_tmpl_ptr fuim_tmpl,
 long action,
 short item_id,
 void *item_data,
 fz_fuim_type_td *action_data
)
{
 short rv = FALSE;

 switch(item_id)
 { case 100:
 if(action == FZ_FUIM_ACTN_HIT)
 {
 /* Handle hit here */

 rv = TRUE;
 }
 break;
 }

 return(rv);
}

Static text

short fz_fuim_new_text_static(
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 short id,
 long flags,

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 62

 char *titl_str,
 fz_fuim_item_func item_func,
 void *item_data
);

Static text items are single line strings that are used for information, labels, or titles for sub-groups
in a template. The user can not change static text items. This item can not be associated with a
variable as it does not change in value.

The following is an example of static text.

short item;

/* Create static text item */
item = fz_fuim_new_text_static (fuim_tmpl, FZ_FUIM_ROOT, FZ_FUIM_NONE,

FZ_FUIM_FLAG_NONE, “My Static Text”, NULL, NULL);

Editable text

short fz_fuim_new_text_edit(
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 short id,
 long flags,
 char *titl_str,
 fz_fuim_item_func item_func,
 void *item_data
);

Editable text items are strings that can be changed by the user. They are used for numeric fields
and string fields. If a numeric variable is associated with the edit text item, then the edit text will
shown a numeric value and accept numeric input. If a character variable is associated with the
edit text item, then the edit text will shown the string and accept character input. The title for the
edit text is shown to the left with the editable area in a box to the right. Variables are associated
with check box items using fz_fuim_item_range_ functions.

The following is an example of editable text for a short variable with a range of 0 to 20.

short item;
short my_variable = 0;

/* Create editable text item */
item = fz_fuim_new_text_edit(fuim_tmpl, FZ_FUIM_ROOT, FZ_FUIM_NONE,

FZ_FUIM_FLAG_NONE, NULL, NULL);
fz_fuim_item_range_short(fuim_tmpl, item, &my_variable, 0, 20,

FZ_FUIM_FORMAT_INT_DEFAULT,
FZ_FUIM_RANGE_MIN | FZ_FUIM_RANGE_MIN_INCL |
FZ_FUIM_RANGE_MAX | FZ_FUIM_RANGE_MAX_INCL);

The following is an example of editable text for a double variable which must be greater than
zero.

short item;
double my_variable = 1.0;

/* Create editable text item */
item = fz_fuim_new_text_edit(fuim_tmpl, FZ_FUIM_ROOT, FZ_FUIM_NONE,

FZ_FUIM_FLAG_NONE, NULL, NULL);
fz_fuim_item_range_double(fuim_tmpl, item, &my_variable, 0.0, 0.0,

FZ_FUIM_FORMAT_FLOAT_DEFAULT,

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 63

FZ_FUIM_RANGE_MIN);

The following is an example of editable text for a string.

short item;
char my_string[256];

stcpy(my_string, “Initial String”);
/* Create editable text item */
item = fz_fuim_new_text_edit (fuim_tmpl, FZ_FUIM_ROOT, FZ_FUIM_NONE,

FZ_FUIM_FLAG_NONE, NULL, NULL);
fz_fuim_item_range_string(fuim_tmpl, item, my_string, 0, 256,

FZ_FUIM_RANGE_NONE);

Editable text can also be created with the function fz_fuim_new_text_info. This is a variant
of the edit text item which includes additional control over the item’s dimensions.

short fz_fuim_new_text_edit_info(
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 short id,
 long flags,
 char *titl_str,
 short width,
 short height,
 fz_fuim_item_func item_func,
 void *item_data
);

The width parameter is the desired width of the item in the template If this value is 0, then the
default width is used. The height is the number of lines high the text should be. This actual size
will vary with the user selected dialog or palette font size.

The following is an example of editable text for a double variable which is 75 pixels and one line
high.

short item;
double my_variable;

/* Create editable text item */
item = fz_fuim_new_text_edit_info (fuim_tmpl, FZ_FUIM_ROOT, FZ_FUIM_NONE,

FZ_FUIM_FLAG_NONE, “My Edit Text”, 72, 1, NULL, NULL);
fz_fuim_item_range_double(fuim_tmpl, item, &my_variable, 0.0, 0.0,

FZ_FUIM_FORMAT_FLOAT_DEFAULT,
FZ_FUIM_RANGE_MIN);

Note

short fz_fuim_new_note(
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 short id,
 long flags,
 char *titl_str,
 fz_fuim_item_func item_func,
 void *item_data
);

A note is like a static text item except that it supports multiple lines. Note are used for detailed
information. The user can not change these items. This item can not be associated with a

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 64

variable as it does not change in value. Variables are associated with check box items using
fz_fuim_item_range_* functions.

/* Create note item */
item = fz_fuim_new_note(fuim_tmpl, FZ_FUIM_ROOT, FZ_FUIM_NONE,

FZ_FUIM_FLAG_NONE, “My Note”, NULL, NULL);

Menu

short fz_fuim_new_menu (
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 short id,
 long flags,
 char *titl_str,
 fzrt_menu_ptr menu,
 fzrt_boolean is_pop,
 fz_fuim_item_func item_func,
 void *item_data
);

A menu is a list of items form which items can be selected. A menu can be a regular menu or a
pop-up menu. In regular menu, the menu has one active item. The active item is shown in the
template and when the item is selected, the fill menu is displayed so that a new active item can
be selected. A pop-up menu is shown in the template as a small triangle. When the triangle is
selected, the menu is displayed and one of the items can be selected. As there is no active item,
this type of menu is useful when the selection of the item performs an action (like loading preset
values) or if the menu contains a series of on/off type of settings and the selection of an item
toggles its state.

The menu parameter is a menu pointer for the menu. The menu loaded from and .fzr file using the
fzrt_fzr_get_menu function. The menu can also be constructed by using fzrt_new_menu to
create the menu and fzrt_menu_append_item_text to add items and
fzrt_menu_append_seperator to add separators. If the is_pop parameter is set to TRUE
then the menu is a pop-up menu and when it is set to FALSE, it is a regular menu.

Variables are associated with menu items using integer fz_fuim_item_range_* functions.
The following is an example of menu variable with a range of 0 to 6. Menus are implicitly clamped
at the range limits if one uses the FZ_FUIM_RANGE_NONE range flag. Otherwise, only the
inclusive range flags are useful for menus (FZ_FUIM_RANGE_MIN_INCL and
FZ_FUIM_RANGE_MAX_INCL).

short item;
short my_variable = 0;
fzrt_menu_ptr my_menu;

 /* create menu manager */

my_menu = fzrt_menu_create("");
 fzrt_menu_append_item_text(my_menu, "Veggies");
 fzrt_menu_append_item_text(my_menu, "Meat");
 fzrt_menu_append_item_text(my_menu, "Dairy");
 fzrt_menu_append_separator(my_menu);
 fzrt_menu_append_item_text(my_menu, "Beer");
 fzrt_menu_append_item_text(my_menu, "Juice");
 fzrt_menu_append_item_text(my_menu, "Wine");

 /* create menu fuim item */
 item = fz_fuim_new_menu(fuim_tmpl, FZ_FUIM_ROOT, FZ_FUIM_NONE,
 FZ_FUIM_FLAG_NONE, "My Edit Menu", my_menu, FALSE, NULL, NULL);

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 65

 /* associate a variable to drive which is current selection */
 fz_fuim_item_range_short(fuim_tmpl, item, &my_variable, 0, 6,
 FZ_FUIM_FORMAT_INT_DEFAULT, FZ_FUIM_RANGE_NONE);

Slider

short fz_fuim_new_slider(
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 short id,
 long flags,
 char *titl_str,
 fz_fuim_item_func item_func,
 void *item_data
);

A slider is a graphic control useful for setting a value that has a specific range. The slider has an
indicator that shows the current value of the slider. The user changes the value of the slider to the
desired value by dragging the indicator. Variables are associated with slider items using either the
integer or floating-point fz_fuim_item_range_* functions.

Icon

short fz_fuim_new_icon (
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 short id,
 long flags,
 fzrt_floc_ptr floc,
 long hpos,
 long vpos,
 fzrt_floc_ptr floc_mask,
 long hpos_mask,
 long vpos_mask
 fz_fuim_item_func item_func,
 void *item_data
);

Icons are like buttons except that they have a graphic image instead of a title. Like buttons they
perform an action when they arc clicked on. The action is handled in the FZ_FUIM_ACTN_HIT
action of the item_func described in a following section.

The icon image can be in any of the form•Z supported image file formats or format for which an
image file translator is installed. The TIFF format is the recommended format as the TIFF
translator is commonly available.

The floc parameter should be filled with the file name and location of the file that contains the
icon graphic. The hpos and vpos parameters should be set to the left and top pixel location of
icon data in the file respectively. It is recommended that the icon file be in the same directory as
the plugin file. This makes it simple to find the file. The location of the plugin file can be retained
during the FZPL_PLUGIN_INITIALIZE stage using the fsf->fzpl_plugin_file_get_floc function.

The floc_mask parameter should be filled with the file name and location of the file that contains
the icon mask (this can be the same file as the floc parameter). The icon mask defines the
transparent areas of the icon. The hpos_mask and vpos_mask parameters should be set to the
left and top pixel location of icon mask data in the file respectively. If a mask is not provided then
the entire background of the icon will be drawn.

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 66

A single file can be used for multiple icons across a variety of commands by creating a grid of
icons in the file and specifying the location for each icon in the corresponding provided function.

Image

short fz_fuim_new_image (
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 short id,
 long flags,
 fzrt_floc_ptr floc,

double scale,
 fz_fuim_item_func item_func,
 void *item_data
);

Images are static graphic elements. The floc parameter is the file location and name of the
image file. The image file can be in any of the form•Z supported image file formats or format for
which an image file translator is installed. The TIFF format is the recommended format as the
TIFF translator is commonly available. The scale parameter is a scale factor that is applied to
the image. A value of 1.0 indicates a scale of 100%. Other values scale the image up or down
accordingly. This item can not be associated with a variable as it does not change in value.

Group

short fz_fuim_new_group (
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 short id,
 long flags
);

Groups are items that are used to organize items. This item can not be associated with a
variable since it does not change in value. To associate items within the same group, the group id
should be passed as the parent id to FUIM items created after the group. An example of a useful
flag for a group is one that organizes its items vertically (default) or horizontally, or puts a border
around the group. Groups can be organized hierarchically as well, having a group be a parent to
many child groups and other items.

Tab

short fz_fuim_new_tab_group (
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 short id,
 long flags,
 fz_fuim_item_func item_func,
 void *item_data
);

A tab is used to organize information in a template into categories such that only one of the
categories is shown at a given time. Each of the categories is represented by a title that is placed
in a tab at the top of the interface element. The tab is a graphic that mimics the tab that would be
found on a file folder. When a tab is clicked on, its contents are shown in the body of the tab
interface element. This function simply creates the tab group. To construct the tab, the
descendents of this item must be created in a certain fashion. Each child item of the tab item
establishes an entry in the tab element. The children of the tab entries, are the contents of each

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 67

tab. An integer variable should be associated with the tab group to determine which tab is
actively viewable.

Frame

short fz_fuim_new_frame_group (
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 short id,
 long flags,
 fz_fuim_item_func item_func,
 void *item_data
);

A frame functions like tab group except that does not have any graphics. That is, there are a
number of categories of information in the frame that are all displayed in the same area of the
template. The selection of the active category is driven by another interface element such as a
menu or radio button. An integer variable should be associated with the tab group to determine
which tab is actively viewable.

Divider

short fz_fuim_new_divider (
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 short id,
 long flags
 fz_fuim_item_func item_func,
 void *item_data
);

A divider is a graphic line drawn across the item. By default divider is drawn horizontally. If the
value FZ_FUIM_FLAG_HORZ is set in the flags parameter, then the line is drawn vertically. This
item can not be associated with a variable as it does not change in value.

Custom Items

short fz_fuim_new_custom(
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 short id,
 long flags,
 char *titl_str,
 fz_fuim_item_cust_func cust_func,
 void *cust_data

);

In addition to the normal parameters, a custom item may take a cust_func and cust_data.
A custom item is an item whose appearance and behavior is defined by the plugin. The
cust_func parameter replaces the standard item function. The template manager calls the
custom function at various times to either get information about the custom item or to send
notification of an action that needs to be handled by the custom item. Optionally, if needed, one
may pass in a pointer to some data, which could then be accessed in the custom item function,
through the cust_data parameter. The custom item function should return TRUE if the action
was handled and FALSE if it was not. When the function handles the action, then the template
manager does not. The item function has the following prototype and parameters:

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 68

typedef short fz_fuim_item_cust_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 short item_id,
 fz_fuim_actn_cust_enum action,
 fz_type_td *action_data,
 void *func_data,
 void **prvt_data
);

The fuim_tmpl parameter is the template pointer. The item_id parameter is the id of the item
for the current action. This is provided so that the same custom function can be used for multiple
items in the same template and still be able to identify the item that is being processed. The
action parameter is the action that is being requested or sent to the item function. The following
actions are currently supported.

FZ_FUIM_ACTN_CUST_INIT: This action is sent when the item is created so that any
necessary initialization can be performed.

FZ_FUIM_ACTN_CUST_FINIT: This action is sent when the item is destroyed so that
any necessary de-allocation or cleanup can occur.

FZ_FUIM_ACTN_CUST_GET_WIDTH_MIN: This action is to retrieve the minimum width
for the item. This should be returned in the action_data parameter as a short.

FZ_FUIM_ACTN_CUST_GET_HEIGHT_MIN: This action is to retrieve the minimum height
for the item. This should be returned in the action_data parameter as a short.

FZ_FUIM_ACTN_CUST_GET_WIDTH: This action is to retrieve the preferred width for the
item. If there is enough space for the preferred height, the value minimum width will be
used. This should be returned in the action_data parameter as a short.

FZ_FUIM_ACTN_CUST_GET_HEIGHT: This action is to retrieve the preferred height for
the item. If there is not enough space for the preferred height, the value minimum height
will be used. This should be returned in the action_data parameter as a short.

FZ_FUIM_ACTN_CUST_REDRAW: This action indicates that the custom item should draw
its graphic image. The function fz_fuim_item_get_rect should be called to retrieve
the rectangle in the template in which the image should be drawn. The custom function
should draw the item in an appropriate image if the item is inactive.

FZ_FUIM_ACTN_CUST_CLICK: This action indicates that a click occurred in the item.
The point parameter in the action_data contains the cursor’s coordinates.

FZ_FUIM_ACTN_CUST_HILITE: This action indicates that the item has become active or
inactive. This is usually because of a parent item becoming active or inactive. The short
parameter in the action_data is 0 if the item is active and 255 if it is inactive.

FZ_FUIM_ACTN_CUST_REPOSITION: This action indicates that the item has been
moved to a new location. This message is always sent once right after initialization to
indicate the initial position. Template items rarely move once the FUIM template manager
positions them. The function fz_fuim_item_get_rect should be called to retrieve the
rectangle in the template in which the item is located.

FZ_FUIM_ACTN_CUST_MOUSE_MOVED_IN: This action indicates that the mouse moved
into the item. The cursor is now inside the item’s rectangle.

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 69

FZ_FUIM_ACTN_CUST_MOUSE_MOVED_OUT: This action indicates that the mouse moved
out of the item. The cursor is now outside the item’s rectangle.

FZ_FUIM_ACTN_CUST_MOUSE_MOVED: This action indicates that the mouse moved
while inside the items rectangle. The point parameter in the action_data contains the
cursor’s coordinates. Note that these are in global (screen) coordinates. The function
fzrt_global_to_local should be called to convert the coordinate into the template’s
window coordinates. The function fz_fuim_item_get_rect can be called to retrieve
the rectangle in the template in which the item is located.

FZ_FUIM_ACTN_CUST_KEY_DOWN: This action indicates that a key was pressed in the
template. The key parameters are accessed by extracting a pointer to a
fz_fuim_key_td variable from the pointer parameter of the action_data parameter.

FZ_FUIM_ACTN_CUST_MODF_KEY: This action indicates that a modifier was pressed in
the template. The modifier keys are shift, control, option and command for the Macintosh
and shift, alt and ctrl for Windows. The modifier keys state can be accessed using the
function fzrt_get_keys.

FZ_FUIM_ACTN_CUST_NEW_VAL_INVAL: This action is used to find out if the item
needs to be invalidated for redraw. This should be returned in the action_data
parameter as a short.

FZ_FUIM_ACTN_CUST_TEXT_FOCUS_GET: This action is used to find out if the item has
text focus. If the item has focus, then key strokes in the template will be handled by the
item (FZ_FUIM_ACTN_CUST_KEY_DOWN). This should be returned in the action_data
parameter as a short.

FZ_FUIM_ACTN_CUST_TEXT_FOCUS_SET: This action indicates that the item is given
text focus or it is being taken away. Text focus is given to the item when the user selects
the item and taken away when another item is selected. If the item has focus, then keys
strokes in the template will be handled by the item (FZ_FUIM_ACTN_CUST_KEY_DOWN).
This should be returned in the action_data parameter as a short.

The action_data parameter is an abstract data type (fz_type_td) used for exchange of data.
Data is extracted from or stored into this parameter based on the action that is being handled by
the custom function.

The func_data parameter is a storage place for any data that needs to be passed to the custom
item function from the fz_fuim_new_custom function. This data can then be cast and used in
this function.

The prvt_data parameter is a pointer to a pointer of privately allocated data for the custom
item. This is usually allocated in the FZ_FUIM_ACTN_CUST_INIT action and released in the
FZ_FUIM_ACTN_CUST_FINIT message. This is useful for data needed during the life of the
custom item.

Combination items

There are a number of convenience functions that combine more than one FUIM item.
Effectively, they create each of the component items, and align them in a horizontal group, and
link them to the same variable. This means that when one of the items is updated the other item

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 70

is updated as well. For example, a slider and edit field combo item has both a slider and an
editable text field. If one were to edit the text field by supplying a new number, the slider would
be updated with a new slider position and vice versa. The combination item functions are:

 fz_fuim_new_slid_edit_long (slider with editable long field).
 fz_fuim_new_slid_edit_short (slider with editable short field).
 fz_fuim_new_slid_edit_float (slider with editable float field).
 fz_fuim_new_slid_edit_double (slider with editable double field).

fz_fuim_new_slid_edit_pcent_long (slider with editable long field represented as
a percentage).

fz_fuim_new_slid_edit_pcent_short (slider with editable short field represented
as a percentage).

fz_fuim_new_slid_edit_pcent_float (slider with editable float field represented
as a percentage).

fz_fuim_new_slid_edit_pcent_double (slider with editable double field
represented as a percentage).

The following combination functions disable the use of their edit fields when they are turned off:

fz_fuim_new_check_edit (check box with an editable field – use a range function to
associate a variable with edit field).

fz_fuim_new_radio_text_edit (radio button with an editable field – use a range
function to associate a variable with edit field).

fz_fuim_new_radio_text_static (radio button with a text field – use a range
function to associate a variable with text field).

2.6.3.2 Advanced template elements

Preview

A template can be set up to show a large square area with an object drawn in it. This is done
frequently in object editing dialogs, such as the Star Edit dialog shown below. form•Z offers a
number of API functions, which can assist a plugin in creating such an object preview. The
example code shown in the following section is taken from the star tool plugin, which is available
as sample source code in the form•Z SDK directory.

The Star Edit dialog with a preview window

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 71

Creating the preview item

The object preview template item is created with the following API function calls inside a template
setup function:
...

enum
{
 STAR_OTYP_STACK_PVIEW_DATA = 0,
 STAR_OTYP_STACK_PVIEW_OPTS,

 STAR_OTYP_STACK_PVIEW_MAX
};

...

fzrt_error_td star_otyp_iface_tmpl(
 long windex,
 fz_fuim_tmpl_ptr fuim_tmpl,
 fzrt_ptr objt_ptr
)
{
 fzrt_error_td err = FZRT_NOERR;
 ...
 fz_objt_ptr obj;
 star_otyp_parms_td *star;
 fz_fuim_pview_opts_ptr pview_opts;
 star_otyp_pview_data_td pview_data, ...
 ...

 obj = (fz_objt_ptr)objt_ptr;
 fz_objt_parm_get_data(windex,obj,(fzrt_ptr*)&star);
 ...
 if((err = fz_fuim_tmpl_init(fuim_tmpl, str, 0, STAR_OTYP_ID, 0)
) == FZRT_NOERR)
 {
 pview_data.src_obj = obj;
 pview_data.dst_obj = NULL;
 pview_data.src_windex = windex;
 pview_data.dst_windex = -1;
 pview_data.star_parms = *star;

fz_fuim_tmpl_set_new_value_func(fuim_tmpl, star_otyp_fuim_newval, NULL);
 ...

 fz_fuim_pview_opts_init(&pview_opts,windex);
 fz_fuim_pview_opts_set_load_func(pview_opts, star_otyp_fuim_load_func);
 fz_fuim_pview_create(fuim_tmpl, g2, FZ_FUIM_NONE, pview_opts);
 fz_fuim_stack_put(fuim_tmpl, STAR_OTYP_STACK_PVIEW_DATA,
 sizeof(pview_data), &pview_data);
 ...

 }

 return(err);
}

fz_fuim_pview_opts_init allocates a preview options data structure and initializes it to
default settings. Additional API functions can be called to change the default settings. In the
example above, the API function, fz_fuim_pview_opts_set_load_func is necessary to
load data, such as objects into the preview. It assigns a load function to the preview options. The

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 72

load function is discussed in more detail below. Finally, the preview is created with a call to
fz_fuim_pview_create. This creates all the necessary template items for the preview.

Loading objects into the preview window

The preview created with the fz_fuim_pview_create call in the template setup function will
define a square window in the dialog, in which an object can be shown. For this purpose, form•Z
creates a new project. The load function is designed to copy the object to be previewed from the
original project to the new project. The API function call
fz_fuim_pview_opts_set_load_func stores a load function implemented by the plugin
with the preview options. This plugin defined load function is called right before the dialog is
shown on the screen. To copy the object, the API function call
fz_objt_edit_copy_objt_to_windex can be used. It copies an object from one project to
another. The API call fz_objt_add_objt_to_project should be made right afterwards to
properly add the object to the new project, as the copied object is initially tagged as temporary.
The load function for the star tool is shown below.

fzrt_error_td star_otyp_fuim_load_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 long src_windex,
 long dst_windex)
{
 fzrt_error_td err=FZRT_NOERR;
 star_otyp_pview_data_td *pview_data;

 fz_fuim_stack_get_ptr(fuim_tmpl, STAR_OTYP_STACK_PVIEW_DATA,
 (void**)&pview_data);

 if(pview_data->src_obj != NULL)
 {
 pview_data->dst_windex = dst_windex;

 if((err = fz_objt_edit_copy_objt_to_windex(
 src_windex, pview_data->src_obj,
 dst_windex, TRUE, &pview_data->dst_obj)) == FZRT_NOERR)
 {
 err = fz_objt_add_objt_to_project(dst_windex,pview_data->dst_obj);
 }
 }

 return(err);
}

The star tool example also uses a data structure called star_otyp_pview_data_td. It is filled
with information which is needed by the dialog while it is running. For example, the original object
pointer is stored in this data structure, as well as the copied object. This data structure is also
stored on the template stack.

The functions described above are sufficient to create the basic object preview. Additional
functionality may be needed to enable user interaction with the object shown in the preview. In
the star tool example, the user is able to edit the parameters of the star in the dialog. When a new
value is entered, the preview is automatically updated. When the dialog is closed, the edited
values are saved. The functions needed to enable these features are described in the next
sections.

Updating the object preview

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 73

When the user changes a field in the dialog, which requires that the object preview is
regenerated, the template should install a new value callback function. This needs to be done in
the template setup function, as shown above by the star tool template function. The new value
function is implemented as follows:

fzrt_boolean star_otyp_fuim_newval(fz_fuim_tmpl_ptr fuim_tmpl, void *data_ptr)
{
 star_otyp_pview_data_td *pview_data;
 star_otyp_parms_td *parm_data;

 fz_fuim_stack_get_ptr(fuim_tmpl, STAR_OTYP_STACK_PVIEW_DATA,
 (void**)&pview_data);

 /* ASSIGN THE EDITED OBJECT PARAMETERS TO THE PREVIEW OBJECT */
 fz_objt_parm_get_data(pview_data->dst_windex,
 pview_data->dst_obj,(fzrt_ptr*)&parm_data);
 *parm_data = pview_data->star_parms;

 /* REGENERATE THE PREVIEW OBJECT */
 fz_objt_edit_parm_regen(pview_data->dst_windex,pview_data->dst_obj);

 return (TRUE);
}

The edit fields in the dialog were linked to a copy of the star's parameter data structure
pview_data->star_parms. When form•Z calls the new value function, the star parameters
are assigned to the parameter block of the object in the preview window:

 *parm_data = pview_data->star_parms;

The API function fz_objt_edit_parm_regen forces the star object to be rebuilt with the new
parameters. This also causes the preview window to be redrawn.

Storing the edited object

When the user hits the cancel or OK button and the dialog is closed, the project created for the
preview window is automatically deleted, including all the objects contained in it. For the Cancel
action, this is appropriate, as no changes need to be kept. When OK is selected, the copy of the
original object in the new project needs to be copied back to the original object. This is the inverse
of the action taken by the load function, which copies the original object to the preview window's
project. The star tools OK function shows how the preview object is copied back to the original
object.

fzrt_boolean star_otyp_fuim_ok(fz_fuim_tmpl_ptr fuim_tmpl, void *data_ptr)
{
 star_otyp_pview_data_td *pview_data;

 fz_fuim_stack_get_ptr(fuim_tmpl, STAR_OTYP_STACK_PVIEW_DATA,

(void**)&pview_data);

 /* EXECUTE THE NEW VAL FUNCTION TO MAKE SURE THAT THE OBJECT IS UPTODATE */
 star_otyp_fuim_newval(fuim_tmpl, data_ptr);

 /* COPY THE PREVIEW OBJECT TO THE ORIGINAL OBJECT */
 fz_objt_edit_copy_objt_data_to_windex(pview_data->dst_windex,
 pview_data->dst_obj, pview_data->src_windex,
 pview_data->src_obj, TRUE);

 return(TRUE);
}

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 74

Note, that it is not necessary to explicitly delete the preview object that was copied from the
original object. The project of the preview window is completely deleted when the dialog is closed,
which includes the deletion of all objects in the project.

Clicking and tracking in the preview window

When the user needs to interact with the preview window, two callback function can be
implemented, a click and a track function. The click function is set with the API function:

void fz_fuim_pview_opts_set_click_func(
 fz_fuim_pview_opts_ptr opts,

fz_fuim_pview_click_func click_func
);

The click function itself needs to be declared as:

short fz_fuim_pview_click_func(
 long windex,

fz_fuim_pview_opts_ptr opts,
fzrt_point *click_pnt
);

It is invoked by form•Z when the user clicks in the preview window. The screen position where
the click occurred is passed in.

The track function is called when the mouse is moved in the preview window for an action other
than the standard view editing commands. This allows a plugin to implement is own interactive
editing operation, which is linked to the movement of the mouse. The track function is set with the
API function:

void fz_fuim_pview_opts_set_track_func(
 fz_fuim_pview_opts_ptr opts,

fz_fuim_pview_track_func track_func
);

The click function itself needs to be declared as:

short fz_fuim_pview_track_func(

long windex,
fz_fuim_pview_opts_ptr opts,
fzrt_point *click_pnt,
fzrt_cursor_ptr *curs_ptr
);

As with the click function the screen location of the mouse is passed in. The track function is
expected to return the cursor, which form•Z needs to draw while the tracking occurs.

Setting additional options in the preview window

The preview window can be configured to exhibit a number of different behaviors. These are set
up with bit encoded flags in the API function call:

void fz_fuim_pview_opts_set_flags(

fz_fuim_pview_opts_ptr opts,
long flags

);

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 75

This call needs to be made prior to the creation of the preview window custom item. The flags
parameter determines the behavior of the window. The following options are available:

FZ_FUIM_PVIEW_FLAG_2D_BIT
When this bit is set, the window is created as a 2d window. The view is always set to a top view
and cannot be changed to any other 3d view. This is useful for shown 2d profiles or curve like
objects, that do not have a z dimension.

FZ_FUIM_PVIEW_FLAG_NOPICK_BIT
When this bit is set, the pick tool below the preview window is disabled. This should be done,
when the preview window does not handle any picking by the user.

FZ_FUIM_PVIEW_FLAG_NORNDRMENU_BIT
When this bit is set, the preview window is does not offer any additional rendering modes. The
only rendering mode available is Wireframe. This should be done, when showing abstract
graphics in the window, instead of a solid or surface object.

FZ_FUIM_PVIEW_FLAG_IRNDRMENU_BIT
When this bit is set, only interactive rendering modes are offered by the rendering menu below
the preview window.

FZ_FUIM_PVIEW_FLAG_GRID_BIT
When this bit is set, the project axis and reference plane are draw by form•Z in the preview
window. By default the axis and the grid are not drawn.

FZ_FUIM_PVIEW_FLAG_NOSIZE_BIT
When this bit is set, the preview window is not resized to the maximum size available on the
screen. By default, the preview window is sized according to the user's Preview Dialogs Size
settings set in the Preferences dialog under the Dialogs section.

FZ_FUIM_PVIEW_FLAG_NOPAN_BIT
When this bit is set, the pan view tool below the preview window is disabled. By default, the user
can pan the view in the preview window.

FZ_FUIM_PVIEW_FLAG_NOGHOST_BIT
When this bit is set, ghosted objects are not hidden in the preview window. By default, ghosted
objects are not drawn.

List items

long fz_fuim_new_list(
 fz_fuim_tmpl_ptr fuim_tmpl,
 long parent,
 long id,
 fz_fuim_list_type_enum list_type,
 long list_flags,
 long width,
 long num_rows,
 long num_cols,
 long row_height,
 fz_fuim_list_ptr *list_ptr
);

A list is an interface element that groups items into a list.

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 76

A list is created slightly different from other interface elements in the parameters it takes.
The item_func and item_data parameters of other items are not present when creating a list as
the list itself is a custom item and handled internally. Callback functions are used anyplace that
custom actions are required. See the individual callback functions below for more details. The
flags parameter also is not present. A list will behave differently depending on the list type. The
list type is set in the fz_fuim_new_list function and is of type fz_fuim_list_type_enum. The
different types of lists and how they act are described below.
 FZ_FUIM_LIST_TYPE_NONE: This type of list is for viewing data only. The items in the
list are not clickable.
 FZ_FUIM_LIST_TYPE_ONE: This type of list allows for one and only one item in the list
to be picked at a time. It also requires that one item in the list be picked.
 FZ_FUIM_LIST_TYPE_MULTI: This type of list allows multiple items in the list to be
active at once. It also allows for no item no be picked. This handles mouse click input by toggling
the picked status of the clicked item; clicking on a picked item will unpick it and vice versa.
 FZ_FUIM_LIST_TYPE_SYSTEM: This type of list also allows for multiple items to be
picked at once and allows for no item to be picked. It differs from the
FZ_FUIM_LIST_TYPE_MULTI list in how it handles mouse clicks.
 Shift-clicking will pick all items between the last picked item and the currently clicked
item.
 Command-clicking (on MacIntosh) and Control-clicking (on Windows) will toggle the
picked status of the clicked item.
 Clicking and dragging over a range will pick that range.

The flags parameter changes how the list looks and operates. It uses fz_fuim_list_enum for this,
as described below.
 FZ_FUIM_LIST_TITLE_BIT: Indicates that a title row is to be drawn at the top of the list.
Regardless of the height of the item rows, the title row will always be the same height; namely just
tall enough for the text to be drawn in. The default is for no title row to be drawn.
 FZ_FUIM_LIST_DRAG_BIT: Indicates that dragging of row items is allowed. This only
affects lists of type FZ_FUIM_LIST_TYPE_ONE and FZ_FUIM_LIST_TYPE_MULTI. If this bit is
set, the fz_fuim_list_drag_func callback should be defined in order to handle the drag.
 FZ_FUIM_LIST_DEFFONT2_BIT: Indicates the list is to use the alternate default font.
 FZ_FUIM_LIST_BG_LIST_BIT: Indicates that the background of the list is to be drawn
with the list theme. The default is for the background to be drawn with the theme of the
background of the tab control if the list is in a tab control pane or with the theme of the
background of the dialog otherwise. This bit only affects lists of type
FZ_FUIM_LIST_TYPE_NONE. All other list types have their backgrounds drawn with the list
theme.
 FZ_FUIM_LIST_H_DIVIDE_BIT: Indicates that horizontal lines dividing rows are to be
displayed. The default is for there to be no divisions between rows. Unlike vertical divisions,
horizontal divisions are for visual separation only and can't be resized by click-dragging.
 FZ_FUIM_LIST_AUTOSIZE_BIT: Indicates that the horizontal size of the list and the
individual columns will be auto-sized to fit when the list is created. The individual columns will be
set just wide enough to hold the longest string in the column at creation time. If a column title
exists, that string will be included in the calculation. The width of the list will be the sum of each
of the individual columns. The default is for the list to use the manually set values. If the
horizontal size of the list has been set to any value greater than 0 (the width parameter in
fz_fuim_new_list) the size will not be changed, but the individual columns will be resized to fit the
list.
 FZ_FUIM_LIST_NO_V_DIVIDE_BIT: Indicates that vertical lines dividing columns are not
to be displayed. The default is for there to be divisions between columns. Note that if this bit is
set, the user will be unable to be resize the columns by click-dragging.
 FZ_FUIM_LIST_TITLE_SIZE_BIT: Indicates that the height of the title row is to be the

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 77

same height as the other rows. The default is for the title row to be just tall enough for the text to
be drawn in.

A list may contain 1 or more rows and columns.
When the list is created, the number of viewable rows and columns is set. If there are more row
items than viewable rows, the list will enable it's vertical scroll bar to allow for viewing of all the
items. The number of column items is set to the number of columns and can't change after the list
is created; in other words, there is no horizontal scrolling.

The width parameter sets the horizontal width of the list in pixels. If the column widths are not
specified (with fz_fuim_list_set_colm_width) each of the columns evenly divide the width of the
list.
The num_rows parameter is the number of rows to be displayed in the list. If there is a title bar, it
is not counted towards the number of rows.
The num_cols parameter is the number of columns to be displayed in the list.
The row_height parameter sets the height of each row in pixels. To set the row heights to be just
large enough for the text items, pass -1 for row_height. All rows will be the same height. This
doesn't affect the height of the title row (if it exists). The title row is always the same size.
The list_ptr parameter returns a pointer to the list structure. list_ptr should be saved to allow for
any future calls on the list.

Additional functions for use with lists

Setting a column width

fzrt_error_td fz_fuim_list_set_col_width(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 long col_indx,
 long width
);

fz_fuim_list_set_col_width is used to set the width of a column in pixels. The width is changed by
the moving of the divider bar to the right of the column. If the selected width is smaller than the
minimum, the width will be set to the minimum. If the selected width will make the column to the
right smaller than it's minimum, the width will be set to the maximum it is allowed. If the column
has a title, the minimum is the width of the title. Otherwise, the minimum is a set
number of pixels. The column farthest to the right can't have it's width changed. (If that column's
width needs to be changed, change the width on the column to it's left.) This function has no
effect on lists with one column.

Getting a column width

fzrt_error_td fz_fuim_list_get_colm_width(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 long col_indx,
 long *width
);

fz_fuim_list_get_colm_width is used to get the width of a column in pixels. col_indx is the index
to the column and must be greater than or equal to 0 and less than the number of columns in the
list. width is returned as the width of the specified column is pixels.

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 78

Setting a column title

fzrt_error_td fz_fuim_list_set_colm_title(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 long col_indx,
 char *title_str
);

fz_fuim_list_set_colm_title is used to set the title of a column. col_indx is the index to the column
and must be greater than or equal to 0 and less than the number of columns in the list. If title_str
is passed as NULL or the empty string, the specified column title will be empty. By default, all
column titles are empty.

Getting a column width

fzrt_error_td fz_fuim_list_get_colm_title(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 long col_indx,
 char *title_str,
 long *max_len
);

fz_fuim_list_get_colm_title is used to get the title of a column. col_indx is the index to the column
and must be greater than or equal to 0 and less than the number of columns in the list. title_str
must be preallocated to hold at least max_len number of characters.

Setting a column flags

fzrt_error_td fz_fuim_list_set_colm_flags(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 long col_indx,
 long flags
);

Sets flags of a column. col_indx is the index to the column and must be greater than or equal to 0
and less than the number of columns in the list. If flags is passed as 0, no flags will be set and
any previously set flags on the column will be cleared.

The flags parameter changes how the column looks and operates. It uses
fz_fuim_list_colm_enum for this, as described below.
 FZ_FUIM_LIST_COLM_NO_TITLE_BIT: Indicates that clicking in the title bar of the
column isn't handled. Default is for the column of the title bar that was clicked to be inverted and
for the click (or double-click) function called (if one is set).
 FZ_FUIM_LIST_COLM_NO_DRAG_BIT: Indicates that the divider line between the
column and the column to the right can't be dragged around. Note : Since there is no divider to
the right of the far right column, this bit has no effect on that column.

Setting a column text justification

fzrt_error_td fz_fuim_list_set_colm_just(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 79

 long col_indx,
 fz_fuim_list_just_h_enum just_h,
 fz_fuim_list_just_v_enum just_v
);

fz_fuim_list_set_colm_just is used to set the text justification of a column. col_indx is the index to
the column and must be greater than or equal to 0 and less than the number of columns in the
list. Pass FZ_FUIM_LIST_COLM_JUST_H_NO_CHANGE for just_h and
FZ_FUIM_LIST_COLM_JUST_V_NO_CHANGE for just_v to not change the horizontal and
vertical justification, respectively.

Horizontal justification can be set to any of the below.
 FZ_FUIM_LIST_COLM_JUST_H_LEFT: Indicates that text is to be left justified.
 FZ_FUIM_LIST_COLM_JUST_H_CENTER: Indicates that text is to be center justified.
 FZ_FUIM_LIST_COLM_JUST_H_RIGHT: Indicates that text is to be right justified.
 FZ_FUIM_LIST_COLM_JUST_H_NO_CHANGE: Indicates text justification is to remain
how it is.

Vertical justification can be set to any of the below.
 FZ_FUIM_LIST_COLM_JUST_V_TOP: Indicates that text is to be top justified.
 FZ_FUIM_LIST_COLM_JUST_V_CENTER: Indicates that text is to be center justified.
 FZ_FUIM_LIST_COLM_JUST_V_BOTTOM: Indicates that text is to be bottom justified.
 FZ_FUIM_LIST_COLM_JUST_V_NO_CHANGE: Indicates text justification is to remain
how it is.

Getting the number of row items

fzrt_error_td fz_fuim_list_get_nitems(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 long *num_items
);

fz_fuim_list_get_nitems is used to get the number of row items in a list.

Setting the auto-scroll

fzrt_error_td fz_fuim_list_set_auto_scroll(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 fzrt_boolean auto_scroll
);

fz_fuim_list_set_auto_scroll is used to set the auto-scroll status of a list. When auto-scroll is set,
at least one picked item in the list is always viewable. If none of the current items in the list are
picked, the list will auto-scroll to the first picked item. If there are no picked items in the list,
nothing happens.

Getting the auto-scroll

fzrt_error_td fz_fuim_list_get_auto_scroll(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 fzrt_boolean *auto_scroll
);

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 80

fz_fuim_list_get_auto_scroll is used to get the auto-scroll status of a list.

Regenerating the list

fzrt_error_td fz_fuim_list_regen(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr
);

fz_fuim_list_regen is used to regenerate a list. This is only useful if the
fz_fuim_list_get_num_items_func and
fz_fuim_list_get_picked_func callback functions have been set. The regen function retrieves the
number of items in the list and re-checks each picked status.

Getting the picked status of an item

fzrt_error_td fz_fuim_list_get_picked_status(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 long row_indx,
 long col_indx,
 fzrt_boolean *picked
);

fz_fuim_list_get_picked_status is used to retrieve the picked status of the specified row. This
function is different from the get picked callback function. This function will retrieve the picked
status of the item from the status stored in the list as opposed to the callback which requires an
externally maintained pick status. row_indx is the index to the row item and will always be
greater than or equal to 0 and less than the number of items in the list. col_indx is currently
ignored. The picked status for the selected row will be passed back in picked.

Invalidating a list

fzrt_error_td fz_fuim_list_inval(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr
);

fz_fuim_list_inval is used to invalidate a list.

Callback functions for use with lists

Getting a string

fzrt_error_td fz_fuim_list_set_get_string_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 fz_fuim_list_get_string_func func
);

fz_fuim_list_set_get_string_func is used to set the "get string" callback function of a list.
The "get string" callback function itself needs to be declared as :

fzrt_error_td fz_fuim_list_get_string_func(

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 81

 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 long row_indx,
 long col_indx,
 char *str,
 long max_len,
 fzrt_boolean *did
);

This callback is designed to return the string in a specified row and column of a list. The draw
item callback function is called before this. Both the draw item function and the get string function
can be called for the same item. If both functions exist for an item, the draw item is handled first
followed by the get string. In this case, the text will be drawn on top of the item. row_indx is the
index to the row item and will always be greater than or equal to 0 and less than the number of
items in the list. col_indx is the index to the column and will always be greater than or equal to 0
and less than the number of columns in the list. max_len is the maximum length of str and str
must not exceed max_len. Strings in the title row are not handled by this callback but are instead
set by calling fz_fuim_list_set_colm_title. This callback only needs to return the string for the
specified item; it does not need to draw anything.

Drawing an item

fzrt_error_td fz_fuim_list_set_draw_item_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 fz_fuim_list_draw_item_func func
);

fz_fuim_list_set_draw_item_func is used to set the "draw item" callback function of a list.
The "draw item" callback function itself needs to be declared as :

fzrt_error_td fz_fuim_list_draw_item_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 long row_indx,
 long col_indx,
 fzrt_rect *rect,
 fzrt_boolean *did
);

This callback is designed to draw the item in a specified row and column of a list. This is called
before the get string callback function. Both the draw item function and the get string function can
be called for the same item. If both functions exist for an item, the draw item is handled first
followed by the get string. In this case, the text will be drawn on top of the item. rect is the
rectangle, in screen coordinates, of where the item should be drawn. It is the responsibility of the
draw function to only draw within the specified rectangle. If the item drawn is smaller than the
rectangle, the rectangle where the item was drawn should be passed back through rect. This
returned rect is used to invert the drawn item when the row is picked. row_indx is the index to the
row item and will always be greater than or equal to 0 and less than the number of items in the
list. col_indx is the index to the column and will always be greater than or equal to 0 and less
than the number of columns in the list. Return whether an item was drawn in did.

Handling a single mouse click

fzrt_error_td fz_fuim_list_set_click_func(

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 82

 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 fz_fuim_list_click_func func
);

fz_fuim_list_set_click_func is used to set the "single-click" callback function of a list.
The "single-click" callback function itself needs to be declared as :

fzrt_error_td fz_fuim_list_click_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 long row_indx,
 long col_indx,
 fzrt_boolean picked
);

This callback is designed to allow handling of single mouse clicks in the list. row_indx is the
index to the row item where the click took place and will always be greater than or equal to -1 and
less than the number of items in the list. If row_indx is -1, the click occurred in the title row.
col_indx is the index to the column where the click took place and will always be greater than or
equal to 0 and less than the number of columns in the list. In lists of type
FZ_FUIM_LIST_TYPE_ONE, the picked parameter is always TRUE. In this list type, if a picked
list is being maintained (ie. the picked status callback is defined), all other items in the list should
be marked not-picked except the one that is being handled. In lists of type
FZ_FUIM_LIST_TYPE_MULTI, the picked parameter will be TRUE to indicate the row was
toggled on, and FALSE to indicate the row was toggled off. In lists of type
FZ_FUIM_LIST_TYPE_SYSTEM, this callback function will be called whenever a row is picked or
unpicked. For example, in shift-clicking a range, all rows in the range will be called with picked
set to TRUE, and any rows that were previously picked but not in the new range will be called
with picked set to FALSE. Note: Don't do any work in this callback that is of a time consuming
nature since it is called on each click. This should mainly be used to update the state of other
fuim items that are dependent on the item that is selected in the list.

Handling a double mouse click

fzrt_error_td fz_fuim_list_set_click_dbl_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 fz_fuim_list_click_dbl_func func
);

fz_fuim_list_set_click_dbl_func is used to set the "double-click" callback function of a list.
The "double-click" callback function itself needs to be declared as :

fzrt_error_td fz_fuim_list_click_dbl_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 long row_indx,
 long col_indx
);

This callback is designed to allow handling of double mouse clicks in the list. row_indx is the
index to the row item and will always be greater than or equal to -1 and less than the number of
items in the list. If row_indx is -1, the double-click occurred in the title row. col_indx is the index
to the column and will always be greater than or equal to 0 and less than the number of columns

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 83

in the list.

Handling a mouse drag

fzrt_error_td fz_fuim_list_set_drag_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 fz_fuim_list_drag_func func
);

fz_fuim_list_set_drag_func is used to set the "drag" callback function of a list.
The "drag" callback function itself needs to be declared as :

fzrt_error_td fz_fuim_list_drag_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 long row_indx,
 long row_dist,
 fzrt_boolean *did
);

This callback is designed to allow handling of mouse click drags in the list. row_indx is the index
to the row item where the drag started and will always be greater than or equal to 0 and less than
the number of items in the list. row_dist is the number of rows the item was dragged. Negative
numbers indicate the item was dragged up. Positive numbers indicate the item was dragged
down. This callback will not be called if an item is dragged to itself (ie. row_dist will never be 0).
Return whether the move was succesfully handled in did. If did isn't set, the move is assumed to
have been handled. This callback is only valid on lists of type FZ_FUIM_LIST_TYPE_ONE and
FZ_FUIM_LIST_TYPE_MULTI. Drags in lists of type FZ_FUIM_LIST_TYPE_SYSTEM are
handled with fz_fuim_list_click.

Getting the picked status of an item

fzrt_error_td fz_fuim_list_set_get_picked_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 fz_fuim_list_get_picked_func func
);

fz_fuim_list_set_get_picked_func is used to set the "get picked status" callback function of a list.
The "get picked status" callback function itself needs to be declared as :

fzrt_error_td fz_fuim_list_get_picked_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 long row_indx,
 long col_indx,
 fzrt_boolean *picked
);

This callback is designed to return whether a selected item is picked in the list. This callback
must be set in order for fz_fuim_list_regen to work. A structure should be maintained that has the
picked status of each row. When this callback is called, the picked status for the selected row
should be passed back in picked. row_indx is the index to the row item and will always be
greater than or equal to 0 and less than the number of items in the list. Note : Currently, the get

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 84

picked callback will always be called with 0 for col_indx.

Getting the number of items

fzrt_error_td fz_fuim_list_set_get_num_items_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 fz_fuim_list_get_num_items_func func
);

fz_fuim_list_set_get_num_items_func is used to set the "get number of items" callback function of
a list.
The "get number of items" callback function itself needs to be declared as :

fzrt_error_td fz_fuim_list_get_num_items_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 long *num_items
);

This callback is designed to return the number of items in the list. This callback must be set in
order for fz_fuim_list_regen to work.

Custom initialization

fzrt_error_td fz_fuim_list_set_init_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 fz_fuim_list_init_func func
);

fz_fuim_list_set_init_func is used to set the "initialization" callback function of a list.
The "initialization" callback function itself needs to be declared as :

fzrt_error_td fz_fuim_list_init_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr
);

This callback is designed to be called during the initialization of the list. It allows for any user
defined data to be initialized as well as setting up the list at startup.

Custom finalization

fzrt_error_td fz_fuim_list_set_finit_func(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr,
 fz_fuim_list_finit_func func
);

fz_fuim_list_set_finit_func is used to set the "finalization" callback function of a list.
The "finalization" callback function itself needs to be declared as :

fzrt_error_td fz_fuim_list_finit_func(
 fz_fuim_tmpl_ptr fuim_tmpl,

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 85

 fz_fuim_list_ptr list_ptr
);

This callback is designed to be called during the finalization of the list. It allows for any user
defined data to be finalized.

Creating a list item

The following is an example of creating a list. It includes callback functions that would be used in
a typical list. This list is a single pick list. It has 5 columns and 7 visible rows as well as a title
row. There is a set number of items in the list, in this case 32. All the columns are resizable by
click-dragging except the first two columns. This was done to force the second column to always
be the same width. Dragging rows and auto-scrolling are enabled. All of the columns have their
text centered both vertically and horizontally. When any of the column titles are clicked, except
the second column, the list is sorted by the entries. This is something the list doesn't handle on
it's own. It is in a function that is called when a title item is clicked. When an item is double-
clicked, the system beeps.

#define NUM_COLS 5
#define NUM_ITEMS 32

typedef struct list_node_td
{ char name[NUM_COLS][256];
 fzrt_boolean picked;
} list_node_td;

typedef struct list_td
{ fz_fuim_list_ptr list_ptr;
 list_node_td nodes[NUM_ITEMS];
} list_td;

list_td _list_data;

/**
***/
static void list_sort(fz_fuim_tmpl_ptr fuim_tmpl, fz_fuim_list_ptr list_ptr,
long col_indx)
{
 long i, j, cmp;
 char str1[256], str2[256];
 fzrt_key_state_enum test_shift;
 fzrt_boolean inverse;
 list_node_td temp_node;

 fzrt_util_funcs.fzrt_evnt_get_key_state(FZRT_VIRT_SHIFTKEY, &test_shift);
 if (test_shift == FZRT_KEY_PRESSED) inverse = TRUE;
 else inverse = FALSE;
 for (i = 0; i < NUM_ITEMS-1; i++)
 { for (j = i+1; j < NUM_ITEMS; j++)
 { strncpy(str1, _list_data.nodes[i].name[col_indx], 256);
 strncpy(str2, _list_data.nodes[j].name[col_indx], 256);
 cmp = strcmp(str1, str2);
 if ((cmp < 0 && inverse == TRUE) ||
 (cmp > 0 && inverse == FALSE))
 { temp_node = _list_data.nodes[i];
 _list_data.nodes[i] = _list_data.nodes[j];
 _list_data.nodes[j] = temp_node;
 }
 }
 }
}

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 86

/**
***/
static void init_list(void)
{
 long i, j, temp;

 for (i = 0; i < NUM_ITEMS; i++)
 { for (j = 0; j < NUM_COLS; j++)
 { if (j != 1)
 { temp = rand() % NUM_ITEMS;
 sprintf(_list_data.nodes[i].name[j], "%02ld", temp);
 }
 else
 { strcpy(_list_data.nodes[i].name[j], "");
 }
 }
 _list_data.nodes[i].picked = FALSE;
 }
 _list_data.nodes[NUM_ITEMS-1].picked = TRUE;

}

/**
***/
static fzrt_error_td list_get_picked(fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr, long row_indx, long col_indx,
 fzrt_boolean *picked)
{
 if (_list_data.nodes[row_indx].picked == TRUE) (*picked) = TRUE;
 else (*picked) = FALSE;
 return(FZRT_NOERR);
}

/**
***/
static fzrt_error_td list_get_num_items(fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr, long *num_items)
{
 (*num_items) = NUM_ITEMS;
 return(FZRT_NOERR);
}

/**
***/
static fzrt_error_td list_click(fz_fuim_tmpl_ptr fuim_tmpl, fz_fuim_list_ptr
 list_ptr, long row_indx, long col_indx, fzrt_boolean picked)
{
 long i;

 if (row_indx == -1)
 { list_sort(fuim_tmpl, list_ptr, col_indx);
 }
 else
 { for (i = 0; i < NUM_ITEMS; i++)
 { _list_data.nodes[i].picked = FALSE;
 }
 _list_data.nodes[row_indx].picked = TRUE;
 }
 return(FZRT_NOERR);
}

/**
***/
static fzrt_error_td list_get_str(fz_fuim_tmpl_ptr fuim_tmpl,

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 87

 fz_fuim_list_ptr list_ptr, long row_indx, long col_indx,
 char *str, long max_len, fzrt_boolean *did)
{
 if (col_indx != 1)
 { strncpy(str, _list_data.nodes[row_indx].name[col_indx], max_len);
 (*did) = TRUE;
 }
 else (*did) = FALSE;
 return(FZRT_NOERR);
}

/**
***/
static fzrt_error_td list_click_dbl(fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr, long row_indx, long col_indx)
{
 if (row_indx > -1)fzrt_sys_beep(0);
 return(FZRT_NOERR);
}

/**
***/
static fzrt_error_td list_draw_item(fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr, long row_indx, long col_indx,
 fzrt_rect *rect, fzrt_boolean *did)
{
 fzrt_rgb_color_td black = {0, 0, 0};

 if (col_indx == 1)
 { rect->right = rect->left + 50;
 rect->bottom = rect->top + 50;
 fzrt_rgb_fore_color(&black);
 fzrt_move_to(rect->left, rect->top);
 fzrt_line_to(rect->right, rect->bottom);
 fzrt_move_to(rect->left, rect->bottom);
 fzrt_line_to(rect->right, rect->top);
 (*did) = TRUE;
 }
 else (*did) = FALSE;
 return(FZRT_NOERR);
}

/**
***/
static fzrt_error_td list_drag(fz_fuim_tmpl_ptr fuim_tmpl,
 fz_fuim_list_ptr list_ptr, long from_row,
 long row_dist, fzrt_boolean *did)
{
 list_node_td temp_node;
 long i, to_row;

 to_row = from_row + row_dist;
 if (from_row < to_row)
 { temp_node = _list_data.nodes[from_row];
 for (i = from_row; i < to_row; i++)
 { _list_data.nodes[i] = _list_data.nodes[i + 1];
 }
 _list_data.nodes[to_row] = temp_node;
 }
 else
 { temp_node = _list_data.nodes[from_row];
 for (i = from_row; i > to_row; i--)
 { _list_data.nodes[i] = _list_data.nodes[i - 1];
 }
 _list_data.nodes[to_row] = temp_node;

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 88

 }
 (*did) = TRUE;
 return(FZRT_NOERR);
}

/**
***/
static fzrt_error_td fuim_rndr_net_server_setup(fz_fuim_tmpl_ptr fuim_tmpl)
{
 fzrt_error_td err = FZRT_NOERR;
 long i, flags;
 fz_fuim_list_just_h_enum just_h = FZ_FUIM_LIST_COLM_JUST_H_CENTER;
 fz_fuim_list_just_v_enum just_v = FZ_FUIM_LIST_COLM_JUST_V_CENTER;

 if (fz_fuim_tmpl_init(fuim_tmpl, "List Dialog", FZ_FUIM_FLAG_NONE,
 RNDR_NET_SERVER_SETUP_FUIM_ID, 0) == FZRT_NOERR)
 { init_list();
 flags = 0;
 FZ_SETBIT(flags, FZ_FUIM_LIST_TITLE_BIT);
 FZ_SETBIT(flags, FZ_FUIM_LIST_DRAG_BIT);
 FZ_SETBIT(flags, FZ_FUIM_LIST_H_DIVIDE_BIT);
 i = fz_fuim_new_list(fuim_tmpl, FZ_FUIM_ROOT, FZ_FUIM_NONE,
 FZ_FUIM_LIST_TYPE_ONE,
 flags, 500, 7, NUM_COLS, 50, &_list_data.list_ptr);
 fz_fuim_list_set_colm_title(fuim_tmpl, _list_data.list_ptr, 0,
 "Column 1");
 fz_fuim_list_set_colm_title(fuim_tmpl, _list_data.list_ptr, 2,
 "Column 3");
 fz_fuim_list_set_colm_title(fuim_tmpl, _list_data.list_ptr, 3,
 "Column 4");
 fz_fuim_list_set_colm_title(fuim_tmpl, _list_data.list_ptr, 4,
 "Column 5");
 flags = 0;
 FZ_SETBIT(flags, FZ_FUIM_LIST_COLM_NO_DRAG_BIT);
 fz_fuim_list_set_colm_flags(fuim_tmpl, _list_data.list_ptr, 0,
 flags);
 FZ_SETBIT(flags, FZ_FUIM_LIST_COLM_NO_TITLE_BIT);
 fz_fuim_list_set_colm_flags(fuim_tmpl, _list_data.list_ptr, 1,
 flags);
 fz_fuim_list_set_col_width(fuim_tmpl, _list_data.list_ptr, 1, 50);
 for (i = 0; i < NUM_COLS; i++)
 { fz_fuim_list_set_colm_just(fuim_tmpl, _list_data.list_ptr,
 i, &just_h, &just_v);
 }
 fz_fuim_list_set_get_string_func(fuim_tmpl, _list_data.list_ptr,
 list_get_str);
 fz_fuim_list_set_draw_item_func(fuim_tmpl, _list_data.list_ptr,
 list_draw_item);
 fz_fuim_list_set_click_func(fuim_tmpl, _list_data.list_ptr,
 list_click);
 fz_fuim_list_set_click_dbl_func(fuim_tmpl, _list_data.list_ptr,
 list_click_dbl);
 fz_fuim_list_set_drag_func(fuim_tmpl, _list_data.list_ptr,
 list_drag);
 fz_fuim_list_set_get_picked_func(fuim_tmpl, _list_data.list_ptr,
 list_get_picked);
 fz_fuim_list_set_get_num_items_func(fuim_tmpl,
 _list_data.list_ptr, list_get_num_items);
 }
 return(err);
}

2.6.4 Interface for time consuming tasks

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 89

Plugins that could potentially take a while to execute should implement the wait cursor, key
cancel, and where possible a progress bar. These interface elements provide feedback to the
user and allow the user to interrupt long or unintended tasks.

Wait cursor

The cursor should be changed to the wait cursor to indicate to the user when a task is being
performed. On the Macintosh, this cursor is a spinning circle with alternating black and white
quadrants. On Windows, the wait cursor is an animated hourglass. The function
fz_fuim_curs_wait should be called to update the wait cursor during the processing of a task.
This function takes a single parameter with the following three values:

FZ_FUIM_CURS_WAIT_START: This value is used once at the start of the task. The
cursor is changed to the wait cursor.
FZ_FUIM_CURS_WAIT_TURN: This value is used during the processing of the task. The
animated cursor is updated (turned). The function should be called with this value inside
loops and other places where the flow of the extension will consume its time.
Performance is not an issue with this value because the cursor is only updated every 1/4
second regardless of how frequently the function is called. Note that, if it is not called
frequently enough, the cursor will appear jumpy.
FZ_FUIM_CURS_WAIT_END: This value is used once at the end of a time consuming
task. The cursor is changed back to the state it was in prior to the start of the task.

It is important to have exactly one start and end call so that the cursor display stays balanced.
This allows for nesting of the wait cursor in a case where one time consuming extension invokes
another time consuming extension.

Cancel

The user should be able to cancel any time consuming task. An extension can check to see if the
user has pressed the key shortcut for cancel by calling the function fz_fuim_key_cancel. This
function returns TRUE if the cancel key shortcut has been pressed and FALSE if it has not. Note
that the user can program a variety of key combinations for the cancel key shortcut using the
Shortcuts dialog, however, extensions do not need to make any adjustments for this as it is all
handled by the one function.

Progress bar

A progress bar gives the user feedback on the progress of a task. A progress bar is a small
window that displays graphic and optionally descriptive textual feedback on how far a task has
progressed. A progress bar is divided into stages so that task sub-portions can be identified to the
user. The progress bar is updated by the extension through the use of a variable in the extension
that tracks the task's progress. Loop counters are often good indication of progress through a
task as shown in the example at the end of this section.

form•Z offers normal and extended styles of the progress bar as shown below. The difference
between them is that the extended has much larger areas for text. Both styles have two text
areas referred to as the info and detail strings. The info string is usually used to display a title for
the detail string. The detail string usually is used to give some information about the task
progress. In the normal progress bar the info and detail strings are short and appear next to each
other. This is the style of progress bar used throughout most of form•Z. In the extended style,
the text fields are on top of each other and they are much larger. The space for the detail string
supports multiple lines. This style of progress bar is used in form•Z during animation generation.

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 90

There are a number of functions in the FUIM for working with progress bars. They all start with
fz_fuim_prog_. The basic required functions for implementing a progress bar are described
here and in the example at the end of the section. The remainder of the function descriptions can
be found in HTML API reference (chapter 5).

The function fz_fuim_prog_init is called once at the start of the task to initialize the
progress bar.

fzrt_error_td fz_fuim_prog_init(
 long stages,
 fz_fuim_prog_kind_enum kind,
 fzrt_boolean use_clock
);

The stages parameter indicates how many stages the progress bar will have. There are
two types of progress bars indicated by the kind parameter. The normal progress bar
has a graphic progress indicator, a short information field and a short detail field. The
expanded progress bar has a graphic progress indicator and a single line information
field and a multi-line detail field. If the use_clock parameter is TRUE, then the graphic
progress indicator is redrawn every 1/4 second (if there has been any progress since the
last redraw). If this value is FALSE, then the progress bar is updated (redrawn) each time
that the progress bar indicator changes. To avoid performance degradation from the
progress bar, it is recommended that TRUE be used for this parameter.

The function fz_fuim_prog_stage_init is called to indicate the start of a task stage.

fzrt_error_td fz_fuim_prog_stage_init(
 char *name,
 long min,
 long max
);

The name parameter is the title of the stage that is shown in the tittle bar of the progress
bar window. The min and max parameters define the range of the progress indicator
during the stage. That it is, the progress indicator will move from min to max during the
stage with min indicating 0% completion and max indicating 100% completion.

The function fz_fuim_prog_stage_set_current is used during the processing of a stage to
update the progress bar to indicate the current progress.

fzrt_error_td fz_fuim_prog_stage_set_current(
 long current
);

The current parameter is the value of the progress indicator and must have a value
between the min and max parameters used in the most recent
fz_fuim_prog_stage_init function call.

The function fz_fuim_prog_stage_set_strings is used during the processing of a stage to
update the info or detail strings in the progress window.

fzrt_error_td fz_fuim_prog_stage_set_strings(
 char *prog_info,
 char *prog_detail
);

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 91

The prog_info parameter is the string for the info field of the progress window. If this
string is not provided, the string is not changed. The prog_detail parameter is the
string for the detail field of the progress window. If this string is not provided, the string is
not changed.

The function fz_fuim_prog_stage_finit should be called to indicate the completion of a
stage.

fzrt_error_td fz_fuim_prog_stage_finit(
 void
);

The function fz_fuim_prog_finit should be called to indicate the completion of the entire
task. This function removes the progress bar window from the screen.

fzrt_error_td fz_fuim_prog_finit(
 void
);

The following example shows the implementation of the wait cursor, key cancel and multi-stage
progress bar in two loops of a plugin.

fzrt_boolean canceled= FALSE;
long i;
char str[256];
double done;

/* start wait cursor */
fz_fuim_curs_wait(FZ_FUIM_CURS_WAIT_START);

/* initalize progress bar with 2 stages */
fz_fuim_prog_init(2, FZ_FUIM_PROG_KIND_NORMAL, TRUE);

/* start the first stage */
fz_fuim_prog_stage_init(“Loop 1”, 1, 100);
fz_fuim_prog_stage_set_strings(“Completed:”, “0 %”);
for(i=1;i<=100;i++)
{
 /* do task first stage processing here */

/* check for key cancel short cut */
if(fz_fuim_key_cancel())
{ canceled = TRUE;

break;
}
/* update the progress bar indicator */
fz_fuim_prog_stage_set_current(i);

/* update the progress bar detail text */
done = i;
sprintf(str, “%lf”, done);
strcat(str, “ %”);
fz_fuim_prog_stage_set_strings(NULL, str);

/* update the wait cursor */
fz_fuim_curs_wait(FZ_FUIM_CURS_WAIT_TURN);

}
/* complete the first stage */
fz_fuim_prog_stage_finit();

2.6 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 92

if(!canceled)
{

/* start the second stage */
fz_fuim_prog_stage_init(“Loop 2”, 1, 2000);
fz_fuim_prog_stage_set_strings(“Completed:”, “0 %”);
for(i=1;i<=2000;i++)
{

 /* do second stage processing here */

/* check for key cancel short cut */
 if(fz_fuim_key_cancel())

{ canceled = TRUE;
 break;
}
/* update the progress bar indicator */
fz_fuim_prog_stage_set_current(i);

/* update the progress bar detail text */
done = (i/2000.0) * 100.0;
sprintf(str, “%lf”, done);
strcat(str, “ %”);
fz_fuim_prog_stage_set_strings(NULL, str);

/* update the wait cursor */
fz_fuim_curs_wait(FZ_FUIM_CURS_WAIT_TURN);

/* complete the second stage */
fz_fuim_prog_stage_finit();

 }
}

/* complete the progress bar */
fz_fuim_prog_finit();

/* complete the wait cursor */
fz_fuim_curs_wait(FZ_FUIM_CURS_WAIT_END);

2.7 Notification form•Z SDK (v6.0.0.0 rev 05/30/06) 93

2.7 Notification

The form•Z notification manager is used to notify plugins when certain events occur. The events
include changes in form•Z project data like objects, lights and layers. Plugins can receive these
notifications by implementing functions in the fz_notf_cbak_fset. This function set provides a
variety of functions that form•Z calls when the respective event occurs. Care should be used
when implementing these functions because notification functions are called throughout form•Z
and a poor implementation can lead to performance issues or crashes. Likewise only necessary
functions should be implemented, since even empty “shell” functions will cause some
performance degradation.

Notification call back function set

Notifications are in the call back function set fz_notf_cbak_fset. A plugin which desires to
receive notifications from form•Z must inform form•Z that it is a plugin that will implement
notification call backs. This is done by the following function call, adding the notification function
set to the plugin, and informing form•Z of another plugin function (my_fill_notf_fset) which
form•Z will call to fill the notification function set with the plugin’s specific call back functions.
This call should be made after the plugin is registered (fzpl_plugin_register).

 err = fzpl_glue->fzpl_plugin_add_fset(

my_plugin_runtime_id,
 FZ_NOTF_CBAK_FSET_TYPE,
 FZ_NOTF_CBAK_FSET_VERSION,
 FZ_NOTF_CBAK_FSET_NAME,
 FZPL_TYPE_STRING(fz_notf_cbak_fset),
 sizeof (fz_notf_cbak_fset),
 my_fill_notf_fset,

FALSE);

The my_fill_notf_fset is provided by the plugin developer and form•Z will call it to find out
which notification call backs are implemented by the plugin. The my_fill_notf_fset receives
a function set parameter fset to which it will assign the notification call back functions. All the
notification call back functions are optional. When a notification occurs, form•Z will only call the
functions provided by a plugin developer. The following shows the body of a
my_fill_notf_fset function.

fzrt_error_td my_fill_notf_fset (
 const fzpl_fset_def_ptr fset_def,
 fzpl_fset_td * const fset)
{
 fzrt_error_td err = FZRT_NOERR;
 fz_notf_cbak_fset *notf_funcs;

 err = fzpl_glue->fzpl_fset_def_check (fset_def,
 FZ_NOTF_CBAK_FSET_VERSION,
 FZPL_TYPE_STRING(fz_notf_cbak_fset),
 sizeof (fz_notf_cbak_fset),
 FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 notf_funcs = (fz_notf_cbak_fset *)fset;

 notf_funcs->fz_notf_cbak_objt = my_notf_objt;
 ...
 }

2.7 Notification form•Z SDK (v6.0.0.0 rev 05/30/06) 94

 return err;
}

Here the plugin developer supplies the my_notf_objt call back function, among other call
backs, which must be implemented by the plugin. Each notification call back function is
described next.

The system function (optional)

fzrt_error_td fz_notf_cbak_syst (
 fz_notf_syst_enum syst_notf
);

This function is called by form•Z when one of the actions specified by fz_notf_syst_enum
occurs. This function is provided so that extensions can be notified when one of the actions
occurs and the extension can make any extension specific adjustments in reaction to the action.

fzrt_error_td my_notf_syst(
 fz_notf_syst_enum syst_notf
)
{
 fzrt_error_td err = FZRT_NOERR;

 /** Handle notification here **/

 return(err);
}

The project function (optional)

fzrt_error_td fz_notf_cbak_proj (
 long windex,
 fz_notf_proj_enum proj_notf
);

This function is called by form•Z when one of the actions specified by fz_notf_proj_enum
occurs in the specified project. This function will be called for each project in which the action
occurs. This function is provided so that extensions can be notified when one of the actions
occurs and the extension can make any extension specific adjustments in reaction to the action.

fzrt_error_td my_notf_proj(
 long windex,
 fz_notf_proj_enum proj_notf
)
{
 fzrt_error_td err = FZRT_NOERR;

 /** Handle project notification here **/

 return(err);
}

The window function (optional)

fzrt_error_td fz_notf_cbak_wind (
 long windex,
 fz_notf_wind_enum wind_notf,
 fz_notf_proj_enum proj_notf

2.7 Notification form•Z SDK (v6.0.0.0 rev 05/30/06) 95

);

This function is called by form•Z when one of the actions specified by fz_notf_wind_enum occurs
in the specified project. This function will be called for each window in which the action occurs.
This function is provided so that extensions can be notified when one of the actions occurs and
the extension can make any extension specific adjustments in reaction to the action.

This function is also called for each window in a project when a project notification happens (ie
fz_notf_cbak_proj is called) . In this situation wind_notf == FZ_NOTF_WIND_PROJ and
proj_notf is the value of the project level notification.

fzrt_error_td my_notf_wind(
 long windex,
 fz_notf_wind_enum wind_notf,
 fz_notf_proj_enum proj_notf
)
{
 fzrt_error_td err = FZRT_NOERR;

 /** Handle window notification here **/

 return(err);
}

The system units function (optional)

fzrt_error_td fz_notf_cbak_syst_units (
 fz_unit_type_enum pref_units,
 fz_unit_scale_enum pref_scale
);

This function is called when the current unit type (English/Metric) or unit scale
(large/medium/small/miniture) changes. This happens when the user changes the settings in the
Working Units dialog , the function fz_proj_units_set_parm_data is called to change the
settings or when the active window is changed to a project with different Working units settings.
When this notification is received, all system level (global) dimensional values should be
converted to a reasonable setting for the current settings.

It is recommended that function fz_fuim_unit_convert be used to get proper dimensional
values (units and data scale) from default values for the specified pref_units and
pref_scale. The fz_fuim_unit_convert function sets a double value to the current
pref_units and pref_scale given an English and metric default unit values for a specified
scale.

The following example establishes a default English value of 12.0 inches and a metric default
value of 25 cm for the medium scale.

double my_syst_distance;

fzrt_error_td my_notf_syst_units (
 fz_unit_type_enum pref_units,
 fz_unit_scale_enum pref_scale
)
{
 fzrt_error_td err = FZRT_NOERR;

 err = fz_fuim_unit_convert(12.0, 25.0, FZ_UNIT_SCAL_MEDIUM,

2.7 Notification form•Z SDK (v6.0.0.0 rev 05/30/06) 96

 pref_units, pref_scale, &my_syst_distance);

 return(err);
}

The project units function (optional)

fzrt_error_td fz_notf_cbak_proj_units (
 long windex,
 fz_unit_type_enum pref_units,
 fz_unit_scale_enum pref_scale
);

This function is called when the unit type (English/Metric) or unit scale
(large/medium/small/miniature) for a project is changed. This happens when the user changes
the settings in the Working Units dialog or the function fz_proj_units_set_parm_data is
called to change the settings. When this notification is received, all project level dimensional
values should be converted to a reasonable setting for the current settings.

It is recommended that function fz_fuim_unit_convert be used to get proper dimensional
values (units and data scale) from default values for the specified pref_units and
pref_scale. The fz_fuim_unit_convert function sets a double value to the current
pref_units and pref_scale given English and metric default unit values for a specified scale.

The following example establishes a default English value of 12.0 inches and a metric default
value of 25 cm for the medium scale.

double* my_distance;

fzrt_error_td my_notf_proj_units (
 long windex,
 fz_unit_type_enum pref_units,
 fz_unit_scale_enum pref_scale
)
{
 fzrt_error_td err = FZRT_NOERR;

 err = fz_fuim_unit_convert(12.0, 25.0, FZ_UNIT_SCAL_MEDIUM,

pref_units, pref_scale, &my_distance[windex]);

 return(err);
}

The window units function (optional)

fzrt_error_td fz_notf_cbak_wind_units (
 long windex,
 fz_unit_type_enum pref_units,
 fz_unit_scale_enum pref_scale
);

This function is called for each project window when the unit type (English/Metric) or unit scale
(large/medium/small/miniature) for a project changes. This happens when the user changes the
settings in the Working Units dialog or the function fz_proj_units_set_parm_data is called
to change the settings. When this notification is received, all project level dimensional values
should be converted to a reasonable setting for the current settings.

2.7 Notification form•Z SDK (v6.0.0.0 rev 05/30/06) 97

It is recommended that function fz_fuim_unit_convert be used to get proper dimensional
values (units and data scale) from default values for the specified pref_units and
pref_scale. The fz_fuim_unit_convert function sets a double value to the current
pref_units and pref_scale given English and metric default unit values for a specified scale.

The following example establishes a default English value of 12.0 inches and a metric default
value of 25 cm for the medium scale.

double* my_distance;

fzrt_error_td my_notf_wind_units (
 long windex,
 fz_unit_type_enum pref_units,
 fz_unit_scale_enum pref_scale
)
{
 fzrt_error_td err = FZRT_NOERR;

 err = fz_fuim_unit_convert(12.0, 25.0, FZ_UNIT_SCAL_MEDIUM,

pref_units, pref_scale, &my_distance[windex]);

 return(err);
}

The object function (optional)

fzrt_error_td fz_notf_cbak_objt (
 long windex,
 fz_notf_objt_enum objt_notf,
 fz_objt_ptr objt
);

This function is called to notify that an object has changed. The objt_notf parameter indicates
what change occurred.

fzrt_error_td my_notf_objt (
 long windex,
 fz_notf_objt_enum objt_notf,
 fz_objt_ptr objt
)
{
 fzrt_error_td err = FZRT_NOERR;

 /** Handle object notification here **/

 return(err);
}

The light function (optional)

fzrt_error_td fz_notf_cbak_lite (
 long windex,

fz_notf_lite_enum lite_notf,
fz_lite_ptr lite

);

This function is called to notify that a light has changed. The lite_notf parameter indicates
what change occurred.

2.7 Notification form•Z SDK (v6.0.0.0 rev 05/30/06) 98

fzrt_error_td my_notf_lite(
 long windex,

fz_notf_lite_enum lite_notf,
fz_lite_ptr lite

)
{
 fzrt_error_td err = FZRT_NOERR;

 /** Handle light notification here **/

 return(err);
}

The layer function (optional)

fzrt_error_td fz_notf_cbak_layr (
 long windex,

fz_notf_layr_enum layr_notf,
fz_layr_ptr layr

);

This function is called to notify that an layer has changed. The layr_notf parameter indicates
what change occurred.

fzrt_error_td my_notf_layr(
 long windex,

fz_notf_layr_enum layr_notf,
fz_layr_ptr layr

)
{
 fzrt_error_td err = FZRT_NOERR;

 /** Handle layer notification here **/

 return(err);
}

The view function (optional)

fzrt_error_td fz_notf_cbak_view (
 long windex,

fz_notf_view_enum view_notf,
fz_view_ptr view

);

This function is called to notify that a view has changed. The view_notf parameter indicates
what change occurred.

fzrt_error_td my_notf_view(
 long windex,

fz_notf_view_enum view_notf,
fz_view_ptr view

)
{
 fzrt_error_td err = FZRT_NOERR;

 /** Handle view notification here **/

 return(err);

2.7 Notification form•Z SDK (v6.0.0.0 rev 05/30/06) 99

}

The preference defaults function (optional)

fzrt_error_td fz_notf_cbak_pref_default (
 fz_unit_type_enum pref_units,
 fz_unit_scale_enum pref_scale
);

The default function is called by form•Z called once at startup (after plugin registration) and when
user resets the preferences to defaults in the preferences dialog. This function is provided so that
plugins can establish default values for private data. All private data should be set to its default
values and dimensional values should be set to the specified pref_units and pref_scale. It
is recommended that function fz_fuim_unit_convert should be used to get proper
dimensional values (units and data scale) from default values for the specified pref_units and
pref_scale. The fz_fuim_unit_convert function sets a double value to the current
pref_units and pref_scale given an English and metric default unit values for a specified
scale.

double my_distance;

fzrt_error_td my_notf_pref_default (
 fz_unit_type_enum pref_units,
 fz_unit_scale_enum pref_scale
)
{
 fzrt_error_td err = FZRT_NOERR;

 my_data->value1 = 0;
 my_data->value2 = 10;

 ...

 err = fz_fuim_unit_convert(12.0, 25.0,

FZ_UNIT_SCAL_MEDIUM, pref_units, pref_scale,
&my_distance);

 ...

 return(err);
}

The preference model type function (optional)

fzrt_error_td fz_notf_cbak_pref_model_type (
 fz_objt_model_type_enum model_type
);

The preference model type function is called by form•Z when the model type preference is
changed. This function notifies the plugin to change its internal preference to facetted
(FZ_OBJT_MODEL_TYPE_FACT) or smooth modeling (FZ_OBJT_MODEL_TYPE_SMOD) as
indicated by the model_type parameter. This function is useful for tool plugins which support
both facetted and smooth modeling.

fz_objt_model_type_enum my_model_type;

fzrt_error_td my_notf_pref_model_type (
 fz_objt_model_type_enum model_type
)

2.7 Notification form•Z SDK (v6.0.0.0 rev 05/30/06) 100

{
 fzrt_error_td err = FZRT_NOERR;

my_model_type = model_type;

 return(err);
}

2.8 Plugin Types (classes) form•Z SDK (v6.0.0.0 rev 05/30/06) 101

2.8 Plugin Types (classes)

There are 10 types of plugins: attributes, file translators, object types, renderers,
commands, palettes, RenderZone shaders, tools, utilities and surface styles. Plugins are
organized into types based on the functionality they provide and how they implement it. Some
types of plugins are flexible and can add functionality to various areas of form•Z. Other types of
plugins add very specific functionality to a certain area of the program. The command and utility
plugin types are examples of more flexible plugins while the RenderZone shader plugin type is
very specific.

There is also a distinction between system and project level plugins. System plugins are not
dependent on the active window or project, hence the call back functions for system plugins do
not receive the active project window windex as a parameter. Project level plugins work on the
active project window, and therefore do receive windex as a parameter.

2.8.1 Attributes form•Z SDK (v6.0.0.0 rev 05/30/06) 102

2.8.1 Attributes

form•Z is equipped with a set of standard attributes, such as surface styles, layers, shadow
casting or visibility. Attributes may be assigned to objects and/or faces. It is possible to create
custom attributes in a plugin by registering a function set with a plugin class. Multiple attribute
function sets may be installed with a single plugin. This allows a plugin to offer a suite of attribute
types, which logically belong together in a single package. Attributes can be installed either as a
stand alone plugin, or with a plugin of another type. For example, a plugin developer may create a
new tool command plugin and add it to the Attributes tool palette. The tool may be used to select
objects and assign a special custom attribute to them. The attribute would then be registered with
the command plugin, not with an attribute plugin. If an attribute is registered alone, form•Z offers
automatic mechanisms to add attributes to and remove them from objects and faces. This is
described in more detail below.

Attribute plugin type and registration

An attribute plugin is identified with the plugin type FZ_ATTR_EXTS_TYPE and version of
FZ_ATTR_EXTS_VERSION, and must implement the fz_attr_cbak_fset call back function
set. The following code example shows the registration of an attribute plugin and an attribute
callback function set. This is done from the plugin file's entry function while handling the
FZPL_PLUGIN_INITIALIZE message as described in section 2.3.

fzrt_error_td my_attr_register_plugin ()
{
 fzrt_error_td err = FZRT_NOERR;

 /* REGISTER THE ATTRIBUTE PLUGIN */
 err = fzpl_glue->fzpl_plugin_register(

MY_ATTR_PLUGIN_UUID,
MY_ATTR_PLUGIN_NAME,
MY_ATTR_PLUGIN_VERSION,
MY_ATTR_PLUGIN_VENDOR,
MY_ATTR_PLUGIN_URL,
FZ_ATTR_EXTS_TYPE,

 FZ_ATTR_EXTS_VERSION,
 NULL /*error string function*/, 0, NULL,
 &my_plugin_runtime_id);

 if (err == FZRT_NOERR)
 {
 /* REGISTER THE ATTRIBUTE FUNCTION SET */
 err = fzpl_glue->fzpl_plugin_add_fset(

my_plugin_runtime_id,
FZ_ATTR_CBAK_FSET_TYPE,
FZ_ATTR_CBAK_FSET_VERSION,
FZ_ATTR_CBAK_FSET_NAME,
FZPL_TYPE_STRING(fz_attr_cbak_fset),
sizeof (fz_attr_cbak_fset),
my_fill_attr_cbak_fset,
FALSE);

 }

 return(err);
}

Attribute call back function set

Attribute plugins are implemented by the call back function set fz_attr_cbak_fset.

2.8.1 Attributes form•Z SDK (v6.0.0.0 rev 05/30/06) 103

The plugin developer must pass a fill function to fzpl_plugin_add_fset which assigns the
pointers of the functions which define the plugin’s functionality to an instance of the
fz_attr_cbak_fset callback function set. An example of the fill function for a sample attribute
is shown below.

fzrt_error_td my_fill_attr_cbak_fset (

const fzpl_fset_def_ptr fset_def,
fzpl_fset_td * const fset)

{
 fzrt_error_td err = FZRT_NOERR;
 fz_attr_cbak_fset *attr_fset;

 err = fzpl_glue->fzpl_fset_def_check (fset_def,

FZ_ATTR_CBAK_FSET_VERSION,
FZPL_TYPE_STRING(fz_attr_cbak_fset),
sizeof (fz_attr_cbak_fset),
FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 attr_fset = (fz_attr_cbak_fset *)fset;

 /* ALL LEVELS CALLBACKS, REQUIRED */
 attr_fset->fz_attr_cbak_uuid = my_attr_uuid;
 attr_fset->fz_attr_cbak_name = my_attr_name;
 attr_fset->fz_attr_cbak_info = my_attr_info;
 attr_fset->fz_attr_cbak_io = my_attr_iost;

 /* ALL LEVELS CALLBACKS, OPTIONAL */
 attr_fset->fz_attr_cbak_deflt = my_attr_deflt;
 attr_fset->fz_attr_cbak_finit = my_attr_finit;
 attr_fset->fz_attr_cbak_copy = my_attr_copy;
 attr_fset->fz_attr_cbak_tform = my_attr_tform;
 attr_fset->fz_attr_cbak_are_equal = my_attr_are_equal;
 attr_fset->fz_attr_cbak_iface_tmpl = my_attr_iface_tmpl;

 /* OBJECT LEVEL CALLBACKS, OPTIONAL */
 attr_fset->fz_attr_cbak_objt_merge = my_attr_objt_merge;

 /* FIELD INFORMATION FUNCTIONS, OPTIONAL */
 attr_fset->fz_attr_cbak_get_field_count = my_attr_get_field_count;
 attr_fset->fz_attr_cbak_get_field_info = my_attr_get_field_info;
 attr_fset->fz_attr_cbak_get_field_data = my_attr_get_field_data;
 }

 return err;
}

Of all the functions in the set, only four are required. They are:

fz_attr_cbak_name
fz_attr_cbak_uuid
fz_attr_cbak_info
fz_attr_cbak_io

All others are optional. Note, that there is no callback function to explicitly create an attribute.
Depending on the use of the attribute, different mechanisms may be designed to assign attributes
to entities. For example, a plugin developer may create a set of modeling tools, which create
objects and also create the attribute when the modeling tool is executed. A modeling tool may
also be entirely dedicated to assign and edit an attribute. This is currently the case in form•Z with
the Texture Map Control tool. Attributes may be assigned automatically by form•Z, depending on

2.8.1 Attributes form•Z SDK (v6.0.0.0 rev 05/30/06) 104

the flags defined by the fz_attr_cbak_info callback function, which is described in more
detail below.

The name function (required)

fzrt_error_td fz_attr_cbak_name (
 char *name,
 long max_len

);

This function is called by form•Z to get the name of the attribute. This name shows up in the
form•Z interface, whenever the content of the attribute is displayed. The name function must
assign a string to the function's name argument. The length of the string assigned cannot exceed
max_len characters. It is recommended that the attribute name be stored in a .fzr resource file
and retrieved from it, when assigned to the name argument, so that it can be localized for
different languages. In the example below, this step is omitted for the purpose of simplicity.

fzrt_error_td my_attr_name (
 char *name,
 long max_len

)
{
 strncpy(name,"Some attribute",max_len);
 return(FZRT_NOERR);
}

The uuid function (required)

fzrt_error_td fz_attr_cbak_uuid (
 fzrt_UUID_td uuid
);

This function is called by form•Z to get the uuid of the attribute. This unique id is used by form•Z
to distinguish the attribute from other attributes. For example, when a form•Z project file is written
to disk, any attributes of this type are saved as well and identified with this uuid. When the project
file is later opened again, form•Z will connect the loaded attribute data with the installed attribute
plugin. If the plugin that created the attribute is not installed, the attribute is automatically deleted.
The uuid function needs to assign this unique identifier string to the function's uuid argument. An
example is shown below.

#define MY_ATTR_UUID \
"\x2d\xa8\x6d\xe1\xdb\xd3\x40\xc4\xa7\xb3\xd9\xe3\xd2\x73\x69\x75"

fzrt_error_td my_attr_uuid (
 fzrt_UUID_td uuid
)
{
 fzrt_UUID_copy(MY_ATTR_UUID, uuid);
 return(FZRT_NOERR);
}

The info function (required)

fzrt_error_td fz_attr_cbak_info (
 long *size,

2.8.1 Attributes form•Z SDK (v6.0.0.0 rev 05/30/06) 105

 long *level_flags,
 long *flags
);

The info function is called by form•Z to retrieve basic information about the attribute. Three
separate pieces of information must be supplied: size, levels and flags.
form•Z manages the storage of each instance of an attribute. In order to do so, form•Z needs to
know, what the data size (in # of bytes) of the attribute content is. The size argument must be set
to the number of bytes that the attribute data storage requires. In most cases, a plugin developer
will create a structure with fields which describe the attribute content. The size returned to form•Z
via this callback can be acquired with a sizeof(structure_type) call.

Attributes may exist on a number of different levels. They are object and face. The level_flags
argument must be set to the levels by which the attribute is used. An attribute may exist on more
than one level. The bit defines in fz_attr_level_enum should be used to set the proper bits
in the level_flags argument with the FZ_SETBIT macro.

The flags argument tells form•Z basic information about the attribute, for example, whether the
attribute is assigned automatically to all new objects or not. The flags argument should be set
with the bit encoded flags defined in the enum fz_attr_flags_enum. The following attribute
behavior can be achieved by setting the respective bit flag:

FZ_ATTR_FLAGS_ADD_OBJ_ALWAYS

When this flag is set, the attribute is always added to a new object. When this is done, the
fz_attr_cbak_deflt callback function is invoked to set the default parameters. This option
should be chosen with care. In general it is better to not automatically assign an attribute to new
objects. The plugin code that deals with using an attribute should assume default values when an
attribute is not present with an object. This will save storage space, as attributes tend to occupy
significant amounts of memory. Only if the attribute is a simple marker, or a reference to other
data and it matters, when the object is created, should this flag be used. For example, if Surface
Styles were implemented as a plugin attribute, the developer would create the actual surface style
table and a simple object level attribute, which is a reference to a surface style in the palette.
When a new object is created, the tag of the currently active surface style would be assigned as
the attribute to the object.

FZ_ATTR_FLAGS_SHOW_QUERY

When this flags is set, an entry in the Additional Attributes list with the attributes name is shown in
the respective Query Attributes dialog. The entry is only shown, if the queried entity has an
attribute of the given type assigned to it. When double clicking on the list entry, the attribute's
dialog, which is set up by the fz_attr_cbak_iface_tmpl callback function, is invoked.

FZ_ATTR_FLAGS_SHOW_QUERY_ALWAYS

When this flags is set, an entry in the Additional Attributes list with the attributes name is always
shown in the respective Query Attributes dialog, regardless of whether the attribute is assigned to
the entity or not. When double clicking on the list entry, the attribute's dialog, which is set up by
the fz_attr_cbak_iface_tmpl callback function, is invoked. If the attribute does not exist
with the entity, form•Z will automatically create the attribute. This will invoke the
fz_attr_cbak_deflt callback function.

FZ_ATTR_FLAGS_TEMPORARY

2.8.1 Attributes form•Z SDK (v6.0.0.0 rev 05/30/06) 106

When this flag is set, the attribute is only maintained during the runtime session of form•Z. The
attribute content is not read to or written from file. When combined with the
FZ_ATTR_FLAGS_SHOW_QUERY and FZ_ATTR_FLAGS_SHOW_QUERY_ALWAYS flags not set, it
allows a plugin to create an attribute which is invisible to the user.

An example of an info function for a sample attribute is shown below.

fzrt_error_td my_attr_info (
 long *size,
 long *level_flags,
 long *flags
)
{
 *size = sizeof(my_attr_td);

 *level_flags = 0;

FZ_SETBIT(*level_flags,FZ_ATTR_LEVEL_OBJT);
FZ_SETBIT(*level_flags,FZ_ATTR_LEVEL_FACE);

*flags = 0;
FZ_SETBIT(*flags, FZ_ATTR_FLAGS_SHOW_QUERY);

 return(FZRT_NOERR);
}

The io stream function (required)

fzrt_error_td fz_attr_cbak_io (
 long windex,

fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size,
 void *data
);

form•Z calls this function to write an attribute to and read it from file. It is expected from the plugin
to keep track of version changes of the attribute. For example, in its first release, an attribute may
consist of four long integer values, a total of 16 bytes. When written, the version reported back to
form•Z was 0. In a subsequent release, the plugin developer adds a fifth long integer value to
increase the size to 20 bytes. When writing this new attribute, the version reported to form•Z
needs to be increased. When reading a file with the old version of the attribute, form•Z will pass
in the version number of the attribute when it was written, in this case 0. This indicates to the
plugin, that only four integers, 16 bytes, need to be read and the fifth integer should be set to a
default value. Likewise, it is possible, that an older version of the plugin will be asked to read a
newer version of the attribute. This may be the case when backsaving a form•Z project file to an
older version and then reading that file with an older version of form•Z that contains the older
version of the attribute plugin. In this case, the plugin may choose to read the data, i.e. the first 16
bytes of version 0. For safety, it may also choose to skip any attribute data that is written with a
version that is newer than the one it is currently set to. An example of the attribute io steam
function is shown below. Note, that form•Z will allocate the basic storage for the attribute when
reading. That is, the data pointer passed in is allocated to the size defined by the attribute through
the fz_attr_cbak_info callback function.

fzrt_error_td my_attr_iost (

2.8.1 Attributes form•Z SDK (v6.0.0.0 rev 05/30/06) 107

 long windex,
fz_iost_ptr iost,

 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size,
 void *data
)
{
 my_attr_td *my_attr;
 fzrt_error_td rv = FZRT_NOERR;

my_attr = (my_attr_td*)data;

if (dir == FZ_IOST_WRITE) *version = 1;

 if((rv = fz_iost_long(iost,&my_attr->value1,4)) == FZRT_NOERR)
 {
 if (*version == 1)
 {
 rv = fz_iost_one_long(iost,&my_attr->value5);
 }
 else
 { if (dir == FZ_IOST_READ) my_attr->value5 = 0;
 }
 }

 return(rv);
}

The defaults function (optional)

fzrt_error_td fz_attr_cbak_deflt (
 long windex,
 void *data
);

When an attribute is created automatically by form•Z, the default values of the attribute's content
need to be assigned. Such an automatic creation may occur, when the
FZ_ATTR_FLAGS_ADD_OBJ_ALWAYS or FZ_ATTR_FLAGS_SHOW_QUERY_ALWAYS flags are
set in the fz_attr_cbak_info callback function. The defaults function is called by form•Z
anytime this occurs, and is expected to fill in default values. An example of the defaults function
for a sample attribute is shown below:

fzrt_error_td my_attr_deflt (
 long windex,
 void *data
)
{

 my_attr_td *my_attr;
 fzrt_error_td rv = FZRT_NOERR;

my_attr = (my_attr_td*)data;

 my_attr->n_array = 0;
 my_attr->array = NULL;
 my_attr->value1 = 10;
 my_attr->value2 = 20;
 ...

2.8.1 Attributes form•Z SDK (v6.0.0.0 rev 05/30/06) 108

 return(rv);
}

The finit function (optional)

fzrt_error_td fz_attr_cbak_finit (
 long windex,
 void *data
);

When an attribute is deleted, it may be necessary to also free memory allocated inside the
attribute, or it may be necessary to perform operations which must be executed when the attribute
ceases to exist. The finit function is expected to perform these tasks. Note, that the basic attribute
storage is managed by form•Z. It is not necessary for the plugin to deallocate the number of
bytes which are defined through the fz_attr_cbak_info callback function. Assuming that the
attribute has an array that was dynamically allocated some time during the attribute’s existence,
the finit function for a sample attribute may be written as follows:

fzrt_error_td my_attr_finit (
 long windex,
 void *data
)
{
 my_attr_td *my_attr;

my_attr = (my_attr_td*)data;

 if (my_attr->array != NULL)

{ fz_mem_zone_free(my_attr_zone_ptr,(fzrt_ptr*)&my_attr->array);
}

 return(FZRT_NOERR);
}

Note, that the above function uses the API call fz_mem_zone_free to decallocate the dynamic
memory. The first argument to this function is a memory zone. If a plugin uses dynamic memory
which persists past the execution of a single function, it should create its own memory zone on a
per project basis. Memory zones are discussed in more detail in section 1.4.4.

The copy function (optional)

fzrt_error_td fz_attr_cbak_copy (
 long src_windex,
 void *src_data,
 long dst_windex,
 void *dst_data
);

When an entity which contains an attribute is copied, the attribute content must be copied as well.
form•Z allocates the basic storage, as indicated by the fz_attr_cbak_info function with the
destination entity. The copy function is then expected to copy the content of an attribute from the
source to a destination storage. If this function is not implemented by the plugin, form•Z
automatically copies each byte of the attribute content from the source to the destination. If this
function is defined by the plugin, form•Z still allocates the destination storage to the # of bytes as
before, but the copy callback function is now expected to copy the data from the source to the
destination. For example, this is necessary, when the attribute contains dynamically allocated
arrays. In this case, the copy function is responsible to allocate the array in the destination and

2.8.1 Attributes form•Z SDK (v6.0.0.0 rev 05/30/06) 109

copy the array from the source. The copy function of a sample attribute with a dynamic array is
shown below.

fzrt_error_td my_attr_copy (
 long src_windex,
 void *src_data,
 long dst_windex,
 void *dst_data
)
{
 my_attr_td *src_my_attr,*dst_my_attr;
 fzrt_error_td err = FZRT_NOERR;

src_my_attr = (my_attr_td*) src_data;
dst_my_attr = (my_attr_td*) dst_data;

 if (src_my_attr->n_array > 0)

{
 if((err = fz_mem_zone_alloc(

my_attr_zone_ptr,
sizeof(long) * src_my_attr->n_array,
FALSE,
(fzrt_ptr*)dst_my_attr->array)

) == FZRT_NOERR)
 {

 fzrt_block_move(src_my_attr->array,

 dst_my_attr->array,
 sizeof(long) * src_my_attr->n_array);

 }
 }

else
{
 dst_my_attr->array = NULL;
}

 dst_my_attr->n_array = src_my_attr->n_array;

 /* COPY REMAINING FIELDS */

dst_my_attr->value1 = src_my_attr->value1;
 dst_my_attr->value2 = src_my_attr->value2;
 /* … ETC */

return(err);

}

The compare function (optional)

fzrt_error_td fz_attr_cbak_are_equal (
 void *data1,
 void *data2,
 fzrt_boolean *are_equal
);

For certain operations in form•Z, it is necessary to determine, whether two attributes are equal in
their content. The compare callback function is expected to perform this task. If this function is not
implemented by the plugin, form•Z automatically determines whether the two attributes are equal,
by comparing each byte in the attributes. The number of bytes compared is the same as the # of
bytes returned by the fz_attr_cbak_info function. The compare function should be
implemented when a straight byte comparison will not yield the proper result. This is the case, for
example, when the attribute contains dynamically allocated arrays. The compare function of a
sample attribute with a dynamic array is shown below.

2.8.1 Attributes form•Z SDK (v6.0.0.0 rev 05/30/06) 110

fzrt_error_td my_attr_are_equal (
 void *data1,
 void *data2,
 fzrt_boolean *are_equal
)
{
 my_attr_td *my_attr1,*my_attr2;
 fzrt_error_td err = FZRT_NOERR;
 long i;

 *are_equal = TRUE;

my_attr1 = (my_attr_td*) data1;
my_attr2 = (my_attr_td*) data2;

/* COMPARE ARRAY SIZE */
if (my_attr1->n_array == my_attr2->n_array)
{

/* COMPARE ARRAY CONTENT */
 for(i = 0; i < my_attr1->n_array; i++)
 {
 if (my_attr1->array[i] != my_attr2->array[i])

{
*are_equal = FALSE;
break;

 }
}

if (*are_equal == TRUE)
{
 /* COMPARE REMAINING FIELDS */
 if (my_attr1->value1 != my_attr2-> value1 ||
 my_attr1->value2 != my_attr2-> value2)
 {
 *are_equal = FALSE;
 }
}

}
else
{
 *are_equal = FALSE;
}

return(err);

}

The dialog function (optional)

long fz_attr_cbak_iface_tmpl(
 long windex,

fz_fuim_tmpl_ptr fuim_tmpl,
 fzrt_ptr fuim_data
);

The dialog template function is expected to create the dialog items, with which the content of the
attribute is displayed. If this function is implemented, double clicking on the attribute's entry in the
Additional Attributes list in one of the Query Attributes dialog, invokes the attribute dialog. It is
quite possible to also create "invisible" attributes, which are never accessible to a user. They may
be designed to hold temporary data or may serve a purpose other than presenting information to
a user. For these types of attributes, the dialog template function should not be implemented. A

2.8.1 Attributes form•Z SDK (v6.0.0.0 rev 05/30/06) 111

third use of an attribute may be, where the plugin creates one or more modeling tools, which
allow the user to assign and edit a complex attribute. This is the case in form•Z with the Texture
Map Control or Decals tools. For these attributes, the dialog template function may or may not be
implemented. One of the modeling tools may be assigned to provide a dialog interface to deal
with displaying and editing the content of the attribute. The dialog template function of a sample
attribute is shown below.

fzrt_error_td my_attr_dlog_tmpl (
 long windex,
 fz_fuim_tmpl_ptr fuim_tmpl,
 fzrt_ptr fuim_data
)
{
 my_attr_td *my_attr;
 short g1;

fzrt_error_td rv = FZRT_NOERR;

 my_attr = (my_attr_td*) fuim_data;

rv = fz_fuim_tmpl_init(fuim_tmpl,"Some Attribute Options",
 FZ_FUIM_FLAG_NONE, MY_ATTR_TMPL_ID, 10);

 if (rv == FZRT_NOERR)
 {

 fz_fuim_new_text_static_edit(fuim_tmpl,
FZ_FUIM_ROOT,FZ_FUIM_NONE,"Value 1",
FZ_FUIM_NONE,FZ_FUIM_FLAG_NONE, NULL,NULL,&g1);

 fz_fuim_item_range_long(fuim_tmpl, g1, &my_attr->value1,

0,0,FZ_FUIM_FORMAT_INT_DEFAULT,FZ_FUIM_RANGE_NONE);

fz_fuim_new_text_static_edit(fuim_tmpl,
FZ_FUIM_ROOT,FZ_FUIM_NONE,"Value 2",
FZ_FUIM_NONE,FZ_FUIM_FLAG_NONE, NULL,
NULL,&g1);

 fz_fuim_item_range_long(fuim_tmpl, g1, &my_attr->value2,

0,0,FZ_FUIM_FORMAT_INT_DEFAULT,FZ_FUIM_RANGE_NONE);
 }

 return(rv);
}

The transform function (optional)

fzrt_error_td fz_attr_cbak_tform (
 long windex,
 void *data,
 fz_mat4x4_td *mat
);

An attribute may contain data fields, which define dimensions, such as a length or a radius, or
which define locations, such as an origin. These data fields may be subject to a transformation,
that is performed on the entity which contains the attribute. The transform callback function, if
defined, is invoked by form•Z when a transformation on the owning entity is performed. The
callback is expected to adjust linear dimensions according to the scale contained in the
transformation matrix and apply the matrix to 3d locations. The scale portion of a matrix can be
extracted with the math API call fz_math_4x4_mat_to_trl_scl_rot. An example of a

2.8.1 Attributes form•Z SDK (v6.0.0.0 rev 05/30/06) 112

transform function of a sample attribute is shown below. It scales a radius field by the average
scale of the matrix and transforms a xyz origin point by the matrix.

fzrt_error_td my_attr_tform (
 long windex,
 void *data,
 fz_mat4x4_td *mat
)
{
 fz_xyz_td scl;
 my_attr_td *my_attr;

my_attr = (my_attr_td*) data;

 fz_math_4x4_mat_to_trl_scl_rot(mat,NULL,&scl,NULL);
 my_attr->radius *= (scl.x + scl.y + scl.z) / 3.0;
 fz_math_4x4_multiply_mat_xyz(mat,&my_attr->origin);

 return(FZRT_NOERR);
}

The object merge function (optional)

fzrt_error_td fz_attr_cbak_objt_merge (
 long src_windex,

fz_objt_ptr src_obj,
long src_indx,
long dst_windex,
fz_objt_ptr dst_obj,
long dst_indx,
fz_objt_topo_level_enum topo_level

);

This function is called whenever part (or all) of an object was appended to or merged with another
object. This is the case, for example, after a boolean or join volumes modeling operation. This
callback function gives the plugin the opportunity to make adjustments to the attributes of
appended faces. It may be called for any of the topological levels which contain attribute data.
When this function is called, dst_obj already contains the merged data, including any copied
attributes. The dst_indx parameter contains the face index of the entity which was merged, or it
contains -1 if the topological level is the object level. src_obj is the original object which was
merged and src_indx is the index of the original face, or -1 if the topological level is the object
level. The topo_level parameter indicates for which topological level this function is called.
Inside of the merge function, it may be necessary to retrieve the attribute of the source or
destination or both. This can be done with the API calls fz_objt_attr_get_objt_cust,
fz_objt_attr_get_face_cust, etc. After modifications were made to the attributes, the data
can be assigned back to the respective entity with fz_objt_attr_set_objt_cust or
fz_objt_attr_set_face_cust. An example of a merge function is shown below.

fzrt_error_td my_attr_objt_merge (
 long src_windex,

fz_objt_ptr src_obj,
long src_indx,
long dst_windex,
fz_objt_ptr dst_obj,
long dst_indx,
fz_objt_topo_level_enum topo_level

2.8.1 Attributes form•Z SDK (v6.0.0.0 rev 05/30/06) 113

)
{
 my_attr_td src_my_attr,dst_my_attr;
 fzrt_error_td rv = FZRT_NOERR;

 if (topo_level == FZ_OBJT_TOPO_LEVEL_FACE)
 {
 /* GET THE SOURCE ATTRIBUTE */

rv = fz_objt_attr_get_face_cust(src_windex,
 src_obj,
 src_indx,
 MY_ATTR_UUID,
 NULL,
 &src_my_attr);

 if (rv == FZRT_NOERR)

{
/* GET THE DESTINATION ATTRIBUTE */
rv = fz_objt_attr_get_face_cust(dst_windex,

 dst_obj,
 dst_indx,
 MY_ATTR_UUID,
 NULL,
 &dst_my_attr);
 }

 /* NOW MAKE ADJUSTMENTS TO THE DESTINATION ATTRIBUTE */
 /* BASED ON INFORMATION FROM THE SOURCE AND DESTINATION */
 /* ATTRIBUTES */

 ...

 if (rv == FZRT_NOERR)
 {

/* SAVE THE DESTINATION ATTRIBUTE BACK */
rv = fz_objt_attr_set_face_cust(dst_windex,

 dst_obj,
 dst_indx,
 MY_ATTR_UUID,
 &dst_my_attr);
 }

 }

 return(rv);

}

The get field count function (optional)

fzrt_error_td fz_attr_cbak_get_field_count (
 long *num_fields
);

This function is called by formZ to determine how many fields of this attribute need to be shown to
the user. This is, for example, done in the Attributes Manager dialog. Note, that this does not
necessarily have to be all the fields of the attribute, just the ones that need to be shown to the
user in the context of attribute and information management.

fzrt_error_td my_attr_get_field_count (

2.8.1 Attributes form•Z SDK (v6.0.0.0 rev 05/30/06) 114

 long *num_fields
)
{
 *num_fields = 4;
 return(FZRT_NOERR);
}

The get field info function (optional)

fzrt_error_td fz_attr_cbak_get_field_info (
 long field_indx,
 char *name,
 long max_name_len,
 fz_attr_field_type_enum *field_type,
 fz_fuim_format_float_enum *unit_fmt_flt,
 fz_fuim_format_int_enum *unit_fmt_int,
 fz_type_td *def_value,
 fz_type_td *min_value,
 fz_type_td *max_value,
 fzrt_UUID_td vlist_uuid,
 long *flags
);

This function is called by formZ to retrieve information about a particular attribute field. The
information consists of field name, data type, default value, field format, minimum and maximum
range. This information is retrieved, for example, in the Attributes Manager dialog. The index
passed in needs to be interpreted by the plugin to address the proper field in the attribute. The
index ranges between 0 and the value returned by fz_attr_cbak_get_field_count. Note,
that it is not necessary to expose all fields of an attribute to a user in this fashion, just the ones
that needs to be seen in the context of attribute and information management. The name returned
by this function is also used to determine the proper reference in an expression in the Information
Management dialog.

fzrt_error_td my_attr_get_field_info (
 long field_indx,
 char *name,
 long max_name_len,
 fz_attr_field_type_enum *field_type,
 fz_fuim_format_float_enum *unit_fmt_flt,
 fz_fuim_format_int_enum *unit_fmt_int,
 fz_type_td *def_value,
 fz_type_td *min_value,
 fz_type_td *max_value,
 fzrt_UUID_td vlist_uuid,
 long *flags
)
{
 fz_string_td str,str2;
 double dval;

 *flags = 0;
 switch(field_indx)
 {
 case 0 :
 fzrt_fzr_get_string(my_rsrc_ref, MY_STRINGS, MY_STR1, str);
 *field_type = FZ_ATTR_FIELD_TYPE_STNG;
 fzrt_fzr_get_string(my_rsrc_ref, MY_STRINGS, MY_STR2,
str2);
 fz_type_set_string(str2,def_value);
 break;

 case 1 :

2.8.1 Attributes form•Z SDK (v6.0.0.0 rev 05/30/06) 115

fzrt_fzr_get_string(my_rsrc_ref, MY_STRINGS, MY_STR3, str);
 *field_type = FZ_ATTR_FIELD_TYPE_STNG;
 fzrt_fzr_get_string(my_rsrc_ref, MY_STRINGS, MY_STR4,
str2);
 fz_type_set_string(str2,def_value);
 break;

 case 2 :
 fzrt_fzr_get_string(my_rsrc_ref, MY_STRINGS, MY_STR5, str);
 *field_type = FZ_ATTR_FIELD_TYPE_STNG;
 fzrt_fzr_get_string(my_rsrc_ref, MY_STRINGS, MY_STR6,
str2);
 fz_type_set_string(str2,def_value);
 break;

 case 3 :
 fzrt_fzr_get_string(my_rsrc_ref, MY_STRINGS, MY_STR7, str);
 *field_type = FZ_ATTR_FIELD_TYPE_CRCY;

 FZ_SETBIT(*flags,FZ_FUIM_RANGE_MIN_BIT);
 dval = 1495.0; fz_type_set_double(&dval,def_value);
 dval = 0.0; fz_type_set_double(&dval,min_value);
 dval = 0.0; fz_type_set_double(&dval,max_value);
 break;
 }

 strncpy(name,str,max_name_len);

 return(FZRT_NOERR);
}

The get field data function (optional)

fzrt_error_td fz_attr_cbak_get_field_data (
 long windex,
 fz_objt_ptr obj,
 void *data,
 long field_indx,
 fz_type_td *value
);

This function is called by formZ to retrieve information about a particular attribute field. The
information consists of field name, data type, default value, field format, minimum and maximum
range. This information is retrieved, for example, in the Attributes Manager dialog. The index
passed in needs to be interpreted by the plugin to address the proper field in the attribute. The
index ranges between 0 and the value returned by fz_attr_cbak_get_field_count. Note,
that it is not necessary to expose all fields of an attribute to a user in this fashion, just the ones
that needs to be seen in the context of attribute and information management. The name returned
by this function is also used to determine the proper reference in an expression in the Information
Management dialog.

fzrt_error_td my_attr_get_field_data (
 long windex,
 fz_objt_ptr obj,
 void *data,
 long field_indx,
 fz_type_td *value
)
{
 fz_string_td str;
 double dval;

2.8.1 Attributes form•Z SDK (v6.0.0.0 rev 05/30/06) 116

 my_attr_td *my_attr;

 my_attr = (my_attr_td*) data;

 switch(field_indx)
 {
 case 0 :
 fz_type_set_string(my_attr->str1,value);
 break;

 case 1 :
 fz_type_set_string(my_attr->str2,value);
 break;

 case 2 :
 switch(my_attr->value5)
 {
 case 0 :
 fzrt_fzr_get_string(my_rsrc_ref, MY_STRINGS,

MY_STR8, str);
 break;

 case 1 :
 fzrt_fzr_get_string(my_rsrc_ref, MY_STRINGS,

MY_STR9, str);
 break;

 case 2 :
 fzrt_fzr_get_string(my_rsrc_ref, MY_STRINGS,

MY_STR10, str);
 break;
 }
 fz_type_set_string(str,value);
 break;

 case 3 :
 switch(my_attr->value5)
 {

 case 0 : dval = my_attr->dval1;
 break;

 case 1 : dval = my_attr->dval2;
 break;

 case 2 : dval = my_attr->dval3;
 break;

 }
 fz_type_set_double(&dval,value);
 break;

 }

 return(FZRT_NOERR);
}

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 117

2.8.2 Command Plugins

A command in form•Z is an action that is invoked from a menu item, icon in the command palette
or a key shortcut. Command plugins are extensions that complement the form•Z commands and
behave consistent with the form•Z commands. Command plugins are available in system and
project levels. A system command is global in nature and does not require a project window
index. These are typically utility actions for which it is desirable to have access to the utility in the
form•Z interface. A project command requires a project or window index and are expected to
operate on project information for provided project. Project commands are unavailable when there
is no open project window.

Commands are described as states and actions. A state reflects a setting that has a specific set
of selectable values (states) and a single current setting (or active state). For example, the
Show Grid item in the Windows menu is a form•Z command that reflects the state of the grid
display (on or off). When this item is selected, the state is changed and the check mark in the
menu is updated to reflect the current state.

An action command is a command that performs a task when it is selected. The task is linear in
nature in that form•Z waits for the task to be completed before anything else can be done. An
action command is very flexible as virtually any form•Z API function can be called during the
execution of the task.

There is no explicit distinction between actions and states in the form•Z call back functions. For a
command to function properly as a state, it should implement the active function described below.
This tells form•Z that the command in its active state and that the check mark should be drawn in
the menu or the icon drawn active in the command palette.

The Samples directory in the form•Z SDK folder contains a folder named Commands that
contains an example of a command plugin named my_view_command. This example creates a
project command plugin with separate commands for selecting each of the standard view types.
This sample can be very valuable as both starting points for development as well as examples of
how the functions work.

Command plugin type and registration

Command plugins are registered with the plugin type identifier FZ_CMND_EXTS_TYPE and
version of FZ_CMND_EXTS_VERSION. System command plugins must implement the function set
fz_cmnd_cbak_syst_fset and project command plugins must implement the function set
fz_cmnd_cbak_proj_fset.

The following example shows the registration of a command plugin and the binding of a system
command and project command function sets to the plugin. This registration is performed in the
plugin file’s entry function while handling the FZPL_PLUGIN_INITIALIZE message as
described in section 2.3. Note that the normal usage is to register a system palette or a project
palette (not both). Command plugins may also provide the fz_notf_cbak_fset function set to
be notified when changes occur within form•Z.

fzrt_error_td my_cmnd_register_plugins()
{
 fzrt_error_td err = FZRT_NOERR;
 char my_plugin_name[256];

 /* Get the title string from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 1, my_plugin_name)

) == FZRT_NOERR)

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 118

 {
 /* register the plugin as a command plugin */
 err = fzpl_glue->fzpl_plugin_register(

MY_PLUGIN_UUID,
my_plugin_name,
MY_PLUGIN_VERSION,
MY_PLUGIN_VENDOR,

 MY_PLUGIN_URL,
 FZ_CMND_EXTS_TYPE,

FZ_CMND_EXTS_VERSION,
 my_plugin_error_string_func,

0,
NULL,
&my_plugin_runtime_id);

/*** add a system command callback function set ***/

 if (err == FZRT_NOERR)
 {
 err = fzpl_glue->fzpl_plugin_add_fset(

my_plugin_runtime_id,
 FZ_CMND_CBAK_SYST_FSET_TYPE,
 FZ_CMND_CBAK_SYST_FSET_VERSION,
 FZ_CMND_CBAK_SYST_FSET_NAME,
 FZPL_TYPE_STRING(fz_cmnd_cbak_syst_fset),
 sizeof (fz_cmnd_cbak_syst_fset),
 my_fill_cmnd_cbak_syst_fset,

FALSE);
 }

/*** add a project command callback function set ***/
 if (err == FZRT_NOERR)
 {
 err = fzpl_glue->fzpl_plugin_add_fset(

my_plugin_runtime_id,
 FZ_CMND_CBAK_PROJ_FSET_TYPE,
 FZ_CMND_CBAK_PROJ_FSET_VERSION,
 FZ_CMND_CBAK_PROJ_FSET_NAME,
 FZPL_TYPE_STRING(fz_cmnd_cbak_proj_fset),
 sizeof (fz_cmnd_cbak_proj_fset),
 my_fill_cmnd_cbak_proj_fset,

FALSE);
 }

}
 return (err);
}

2.8.2.1 System Command

System command plugins are implemented by the plugin by providing the call back function set
fz_cmnd_cbak_syst_fset. There are 13 functions in this function set. The following example
shows the assignment of the plugin’s own functions into the call back function set. This function is
provided to the fzpl_plugin_add_fset function call shown above. Note that some of these
functions are optional hence a plugin would rarely implement all functions.

fzrt_error_td my_fill_cmnd_cbak_syst_fset (
 const fzpl_fset_def_ptr fset_def,
 fzpl_fset_td * const fset)
{
 fzrt_error_td err = FZRT_NOERR;
 fz_cmnd_cbak_syst_fset *cmnd_syst;

 err = fzpl_glue->fzpl_fset_def_check (fset_def,
 FZ_CMND_CBAK_SYST_FSET_VERSION,
 FZPL_TYPE_STRING(fz_cmnd_cbak_syst_fset),

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 119

 sizeof (fz_cmnd_cbak_syst_fset),
 FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 cmnd_syst = (fz_cmnd_cbak_syst_fset *)fset;

 cmnd_syst->fz_cmnd_cbak_syst_init = my_cmnd_syst_init;
 cmnd_syst->fz_cmnd_cbak_syst_finit = my_cmnd_syst_finit;
 cmnd_syst->fz_cmnd_cbak_syst_name = my_cmnd_syst_name;

cmnd_syst->fz_cmnd_cbak_syst_uuid = my_cmnd_syst_uuid;
 cmnd_syst->fz_cmnd_cbak_syst_help = my_cmnd_syst_help;

 cmnd_syst->fz_cmnd_cbak_syst_avail = my_cmnd_syst_avail;
 cmnd_syst->fz_cmnd_cbak_syst_select = my_cmnd_syst_select;
 cmnd_syst->fz_cmnd_cbak_syst_active = my_cmnd_syst_active;

 cmnd_syst->fz_cmnd_cbak_syst_menu = my_cmnd_syst_menu;
 cmnd_syst->fz_cmnd_cbak_syst_icon_menu = my_cmnd_syst_icon_menu;
 cmnd_syst->fz_cmnd_cbak_syst_icon_menu_adjacent =

my_cmnd_syst_icon_menu_adjacent;
 cmnd_syst->fz_cmnd_cbak_syst_icon_rsrc = my_cmnd_syst_icon_rsrc;
 cmnd_syst->fz_cmnd_cbak_syst_icon_file = my_cmnd_syst_icon_file;

 cmnd_syst->fz_cmnd_cbak_syst_pref_io = my_cmnd_syst_pref_io;
 }

 return err;
}

The initialization function (optional)

fzrt_error_td fz_cmnd_cbak_syst_init(
 void
);

This function is called by form•Z once when the plugin is successfully loaded and registered. The
initialization function is where the plugin should initialize any data that may be needed by the
other functions in the function set.

fzrt_error_td my_cmnd_syst_init(

void
)
{
 fzrt_error_td err = FZRT_NOERR;

/** Do initialization here **/

return(err);

}

The finalization function (optional)

fzrt_error_td fz_cmnd_cbak_syst_finit(
 void
);

This function is called by form•Z once when the plugin is unloaded when form•Z is quitting. This
is the complementary function to the initialization function. This function should be used to free
any memory allocated in the initialization function or during the life of the command.

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 120

fzrt_error_td my_cmnd_syst_finit(
 void
)
{
 fzrt_error_td err = FZRT_NOERR;

/** Free any initialized data here **/

 return(err);
}

The name function (recommended)

fzrt_error_td fz_cmnd_cbak_syst_name(
 char *name,
 long max_len

);

This function is called by form•Z to get the name of the command. The name is shown in various
places in the form•Z interface including the key shortcuts manager dialog. It is recommended that
the command name string is stored in a .fzr file so that it is localizable. This function is
recommended for all command plugins. If this function is not provided , the name of the plugin is
used.

fzrt_error_td my_cmnd_syst_name(
 char *name,
 long max_len

)
{
 fzrt_error_td err = FZRT_NOERR;
 char my_str[256];

 /* Get the title string from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 1, my_str)) ==
FZRT_NOERR)

{
 /* copy the string to the name parameter */

 strncpy(name, my_str, max_len);
 }

 return(err);
}

The uuid function (recommended)

fzrt_error_td fz_cmnd_cbak_syst_uuid
 fzrt_UUID_td uuid
);

This function is called by form•Z to get the UUID of the command. This unique id is used by
form•Z to distinguish the command from other commands. This function is recommended for all
command plugins. If a UUID is not provided, one will be generated internally by form•Z. In this
situation the UUID will not be the same each time form•Z is run and hence persistent information
will not be retained. This includes any preference information provided by a supplied
fz_cmnd_cbak_syst_pref_io function or any user customization like key shortcuts and tool
icon layout.

#define MY_SYST_UUID
"\xc1\x29\xc9\x71\x87\x16\x43\x19\xb9\xa5\x96\xe4\x1d\xe1\x7e\xb9"

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 121

fzrt_error_td my_cmnd_syst_uuid(
 fzrt_UUID_td uuid
)
{
 fzrt_error_td err = FZRT_NOERR;

/* copy constant UUID to into the uuid parameter */
 fzrt_UUID_copy(MY_SYST_UUID, uuid);

 return(err);
}

The help function (recommended)

fzrt_error_td fz_cmnd_cbak_syst_help(
 char *help,
 long max_len
);

This function is called by form•Z to display a help string that describes the detail of what the
command does. This string is shown in the key shortcut manager dialog and the help dialogs.
The help parameter is a pointer to a memory block (string) which can handle up to max_len
bytes of data. It is recommended that the command name is stored in a .fzr file so that it is
localizable. The display area for help is limited so form•Z currently will ask for no more than 512
bytes (characters).

fzrt_error_td my_cmnd_syst_help(
 char *help,
 long max_len
)

{
 fzrt_error_td err = FZRT_NOERR;
 char my_str[512];

 /* Get the help string from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, my_str)) ==
FZRT_NOERR)

{
 /* copy the string to the help parameter */

 strncpy(help, my_str, max_len);
 }
 return(err);
}

The available function (recommended)

fzrt_error_td fz_cmnd_cbak_syst_avail(
 long *rv
);

This function is called by form•Z at various times to see if the command is available. This is
useful if the command is dependent on certain conditions and it is desirable to restrict its use
when the conditions are not currently satisfied. If the command is not available, then it is shown
as inactive (dimmed) in the form•Z interface (menu, icon or palette). Key shortcuts are also
disabled for the command when it is not available. If this function is not provided then the
command is always available.

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 122

Availability is determined by the value that is returned by the rv parameter. A value of 1 indicates
that the command is available, a value of 0 indicates that the command is unavailable.

fzrt_error_td my_cmnd_syst_avail(
 long *rv
)
{
 fzrt_error_td err = FZRT_NOERR;

/* return 1 for available, 0 for not available */
*rv = 1;

 return(err);
}

The active function (Optional)

fzrt_error_td cmnd_cbak_syst_active(
 long *rv
);

This function is called by form•Z at various times to see if the command is active. This function is
needed to implement a state command where the interface element indicates the current state.
This If the command is active, then it is shown selected in the form•Z interface. Active commands
in a menu are indicated with a check mark in front of the command name. Active commands in
command palettes are indicated with a highlighted icon.

Activity is determined by the value that is returned by the rv parameter. A value of 1 indicates
that the command is active, a value of 0 indicates that the command is inactive. The following
example shows the active function for a state command.

fzrt_error_td my_cmnd_syst_active(
 long *rv
)
{
 fzrt_error_td err = FZRT_NOERR;

 /*** check if state is active ***/
 if(my_command->value1 == 1) *rv = 1;
 else *rv = 0;

 return(err);
}

The select function (required)

fzrt_error_td fz_cmnd_cbak_syst_select(
 void
);

This function is called by form•Z when an action or state command is selected from the interface
(menu, icon or palette) or when a key shortcut for the command is invoked. The select function is
where the real execution for the command takes place. For action commands the desired action
should be performed in this function. For state commands, the state should be changed and the
appropriate actions should be taken. After the select function is executed, form•Z will call the
active function to check for active states.

Action command example:

fzrt_error_td my_cmnd_syst_select(

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 123

 void
)
{
 fzrt_error_td err = FZRT_NOERR;

 /*** perform command action here ***/

 return(err);
}

State command example:

fzrt_error_td my_cmnd_syst_select(
 void
)
{
 fzrt_error_td err = FZRT_NOERR;

 /*** toggle state ***/
 my_command->value1 = !my_command->value1;

 return(err);
}

The menu function (Optional)

fzrt_error_td fz_cmnd_cbak_syst_menu (

fz_fuim_menu_ptr menu_ptr,
const fzrt_UUID_td extensions_uuid,
fzrt_UUID_td group_uuid,
long *position

);

This function is called by form•Z to add the command to the Extensions menu. System
commands are grouped at the top of the extensions menu. The presence of this function places
the command in the menu. If this function is not provided, then the command does not appear in
the menu. Assigning values to the parameters of the function provides control over the placement
of items in the menu. The name that appears in the menu is the name returned in the
fz_cmnd_cbak_syst_name function.

A group of items can be placed into a pop-out heiractal menu rather than in the extensions menu
itself. Calling the function fz_fuim_exts_menu creates a pop-out menu in the extensions
menu. The menu_ptr and extensions_uuid parameters provided to the
fz_cmnd_cbak_syst_menu function are used in the creation of the pop-out menu. The UUID of
the new menu should be assigned to the group_uuid parameter. The pop-out menu should be
created in each fz_cmnd_cbak_syst_menu call back function for the group so that if the
grouped items are actually in separate plugins, and the user has disabled one of the plugins, the
menu will still be formed properly. form•Z ignores attempts to create a menu when the UUID
already exists that would occur if all the plugins are enabled.

form•Z will group together all commands in the extensions menu that have the same
group_uuid. That is, all fz_cmnd_cbak_syst_menu implemented functions that return the
same group_uuid parameter are placed together in the extensions menu in a group separated
from other items by a menu separator. The position parameter specifies the order of the
items. The items in the group are sorted from lowest to highest position. If position is set to 0,
the items are placed in alphabetic order.

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 124

The following is an example of a menu function with a pop-out menu.

#define MY_GRUP_UUID
"\x5d\xe6\x85\x41\x6b\xaa\x4f\xb4\xa5\x6a\xf5\x0e\x65\x36\xfb\xd0"

fzrt_error_td my_cmnd_syst_menu (

fz_fuim_menu_ptr menu_ptr,
const fzrt_UUID_td extensions_uuid,
fzrt_UUID_td group_uuid,
long *position
)

{
 fzrt_error_td err = FZRT_NOERR;
 char my_str[256];

 /* Get the title string from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, my_str)

) == FZRT_NOERR)
{

 /* create the menu group */
 err = fz_fuim_exts_menu(menu_ptr, extensions_uuid, my_str,

MY_GRUP_UUID);

 if(err == FZRT_NOERR)

{
 fzrt_UUID_copy(MY_GRUP_UUID, group_uuid);
 *position = 1;
 }
 }
 return(err);
}

Nested menus can be created up to 3 levels of hierarchy by passing the uuid of another pop-out
menu to the fz_fuim_exts_menu function. The following is an example of a nested pop-out
menu.

#define MY_GRUP_UUID_NEST "\x24\xf6\x35\x41\x6b\xab\x7f\xb4\xa5\x6a\xd5\xaa\x65\x36\xfb\xe0"

fzrt_error_td my_cmnd_syst_menu (

fz_fuim_menu_ptr menu_ptr,
const fzrt_UUID_td extensions_uuid,
fzrt_UUID_td group_uuid,
long *position
)

{
 fzrt_error_td err = FZRT_NOERR;
 char my_str[256];

 /* Get the title string from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, my_str)
) == FZRT_NOERR)

{
 /* create the menu group */
 if((err = fz_fuim_exts_menu(menu_ptr, extensions_uuid, my_str,

 MY_GRUP_UUID)) == FZRT_NOERR)
 {

 /* Get title string from the resource file */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 3, my_str);

 if(err == FZRT_NOERR)

{

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 125

 /* create the nested menu group */
err = fz_fuim_exts_menu(menu_ptr, MY_GRUP_UUID,

 my_str, MY_GRUP_UUID_NEST);

 if(err == FZRT_NOERR)
{ fzrt_UUID_copy(MY_GRUP_UUID_NEST, group_uuid);

 *position = 1;
 }
 }
 }
 }
 return(err);
}

By default menu items are enabled. The fz_mnd_cbak_syst_avail function can be used to
disable the command and make its menu item shown dimmed. Menu items for state commands
are shown with a check mark when the fz_cmnd_cbak_syst_active function indicates that
the state for the command is active.

The icon menu function (Optional, mutually exclusive with icon menu adjacent function)

fzrt_error_td fz_cmnd_cbak_syst_icon_menu (
 const fzrt_UUID_td icon_menu_uuid,
 fzrt_UUID_td group_uuid,
 fz_fuim_icon_group_enum *group_pos,
 long *group_row,
 long *group_col
);

This function is called by form•Z to add the command to the system command icon menu palette.
The presence of this function places the command in the palette. If no other parameters are set
then the command will get added to a group of icons at the bottom (end) of the icon menu. Note
that this only adds the position to the icon palette. The function
fz_cmnd_cbak_syst_icon_rsrc or fz_cmnd_cbak_syst_icon_file must be provided to
add custom graphics for the icon. If one of these is not provided, form•Z uses a generic plugin
icon graphic.

The group_uuid parameter is assigned to all commands that should be grouped together. That
is, all fz_cmnd_cbak_syst_icon_menu implemented functions that return the same
group_uuid parameter are placed together in the system icon menu in the same group (pop-out
tool menu). This group is added to the bottom (end) of the menu. The placement of the item in
the group is controlled by the group_pos parameter. A value of FZ_FUIM_ICON_GROUP_START
places the item at the start of the group and a value of FZ_FUIM_ICON_GROUP_END places it at
the end of the group. Note that these may not always yield constant results because plugin load
order can vary hence multiple uses of FZ_FUIM_ICON_GROUP_END my note build the icon
palette in the expected order. When FZ_FUIM_ICON_GROUP_CUSTOM is selected, then the
group_row and group_col parameters specify the position of the item in the tool menu group.

#define MY_GRUP_UUID
"\x5d\xe6\x85\x41\x6b\xaa\x4f\xb4\xa5\x6a\xf5\x0e\x65\x36\xfb\xd0"

fzrt_error_td my_cmnd_syst_icon_menu (
 const fzrt_UUID_td icon_menu_uuid,
 fzrt_UUID_td group_uuid,
 fz_fuim_icon_group_enum *group_pos,
 long *group_row,
 long *group_col
)

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 126

{
 fzrt_error_td err = FZRT_NOERR;

fzrt_UUID_copy(MY_GRUP_UUID, group_uuid);
 *group_pos = FZ_FUIM_ICON_GROUP_CUSTOM;
 *group_row = 1;
 *group_col = 1;

 return(err);
}

The function fz_fz_fuim_exts_icon_group can be called to better control the group
containing the set of commands. This adds the ability to name the group and insert the pop-out
menu group in the existing menu groups. The icon pop-out menu can be created in each
fz_cmnd_cbak_syst_icon_menu so that if the grouped items are actually in separate plugins,
and the user has disabled one of the plugins, the icon menu will still be formed properly. form•Z
ignores attempts to create a menu when the UUID already exists that would occur if all the
plugins are enabled. The following is an example of a pop-out menu.

fzrt_error_td my_cmnd_syst_icon_menu (
 const fzrt_UUID_td icon_menu_uuid,
 fzrt_UUID_td group_uuid,
 fz_fuim_icon_group_enum *group_pos,
 long *group_row,
 long *group_col
)
{
 fzrt_error_td err = FZRT_NOERR;

err = fz_fuim_exts_icon_group(icon_menu_uuid,
"My Group", MY_GRUP_UUID,
FZRT_UUID_NULL, FZ_FUIM_POS_BEFORE,
FZRT_UUID_NULL, FZ_FUIM_POS_BEFORE);

if(err == FZRT_NOERR)
{ fzrt_UUID_copy(MY_GRUP_UUID, group_uuid);

 *group_pos = FZ_FUIM_ICON_GROUP_CUSTOM;
 *group_row = 1;
 *group_col = 1;

}
 return(err);
}

The icon menu adjacent function (Optional, mutually exclusive with icon menu function)

fzrt_error_td fz_cmnd_cbak_syst_icon_menu_adjacent(
 const fzrt_UUID_td icon_menu_uuid,
 fzrt_UUID_td adjacent_uuid,
 fz_fuim_icon_adjacent_enum *where
);

This function is called by form•Z to add the command to the command icon menu palette. It
serves the same purpose as the fz_cmnd_cbak_syst_icon_menu function, however it
specifies the location of the icon item quite differently. The location is identified by referencing
another command in the icon menu. The adjacent_uuid parameter is the UUID of the
command to which the icon should be added adjacent. The where parameter specifies to which
side of the adjacent icon the icon should be added. The available options are
FZ_FUIM_ICON_ADJACENT_TOP, FZ_FUIM_ICON_ADJACENT_BOTTOM,

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 127

FZ_FUIM_ICON_ADJACENT_LEFT, FZ_FUIM_ICON_ADJACENT_RIGHT. The default action is
specified by FZ_FUIM_ICON_ADJACENT_DEFAULT which currently is the same as
FZ_FUIM_ICON_ADJACENT_RIGHT. New pop-out groups can not be created with this function.
The following example ads the icon to the right of the form•Z save command.

fzrt_error_td my_cmnd_syst_icon_menu_adjacent (
 const fzrt_UUID_td icon_menu_uuid,
 fzrt_UUID_td adjacent_uuid,
 fz_fuim_icon_adjacent_enum *where
)
{
 fzrt_error_td err = FZRT_NOERR;

 fzrt_UUID_copy(CMND_SAVE, adjacent_uuid);
 *where = FZ_FUIM_ICON_ADJACENT_RIGHT;

 return(err);
}

The icon file function (Optional, mutually exclusive with icon resource function)

fzrt_error_td fz_cmnd_cbak_syst_icon_file (
 fz_fuim_icon_enum which,
 fzrt_floc_ptr floc,
 long *hpos,
 long *vpos,
 fzrt_floc_ptr floc_mask,
 long *hpos_mask,
 long *vpos_mask
);

This function is called by form•Z to get an icon for the command from an image file. The icon
image can be in any of the form•Z supported image file formats or format for which an image file
translator is installed. The TIFF format is the recommended format as the TIFF translator is
commonly available. form•Z will request an icon when the command is displayed in a tool menu
using fz_cmnd_cbak_syst_icon_menu or fz_cmnd_cbak_syst_icon_menu_adjacent.

form•Z supports 3 styles of icon display. Recall that these are selectable by the user from the
Icon Style menu in the Icons Customization dialog. The first two options (White and Gray) are
generated from a black and white source graphic with different treatments at drawing time. The
third option is generated from a color source graphic. The first two options are older icon styles
that are provided for backward compatibility. The color icons became the default with v 4.0. Note
that if an icon of one type or the other (or both) is not provided, then form•Z uses a generic plugin
icon graphic.

The which parameter indicates the type of source graphic icon that is needed by form•Z. For
each type of icon source (black and white and color), there are two possible sizes. The full size
icon is the size that is used in the main tool palettes and tear off tool palettes. The black and
white source full size is 30 x 30 pixels and indicated by FZ_FUIM_ICON_MONOC. The color
source is 32 x 32 pixels and indicated by FZ_FUIM_ICON_COLOR. The alternate size is the
smaller size used for window icons that are drawn in the lower margin of the window. The
alternate size for both black and white and color sources is 20 x 16 pixels and indicated by
FZ_FUIM_ICON_MONOC_ALT and FZ_FUIM_ICON_COLOR_ALT respectively.

The floc parameter should be filled with the file name and location of the file that contains the
icon graphic. The hpos and vpos parameters should be set to the left and top pixel location of
icon data in the file respectively. It is recommended that the icon file be in the same directory as

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 128

the plugin file. This makes it simple to find the file. The location of the plugin file can be retained
during the FZPL_PLUGIN_INITIALIZE stage using the fzpl_glue->
fzpl_plugin_file_get_floc function.

The floc_mask parameter should be filled with the file name and location of the file that
contains the icon mask (this can be the same file as the floc parameter). The icon mask defines
the transparent areas of the icon. The hpos_mask and vpos_mask parameters should be set to
the left and top pixel location of icon mask data in the file respectively. If a mask is not provided
than the entire background of the icon will be drawn.

A single file can be used for multiple icons across a variety of commands by creating a grid of
icons in the file and specifying the location for each icon in the corresponding provided function.

fzrt_error_td my_cmnd_syst_icon_file (
 fz_fuim_icon_enum which,
 fzrt_floc_ptr floc,
 long *hpos,
 long *vpos,
 fzrt_floc_ptr floc_mask,
 long *hpos_mask,
 long *vpos_mask
)
{

fzrt_error_td err = FZRT_NOERR;

 switch(which)
 {
 case FZ_FUIM_ICON_MONOC:
 err = fzrt_file_floc_copy(my_plugin_floc,floc);
 if(err == FZRT_NOERR)

{
 err = fzrt_file_floc_set_name(floc,

"my_icon_bw.tif");
 *hpos = 0;
 *vpos = 0;
 }
 break;
 case FZ_FUIM_ICON_COLOR:
 err = fzrt_file_floc_copy(my_plugin_floc,floc);
 if(err == FZRT_NOERR)

{
 err = fzrt_file_floc_set_name(floc,

"my_icon_col.tif");
 *hpos = 0;
 *vpos = 0;
 }
 break;
 }
 return(err);
}

The icon resource function (Optional, mutually exclusive with icon file function)

fzrt_error_td fz_cmnd_cbak_syst_icon_rsrc (

fz_fuim_icon_enum which,
 fzrt_icon_ptr *icon
);

This function is called by form•Z to load an icon for the command from a platform’s native
(Macintosh or Windows) resource file format. This function works the same as the above icon file

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 129

function except that the icon data is read from the resource file instead of the image file. These
two functions are mutually exclusive (only one should be provided). Although this function and the
method for loading resources is cross platform, the resource formats are not hence the data must
be generated differently for each platform. This function is provided for situations where resources
in these formats are already available. It is recommended that all new artwork use the icon file
method described above as it is cross platform and simpler to create the content.

This function can be used to load the icon from the plugin file's resource data by using the
function fzpl_plugin_get_rlib_idx to obtain the index for the plugins files resource data.
The function fzrt_rlib_load_icon must be called to load the resource from the file. Use
FZRT_LOAD_ICON_BW to indicate black and white icons and indicate color icons using
FZRT_LOAD_ICON_COLOR. On the Macintosh platform, the black and white icons are read from
‘ICON’ resources and color icons from ‘cicn’. On Windows black and white icons must be stored
as a 1 bit depth bitmap resource with the type "FZICON" in the resource file and color icons can
be stored as either a native Windows ICON or as an 8 bit deep bitmap resource. Note that on
Windows, black and white icons and color icons stored as a bitmap resource will not have an icon
mask. form•Z releases the memory for the resource when the plugin is unloaded.

All icons are stored in 32 x 32 pixel resources, however, depending on the type of the icon, only
part of the resource will be used. Only the top left 30 x 30 pixels of the 32 x 32 are used for the
black and white full icon size indicated by FZ_FUIM_ICON_MONOC. The bottom and right two
pixels are NOT used (and will be cropped). The entire 32 x 32 is used for the color full icon size
indicated by FZ_FUIM_ICON_COLOR. For the alternate size icons indicated by
FZ_FUIM_ICON_MONOC_ALT and FZ_FUIM_ICON_COLOR_ALT respectively, form•Z uses the
bottom left 20 x 16 pixels. The top 16 and right 12 pixels are NOT used (and will be cropped).

fzrt_error_td my_cmnd_syst_icon_rsrc (
 fz_fuim_icon_enum which,
 fzrt_icon_ptr *icon

)
{
 long err = FZRT_NOERR;
 short rlib_index;

err = fzpl_plugin_get_rlib_idx(my_plugin_runtime_id, &rlib_index);

 if(err == FZRT_NOERR)
 {
 switch(which)
 {
 case FZ_FUIM_ICON_MONOC:

err = fzrt_rlib_load_icon(
rlib_index,FZRT_LOAD_ICON_BW,128,icon);

 break;
 case FZ_FUIM_ICON_COLOR:

err = fzrt_rlib_load_icon(
rlib_index,FZRT_LOAD_ICON_COLOR,128,icon);

 break;
}

 }
 return(err);
}

The preferences IO function (optional)

fzrt_error_td fz_cmnd_cbak_syst_pref_io (
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 130

 fzpl_vers_td * const version,
 unsigned long size
);

form•Z calls this function to read and write any command specific data to a form•Z preference
file. This function is called when reading and writing user specified preference files (Save
Preferences button in the Preferences dialog). It is also called by form•Z when reading and
writing the session to session preference file maintained by form•Z. The file IO is performed
using the IO streams (iost) interface. This interface provides functions for reading and writing data
from a file (stream) and handles all cross platform endian issues. The iost parameter is the
pointer to the preference file and should be used in all IO Stream function calls. The IO Stream
functions are fully documented in the form•Z API reference.

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that is written when writing a file. When reading a file, the version parameter contains the
version of the data that was written to the file (and hence being read). The size parameter is
only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the plugin to maintain version changes of the plugin data. In the following
example, in its first release, a commands data consisted of four long integer values, a total of 16
bytes. When written, the version reported back to form•Z was 0. In a subsequent release, a fifth
long integer is added to increase the size to 20 bytes. When writing this new data, the version
reported to form•Z needs to be increased. When reading a file with the old version of the
command preference, form•Z will pass in the version number of the attribute when it was written,
in this case 0. This indicates to the plugin, that only four integers, 16 bytes, need to be read and
the fifth integer should be set to a default value.

fzrt_error_td my_cmnd_syst_iost(
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
)
{
 fzrt_error_td err = FZRT_NOERR;

 if (dir == FZ_IOST_WRITE) *version = 1;

 err = fz_iost_one_long(iost,&my_command->value1);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_command->value2);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_command->value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_command->value4);

 if(*version >= 1)
 { err = fz_iost_one_long(iost,

&my_command->value5);
 }
 }
 }
 }

 return(err);
}

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 131

2.8.2.2 Project Commands

Project commands are defined using the FZ_CMND_PROJ_PLUGIN_TYPE and the
fz_cmnd_cbak_proj_fset function set as described in the following sections. There are 17
functions in this function set. The following shows the fill in of a fz_cmnd_cbak_proj_fset
function set. This function is provided to the fzpl_plugin_add_fset function call shown
above. Note that some of these functions are optional and some are mutually exclusive hence a
plugin would never implement all of these functions.

fzrt_error_td my_fill_cmnd_cbak_proj_fset (
 const fzpl_fset_def_ptr fset_def,
 fzpl_fset_td * const fset)
{
 fzrt_error_td err = FZRT_NOERR;
 fz_cmnd_cbak_proj_fset *cmnd_proj;

 err = fzpl_glue->fzpl_fset_def_check (fset_def,
 FZ_CMND_CBAK_PROJ_FSET_VERSION,
 FZPL_TYPE_STRING(fz_cmnd_cbak_proj_fset),
 sizeof (fz_cmnd_cbak_proj_fset),
 FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 cmnd_proj = (fz_cmnd_cbak_proj_fset *)fset;

 cmnd_proj->fz_cmnd_cbak_proj_init = my_cmnd_proj_init;
 cmnd_proj->fz_cmnd_cbak_proj_finit = my_cmnd_proj_finit;
 cmnd_proj->fz_cmnd_cbak_proj_info = my_cmnd_proj_info;
 cmnd_proj->fz_cmnd_cbak_proj_name = my_cmnd_proj_name;

cmnd_proj->fz_cmnd_cbak_proj_uuid = my_cmnd_proj_uuid;
 cmnd_proj->fz_cmnd_cbak_proj_help = my_cmnd_proj_help;

 cmnd_proj->fz_cmnd_cbak_proj_avail = my_cmnd_proj_avail;
 cmnd_proj->fz_cmnd_cbak_proj_select = my_cmnd_proj_select;
 cmnd_proj->fz_cmnd_cbak_proj_active = my_cmnd_proj_active;

 cmnd_proj->fz_cmnd_cbak_proj_menu = my_cmnd_proj_menu;
 cmnd_proj->fz_cmnd_cbak_proj_icon_menu = my_cmnd_proj_icon_menu;
 cmnd_proj->fz_cmnd_cbak_proj_icon_menu_adjacent =

 my_cmnd_proj_icon_menu_adjacent;
 cmnd_proj->fz_cmnd_cbak_proj_icon_rsrc = my_cmnd_proj_icon_rsrc;
 cmnd_proj->fz_cmnd_cbak_proj_icon_file = my_cmnd_proj_icon_file;

 cmnd_proj->fz_cmnd_cbak_proj_pref_io = my_cmnd_proj_pref_io;
 cmnd_proj->fz_cmnd_cbak_proj_data_io = my_cmnd_proj_data_io;
 cmnd_proj->fz_cmnd_cbak_proj_wind_data_io = my_cmnd_proj_wind_data_io;
 }

 return err;
}

The initialization function (optional)

fzrt_error_td fz_cmnd_cbak_proj_init(
 void
);

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 132

This function is called by form•Z once when the plugin is successfully loaded and registered. The
initialization function is where the plugin should initialize any data that may be needed by the
other functions in the function set.

fzrt_error_td my_cmnd_proj_init(

void
)
{
 fzrt_error_td err = FZRT_NOERR;

/** Do initialization here **/

return(err);

}

The finalization function (optional)

fzrt_error_td fz_cmnd_cbak_proj_finit(
 void
);

This function is called by form•Z once when the plugin is unloaded when form•Z is quitting. This
is the complementary function to the initialization function. This function should be used to free
any memory allocated in the initialization function or during the life of the command.

fzrt_error_td my_cmnd_proj_finit(
 void
)
{
 fzrt_error_td err = FZRT_NOERR;

/** Free any initialized data here **/

 return(err);
}

The info function (required)

fzrt_error_td fz_cmnd_cbak_proj_info(
 fz_proj_level_enum *level
);

This function is called by form•Z once when the plugin is successfully loaded to determine the
kind of command that is implemented by the function set.

The level parameter indicates the context of the tool. form•Z uses the value in this parameter
to determine when the command should be shown and when it should be updated. The following
are the available values:

FZ_PROJ_LEVEL_MODEL: Indicates that the tool operates on the projects modeling
content (objects for example).

FZ_PROJ_LEVEL_MODEL_WIND: Indicates that the tool operates on modeling window
specific content (views for example) of modeling windows.

FZ_PROJ_LEVEL_DRAFT: Indicates that the tool operates on the projects drafting
content (elements for example).

FZ_PROJ_LEVEL_DRAFT_WIND: Indicates that the tool operates on drafting window
specific content (views for example) of drafting windows.

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 133

fzrt_error_td my_cmnd_proj_info(
 fz_proj_level_enum *level
)
{
 fzrt_error_td err = FZRT_NOERR;

 /* indicate modeling level */

*level = FZ_PROJ_LEVEL_MODEL;

return(err);

}

The name function (recommended)

fzrt_error_td fz_cmnd_cbak_proj_name(
 char *name,
 long max_len

);

This function is called by form•Z to get the name of the command. The name is shown in various
places in the form•Z interface including the key shortcuts manager dialog. It is recommended that
the command name string is stored in a .fzr file so that it is localizable. This function is
recommended for all command plugins. If this function is not provided , the name of the plugin is
used.

fzrt_error_td my_cmnd_proj_name(
 char *name,
 long max_len

)
{
 fzrt_error_td err = FZRT_NOERR;
 char my_str[256];

 /* Get the title string from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 1, my_str)

) == FZRT_NOERR)
{
 /* copy the string to the name parameter */

 strncpy(name, my_str, max_len);
 }

 return(err);
}

The uuid function (recommended)

fzrt_error_td fz_cmnd_cbak_proj_uuid
 fzrt_UUID_td uuid
);

This function is called by form•Z to get the UUID of the command. This unique id is used by
form•Z to distinguish the command from other commands. This function is recommended for all
command plugins. If a UUID is not provided, one will be generated internally by form•Z. In this
situation the UUID will not be the same each time form•Z is run and hence persistent information
will not be retained. This includes any preference information provided by a supplied
fz_cmnd_cbak_proj_pref_io function or any user customization like key shortcuts and tool
icon layout.

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 134

#define MY_PROJ_UUID
"\xc1\x29\xc9\x71\x87\x16\x43\x19\xb9\xa5\x96\xe4\x1d\xe1\x7e\xb9"

fzrt_error_td my_cmnd_proj_uuid(
 fzrt_UUID_td uuid
)
{
 fzrt_error_td err = FZRT_NOERR;

/* copy constant UUID to into the uuid parameter */
 fzrt_UUID_copy(MY_PROJ_UUID, uuid);

 return(err);
}

The help function (optional)

fzrt_error_td fz_cmnd_cbak_proj_help(
 char *help,
 long max_len
);

This function is called by form•Z to display a help string that describes the detail of what the
command does. This string is shown in the key shortcut manager dialog and the help dialogs.
The help parameter is a pointer to a memory block (string) which can handle up to max_len
bytes of data. It is recommended that the help text is stored in a .fzr file so that it is localizable.
The display area for help is limited so form•Z currently will ask for no more than 512 bytes
(characters).

fzrt_error_td my_cmnd_proj_help(
 char *help,
 long max_len
)
{
 fzrt_error_td err = FZRT_NOERR;
 char my_str[512];

 /* Get the help string from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, my_str)

) == FZRT_NOERR)
{
 /* copy the string to the help parameter */

 strncpy(help, my_str, max_len);
 }
 return(err);
}

The available function (optional)

fzrt_error_td fz_cmnd_cbak_proj_avail(
 long windex,
 long *rv
);

This function is called by form•Z at various times to see if the command is available. This is
useful if the command is dependent on certain conditions and it is desirable to restrict its use
when the conditions are not currently satisfied. If the command is not available, then it is shown
as inactive (dimmed) in the form•Z interface (menu, icon or palette). Key shortcuts are also

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 135

disabled for the command when it is not available. If this function is not provided then the
command is always available.

Availability is determined by the value that is returned by the rv parameter. A value of 1 indicates
that the command is available, a value of 0 indicates that the command is unavailable.

fzrt_error_td my_cmnd_proj_avail(
 long windex,
 long *rv
)
{
 fzrt_error_td err = FZRT_NOERR;

/* return 1 for available, 0 for not available */
*rv = 1;

 return(err);
}

The active function (Optional)

fzrt_error_td fz_cmnd_cbak_proj_active(
 long windex,
 long *rv
);

This function is called by form•Z at various times to see if the command is active. This function is
needed to implement a state command where the interface element indicates the current state.
This If the command is active, then it is shown selected in the form•Z interface. Active commands
in a menu are indicated with a check mark in front of the command name. Active commands in
command palettes are indicated with a highlighted icon.

Activity is determined by the value that is returned by the rv parameter. A value of 1 indicates
that the command is active, a value of 0 indicates that the command is inactive. The following
example shows the active function for a state command.

fzrt_error_td my_cmnd_proj_active(
 long windex,
 long *rv
)
{
 fzrt_error_td err = FZRT_NOERR;

 /*** check if state is active ***/
 if(my_command->value1 == 1) *rv = 1;
 else *rv = 0;

 return(err);
}

The select function (required)

fzrt_error_td fz_cmnd_cbak_proj_select(
 long windex
);

This function is called by form•Z when an action or state command is selected from the interface
(menu, icon or palette) or when a key shortcut for the command is invoked. The select function is
where the real execution for the command takes place. For action commands the desired action
should be performed in this function. For state commands, the state should be changed and the

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 136

appropriate actions should be taken. After the select function is executed, form•Z will call the
active function to check for active states.

Action command example:

fzrt_error_td my_cmnd_proj_select(
 long windex
)
{
 fzrt_error_td err = FZRT_NOERR;

 /*** perform command action here ***/

 return(err);
}

State command example:

fzrt_error_td my_cmnd_proj_select(
 long windex
)
{
 fzrt_error_td err = FZRT_NOERR;

 /*** toggle state ***/
 my_command->value1 = ! my_command->value1;

 return(err);
}

The menu function (Optional)

fzrt_error_td fz_cmnd_cbak_proj_menu (

fz_fuim_menu_ptr menu_ptr,
const fzrt_UUID_td extensions_uuid,
fzrt_UUID_td group_uuid,
long *position

);

This function is called by form•Z to add the command to the Extensions menu. Project
commands are grouped at the top of the Extensions menu. The presence of this function places
the command in the menu. If this function is not provided, then the command does not appear in
the menu. Assigning values to the parameters of the function provides control over the placement
of items in the menu. The name that appears in the menu is the name returned in the
fz_cmnd_cbak_proj_name function.

A group of items can be placed into a pop-out hierarchical menu rather than in the Extensions
menu itself. Calling the function fz_fuim_exts_menu creates a pop-out menu in the Extensions
menu. The menu_ptr and extensions_uuid parameters provided to the
fz_cmnd_cbak_proj_menu function are used in the creation of the pop-out menu. The UUID of
the new menu should be assigned to the group_uuid parameter. The pop-out menu should be
created in each fz_cmnd_cbak_proj_menu call back function for the group so that if the
grouped items are actually in separate plugins, and the user has disabled one of the plugins, the
menu will still be formed properly. form•Z ignores attempts to create a menu when the UUID
already exists that would occur if all the plugins are enabled.

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 137

form•Z will group together all commands in the extensions menu that have the same
group_uuid. That is, all fz_cmnd_cbak_proj_menu implemented functions that return the
same group_uuid parameter are placed together in the extensions menu in a group separated
from other items by a menu separator. The position parameter specifies the order of the
items. The items in the group are sorted from lowest to highest position. If position is set to 0,
the items are placed in alphabetic order.

The following is an example of a menu function with a pop-out menu.

#define MY_GRUP_UUID
"\x5d\xe6\x85\x41\x6b\xaa\x4f\xb4\xa5\x6a\xf5\x0e\x65\x36\xfb\xd0"

fzrt_error_td my_cmnd_proj_menu (

fz_fuim_menu_ptr menu_ptr,
const fzrt_UUID_td extensions_uuid,
fzrt_UUID_td group_uuid,
long *position
)

{
 fzrt_error_td err = FZRT_NOERR;
 char my_str[256];

 /* Get the title string from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, my_str)

) == FZRT_NOERR)
{

 /* create the menu group */
 err = fz_fuim_exts_menu(menu_ptr, extensions_uuid, my_str,

MY_GRUP_UUID);

 if(err == FZRT_NOERR)

{
 fzrt_UUID_copy(MY_GRUP_UUID, group_uuid);
 *position = 1;
 }
 }
 return(err);
}

Nested menus can be created up to 3 levels of hierarchy by passing the uuid of another pop-out
menu to the fz_fuim_exts_menu function. The following is an example of a nested pop-out
menu.

#define MY_GRUP_UUID_NEST "\x24\xf6\x35\x41\x6b\xab\x7f\xb4\xa5\x6a\xd5\xaa\x65\x36\xfb\xe0"

fzrt_error_td my_cmnd_proj_menu (

fz_fuim_menu_ptr menu_ptr,
const fzrt_UUID_td extensions_uuid,
fzrt_UUID_td group_uuid,
long *position
)

{
 fzrt_error_td err = FZRT_NOERR;
 char my_str[256];

 /* Get the title string from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, my_str)
) == FZRT_NOERR)

{
 /* create the menu group */
 if((err = fz_fuim_exts_menu (

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 138

menu_ptr, extensions_uuid, my_str, MY_GRUP_UUID)) ==
FZRT_NOERR)

 {

 /* Get title string from the resource file */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 3, my_str);

 if(err == FZRT_NOERR)

{
 /* create the nested menu group */

err = fz_fuim_exts_menu (
menu_ptr, MY_GRUP_UUID, my_str,

MY_GRUP_UUID_NEST);

 if(err == FZRT_NOERR)
{ fzrt_UUID_copy(MY_GRUP_UUID_NEST, group_uuid);

 *position = 1;
 }
 }
 }
 }
 return(err);
}

By default menu items are enabled. The fz_cmnd_cbak_proj_avail function can be used to
disable the command and make its menu item shown dimmed. Menu items for state commands
are shown with a check mark when the fz_cmnd_cbak_proj_active function indicates that
the state for the command is active.

The icon menu function (Optional, mutually exclusive with icon menu adjacent function)

fzrt_error_td fz_cmnd_cbak_proj_icon_menu (
 const fzrt_UUID_td icon_menu_uuid,
 fzrt_UUID_td group_uuid,
 fz_fuim_icon_group_enum *group_pos,
 long *group_row,
 long *group_col
);

This function is called by form•Z to add the command to the commands icon menu palette. The
presence of this function places the command in the icon menu palette. If no other parameters
are set then the command will get added to a group of icons at the bottom (end) of the icon menu.
Note that this only adds the position to the tool menu. The function
fz_cmnd_cbak_proj_icon_rsrc or fz_cmnd_cbak_proj_icon_file must be provided to
add custom graphics for the icon. If one of these is not provided, form•Z uses a generic plugin
icon graphic.

The group_uuid parameter is assigned to all commands that should be grouped together. That
is, all fz_cmnd_cbak_proj_icon_menu implemented functions that return the same
group_uuid parameter are placed together in the system icon menu in the same group (pop-out
tool menu). This group is added to the bottom (end) of the menu. The placement of the item in
the group is controlled by the group_pos parameter. A value of FZ_FUIM_ICON_GROUP_START
places the item at the start of the group and a value of FZ_FUIM_ICON_GROUP_END places it at
the end of the group. Note that these may not always yield constant results because plugin load
order can vary hence multiple uses of FZ_FUIM_ICON_GROUP_END my note build the menu in
the expected order. When FZ_FUIM_ICON_GROUP_CUSTOM is selected, then the group_row
and group_col parameters specify the position of the item in the tool menu group.

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 139

#define MY_GRUP_UUID
"\x5d\xe6\x85\x41\x6b\xaa\x4f\xb4\xa5\x6a\xf5\x0e\x65\x36\xfb\xd0"

fzrt_error_td my_cmnd_proj_icon_menu (
 const fzrt_UUID_td icon_menu_uuid,
 fzrt_UUID_td group_uuid,
 fz_fuim_icon_group_enum *group_pos,
 long *group_row,
 long *group_col
)
{
 fzrt_error_td err = FZRT_NOERR;

fzrt_UUID_copy(MY_GRUP_UUID, group_uuid);
 *group_pos = FZ_FUIM_ICON_GROUP_CUSTOM;
 *group_row = 1;
 *group_col = 1;

 return(err);
}

The function fz_fuim_exts_icon_group can be called to better control the group containing
the set of commands. This adds the ability to name the group and insert the pop-out menu group
in the existing menu groups. The icon pop-out menu can be created in each
fz_cmnd_cbak_proj_icon_menu so that if the grouped items are actually in separate plugins,
and the user has disabled one of the plugins, the icon menu will still be formed properly. form•Z
ignores attempts to create a menu when the UUID already exists that would occur if all the
plugins are enabled. The following is an example of a pop-out menu.

fzrt_error_td my_cmnd_proj_icon_menu (
 const fzrt_UUID_td icon_menu_uuid,
 fzrt_UUID_td group_uuid,
 fz_fuim_icon_group_enum *group_pos,
 long *group_row,
 long *group_col
)
{
 fzrt_error_td err = FZRT_NOERR;

err = fz_fuim_exts_icon_group(
"My Group", MY_GRUP_UUID, icon_menu_uuid,
FZRT_UUID_NULL, FZ_FUIM_CMND_POS_NONE,
FZRT_UUID_NULL, FZ_FUIM_CMND_POS_NONE);

if(err == FZRT_NOERR)
{ fzrt_UUID_copy(MY_GRUP_UUID, group_uuid);

 *group_pos = FZ_FUIM_ICON_GROUP_CUSTOM;
 *group_row = 1;
 *group_col = 1;

}
 return(err);
}

The icon menu adjacent function (Optional, mutually exclusive with icon menu function)

fzrt_error_td fz_cmnd_cbak_proj_icon_menu_adjacent (
 const fzrt_UUID_td icon_menu_uuid,
 fzrt_UUID_td adjacent_uuid,
 fz_fuim_icon_adjacent_enum *where
);

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 140

This function is called by form•Z to add the command to the system icon menu. It serves the
same purpose as the fz_cmnd_cbak_proj_icon_menu function, however it specifies the
location of the icon item quite differently. The location is identified by referencing another
command in the icon menu. The adjacent_uuid parameter is the UUID of the command to
which the icon should be added adjacent. The where parameter specifies to which side of the
adjacent icon the icon should be added. The available options are
FZ_FUIM_ICON_ADJACENT_TOP, FZ_FUIM_ICON_ADJACENT_BOTTOM,
FZ_FUIM_ICON_ADJACENT_LEFT, FZ_FUIM_ICON_ADJACENT_RIGHT. The default action is
specified by FZ_FUIM_ICON_ADJACENT_DEFAULT which currently is the same as
FZ_FUIM_ICON_ADJACENT_RIGHT. New pop-out groups can not be created with this function.
The following example ads the icon to the right of the form•Z save command.

fzrt_error_td my_cmnd_proj_icon_menu_adjacent (
 const fzrt_UUID_td icon_menu_uuid,
 fzrt_UUID_td adjacent_uuid,
 fz_fuim_icon_adjacent_enum *where
)
{
 fzrt_error_td err = FZRT_NOERR;

 fzrt_UUID_copy(CMND_SAVE, adjacent_uuid);
 *where = FZ_FUIM_ICON_ADJACENT_RIGHT;

 return(err);
}

The icon file function (Optional, mutually exclusive with icon resource function)

fzrt_error_td fz_cmnd_cbak_proj_icon_file (
 fz_fuim_icon_enum which,
 fzrt_floc_ptr floc,
 long *hpos,
 long *vpos,
 fzrt_floc_ptr floc_mask,
 long *hpos_mask,
 long *vpos_mask
);

This function is called by form•Z to get an icon for the command from an image file. The icon
image can be in any of the form•Z supported image file formats or format for which an image file
translator is installed. The TIFF format is the recommended format as the TIFF translator is
commonly available. form•Z will request an icon when the command is displayed in a tool menu
using fz_cmnd_cbak_proj_icon_menu or fz_cmnd_cbak_proj_icon_menu_adjacent.

form•Z supports 3 styles of icon display. Recall that these are selectable by the user from the
Icon Style menu in the Icons Customization dialog. The first two options (White and Gray) are
generated from a black and white source graphic with different treatments at drawing time. The
third option is generated from a color source graphic. The first two options are older icon styles
that are provided for backward compatibility. The color icons became the default with v 4.0. Note
that if an icon of one type or the other (or both) is not provided, then form•Z uses a generic plugin
icon graphic.

The which parameter indicates the type of source graphic icon that is needed by form•Z. For
each type of icon source (black and white and color), there are two possible sizes. The full size
icon is the size that is used in the main tool palettes and tear off tool palettes. The black and
white source full size is 30 x 30 pixels and indicated by FZ_FUIM_ICON_MONOC. The color

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 141

source is 32 x 32 pixels and indicated by FZ_FUIM_ICON_COLOR. The alternate size is the
smaller size used for window icons that are drawn in the lower margin of the window. The
alternate size for both black and white and color sources is 20 x 16 pixels and indicated by
FZ_FUIM_ICON_MONOC_ALT and FZ_FUIM_ICON_COLOR_ALT respectively.

The floc parameter should be filled with the file name and location of the file that contains the
icon graphic. The hpos and vpos parameters should be set to the left and top pixel location of
icon data in the file respectively. It is recommended that the icon file be in the same directory as
the plugin file. This makes it simple to find the file. The location of the plugin file can be retained
during the FZPL_PLUGIN_INITIALIZE stage using the fzpl_glue->
fzpl_plugin_file_get_floc function.

The floc_mask parameter should be filled with the file name and location of the file that
contains the icon mask (this can be the same file as the floc parameter). The icon mask defines
the transparent areas of the icon. The hpos_mask and vpos_mask parameters should be set to
the left and top pixel location of icon mask data in the file respectively. If a mask is not provided
than the entire background of the icon will be drawn.

A single file can be used for multiple icons across a variety of commands by creating a grid of
icons in the file and specifying the location for each icon in the corresponding provided function.

fzrt_error_td my_cmnd_proj_icon_file (
 fz_fuim_icon_enum which,
 fzrt_floc_ptr floc,
 long *hpos,
 long *vpos,
 fzrt_floc_ptr floc_mask,
 long *hpos_mask,
 long *vpos_mask
)
{

fzrt_error_td err = FZRT_NOERR;

 switch(which)
 {
 case FZ_FUIM_ICON_MONOC:
 err = fzrt_file_floc_copy(my_plugin_floc,floc);
 if(err == FZRT_NOERR)

{
 err = fzrt_file_floc_set_name(floc,

"my_icon_bw.tif");
 *hpos = 0;
 *vpos = 0;
 }
 break;
 case FZ_FUIM_ICON_COLOR:
 err = fzrt_file_floc_copy(my_plugin_floc,floc);
 if(err == FZRT_NOERR)

{
 err = fzrt_file_floc_set_name(floc,

"my_icon_col.tif");
 *hpos = 0;
 *vpos = 0;
 }
 break;
 }
 return(err);
}

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 142

The icon resource function (Optional, mutually exclusive with icon file function)

fzrt_error_td fz_cmnd_cbak_proj_icon_rsrc (

fz_fuim_icon_enum which,
 fzrt_icon_ptr *icon
);

This function is called by form•Z to load an icon for the command from a platform’s native
(Macintosh or Windows) resource file format. This function works the same as the above icon file
function except that the icon data is read from the resource file instead of the image file. These
two functions are mutually exclusive (only one should be provided). Although this function and the
method for loading resources is cross platform, the resource formats are not hence the data must
be generated differently for each platform. This function is provided for situations where resources
in these formats are already available. It is recommended that all new artwork use the icon file
method described above as it is cross platform and simpler to create the content.

This function can be used to load the icon from the plugin file's resource data by using the
function fzpl_plugin_get_rlib_idx to obtain the index for the plugins files resource data.
The function fzrt_rlib_load_icon must be called to load the resource from the file. Use
FZRT_LOAD_ICON_BW to indicate black and white icons and indicate color icons using
FZRT_LOAD_ICON_COLOR. On the Macintosh platform, the black and white icons are read from
‘ICON’ resources and color icons from ‘cicn’. On Windows black and white icons must be stored
as a 1 bit depth bitmap resource with the type "FZICON" in the resource file and color icons can
be stored as either a native Windows ICON or as an 8 bit deep bitmap resource. Note that on
Windows, black and white icons and color icons stored as a bitmap resource will not have an icon
mask. form•Z releases the memory for the resource when the plugin is unloaded.

All icons are stored in 32 x 32 pixel resources, however, depending on the type of the icon, only
part of the resource will be used. Only the top left 30 x 30 pixels of the 32 x 32 are used for the
black and white full icon size indicated by FZ_FUIM_ICON_MONOC. The bottom and right two
pixels are NOT used (and will be cropped). The entire 32 x 32 is used for the color full icon size
indicated by FZ_FUIM_ICON_COLOR. For the alternate size icons indicated by
FZ_FUIM_ICON_MONOC_ALT and FZ_FUIM_ICON_COLOR_ALT respectively, form•Z uses the
bottom left 20 x 16 pixels. The top 16 and right 12 pixels are NOT used (and will be cropped).

fzrt_error_td my_cmnd_proj_icon_rsrc (
 fz_fuim_icon_enum which,
 fzrt_icon_ptr *icon

)
{
 long err = FZRT_NOERR;
 short rlib_index;

err = fzpl_plugin_get_rlib_idx(my_plugin_runtime_id, &rlib_index);

 if(err == FZRT_NOERR)
 {
 switch(which)
 {
 case FZ_FUIM_ICON_MONOC:

err = fzrt_rlib_load_icon(
rlib_index,FZRT_LOAD_ICON_BW,128,icon);

 break;
 case FZ_FUIM_ICON_COLOR:

err = fzrt_rlib_load_icon(
rlib_index,FZRT_LOAD_ICON_COLOR,128,icon);

 break;
}

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 143

 }
 return(err);
}

The preferences IO function (optional)

fzrt_error_td fz_cmnd_cbak_proj_pref_io (
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
);

form•Z calls this function to read and write any command specific data to a form•Z preference
file. This function is called when reading and writing user specified preference files (Save
Preferences button in the Preferences dialog). It is also called by form•Z when reading and
writing the session to session preference file maintained by form•Z. The file IO is performed
using the IO streams (iost) interface. This interface provides functions for reading and writing data
from a file (stream) and handles all cross platform endian issues. The iost parameter is the
pointer to the preference file and should be used in all IO Stream function calls. The IO Stream
functions are fully documented in the form•Z API reference.

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that is written when writing a file. When reading a file, the version parameter contains the
version of the data that was written to the file (and hence being read). The size parameter is
only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the plugin to maintain version changes of the plugin data. In the following
example, in its first release, a commands data consisted of four long integer values, a total of 16
bytes. When written, the version reported back to form•Z was 0. In a subsequent release, a fifth
long integer is added to increase the size to 20 bytes. When writing this new data, the version
reported to form•Z needs to be increased. When reading a file with the old version of the
command preference, form•Z will pass in the version number of the attribute when it was written,
in this case 0. This indicates to the plugin, that only four integers, 16 bytes, need to be read and
the fifth integer should be set to a default value.

fzrt_error_td my_cmnd_proj_pref_io(
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
)
{
 fzrt_error_td err = FZRT_NOERR;

 if (dir == FZ_IOST_WRITE) *version = 1;

 err = fz_iost_one_long(iost,&my_command->value1);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_command->value2);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_command->value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_command->value4);

 if(*version >= 1)

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 144

 { err = fz_iost_one_long(iost,&my_command-
>value5);
 }
 }
 }
 }

 return(err);
}

The project data IO function (optional)

fzrt_error_td fz_cmnd_cbak_proj_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
);

form•Z calls this function to read and write any command specific project data to a form•Z project
file. This function is called once when reading and writing form•Z project files. The file IO is
performed using the IO streams (iost) interface. This interface provides functions for reading and
writing data from a file (stream) and handles all cross platform endian issues. The iost
parameter is the pointer to the form•Z project file and should be used in all IO Stream function
calls. The IO Stream functions are fully documented in the form•Z API reference.

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that was is written when writing a file. When reading a file, the version parameter contains the
version of the data that was written to in the file (and hence being read). The size parameter is
only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the plugin to maintain version changes of the plugin data. In the following
example, in its first release, a commands data consisted of four long integer values, a total of 16
bytes. When written, the version reported back to form•Z was 0. In a subsequent release, a fifth
long integer is added to increase the size to 20 bytes. When writing this new data, the version
reported to form•Z needs to be increased. When reading a file with the old version of the
command preference, form•Z will pass in the version number of the attribute when it was written,
in this case 0. This indicates to the plugin, that only four integers, 16 bytes, need to be read and
the fifth integer should be set to a default value.

fzrt_error_td my_cmnd_proj_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
)
{
 fzrt_error_td err = FZRT_NOERR;

 if (dir == FZ_IOST_WRITE) *version = 1;

 err = fz_iost_one_long(iost,&my_command->value1);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_command->value2);

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 145

 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_command->value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_command->value4);

 if(*version >= 1)
 { err = fz_iost_one_long(iost,

&my_command->value5);
 }
 }
 }
 }

 return(err);
}

The project window data IO function (optional)

fzrt_error_td fz_cmnd_cbak_proj_wind_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
);

form•Z calls this function to read and write any command specific project window data to a
form•Z project file. This function is called once for each window in the project when reading and
writing form•Z project files. The file IO is performed using the IO streams (iost) interface. This
interface provides functions for reading and writing data from a file (stream) and handles all cross
platform endian issues. The iost parameter is the pointer to the form•Z Project file and should
be used in all IO Stream function calls. The IO Stream functions are fully documented in the
form•Z API reference.

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that was is written when writing a file. When reading a file, the version parameter contains the
version of the data that was written to in the file (and hence being read). The size parameter is
only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the plugin to maintain version changes of the plugin data. In the following
example, in its first release, a commands data consisted of four long integer values, a total of 16
bytes. When written, the version reported back to form•Z was 0. In a subsequent release, a fifth
long integer is added to increase the size to 20 bytes. When writing this new data, the version
reported to form•Z needs to be increased. When reading a file with the old version of the
command preference, form•Z will pass in the version number of the attribute when it was written,
in this case 0. This indicates to the plugin, that only four integers, 16 bytes, need to be read and
the fifth integer should be set to a default value.

fzrt_error_td my_cmnd_proj_wind_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
)
{
 fzrt_error_td err = FZRT_NOERR;

2.8.2 Command Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 146

 if (dir == FZ_IOST_WRITE) *version = 1;

 err = fz_iost_one_long(iost,&my_command->value1);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_command->value2);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_command->value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_command->value4);

 if(*version >= 1)
 { err = fz_iost_one_long(iost,

&my_command->value5);
 }
 }
 }
 }

 return(err);
}

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 147

2.8.3 File Translator

form•Z provides two interfaces for file translator plugins. The first is the form•Z structured translator interface.
This is the interface used by all auto•des•sys authored translators and is the recommended interface to use for
most file translator plugins. This method offers automatic access to the standard form•Z file import and export
option dialogs and features (see 3.13 and 3.14 of the form•Z users Manual) and export and import pipelines. A
structured translator is also able to take advantage of a lot of functionality that is provided for the translator which
makes development faster, minimized maintenance and improves future compatibility. Structured file translators
are not available to scripts.

An unstructured translator does not have access to the standard features and export and import pipelines and
only supports data import and export. These translators have a simple function for specifying an options interface
and a function for performing the export or import. Unstructured plugins are best used when dealing with a data
file format that is very specific in nature and does not have support for the full range of data types that form•Z
supports. An example of a good use of an unstructured file translator is a point cloud importer. Unstructured file
translators are not available to scripts.

File translators are divided into image and data categories. The image category is for formats that represent 2d
graphic information. The information can be in a bitmap or pixel format like TIFF and Targa or it can be vector like
eps and HPGL. The data category are formats that contain 2D and/or 3D data which can be converted to or from
form•Z modeling or drafting data types. This may include explicit object data or parametric data. Note that some
formats may be considered a hybrid between image and data categories. This is often true of image formats that
contain vector information. For example the Illustrator format is a vector based image format which is useful for
storing rendered hidden line images (exported). It can also be used as a data import format to bring graphics into
form•Z.

form•Z determines the interface location for the file formats based on the supported functionality implemented in
the translator.

• Image formats that have export (vector or bitmap) functionality are added to the Export Image menu in the file
menu.
• Image formats that have bitmap import functionality are available throughout the program where bitmap images
are supported. This includes the underlay image, the displacement tool, and RenderZone surface style and
options. Bitmap image formats can also be imported as drafting image elements from the Import command in the
File menu.
• Image formats that have vector import functionality are available as the underlay image and can also be
imported as drafting image elements from the Import command in the File menu.
• Data formats that have export functionality are added to the Export menu in the file menu.
• Data formats that have import functionality are available from the Import command in the File menu.

Translator information function set

Each file translator plugin (structured or unstructured) needs to provide a translator information function set
(fz_ffmt_cbak_info_fset). This tells form•Z certain information about the plugin so that the translator can be
added to the form•Z Interface.

File translator identification

Each file translator must be uniquely identified by a UUID. For efficiency, form•Z maps this UUID to an integer
run time id called the translator's reference id. The reference id is passed to nearly all file translator functions.
The reference id can be used to query form•Z for information about a translator and its file format. The reference
id is constant for any given run of form•Z, but it may be different each time form•Z is run. Therefore, the
reference id should not be used as a persistent identifier of the translator. Use the file tanslator's UUID as a
persistent identifier. The file translator’s reference id is of type fz_ffmt_ref_td.

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 148

File translators can also be identified by a keyword. Keywords are strings that can be used to obtain reference id
for a translator for a specific file format without having to know the UUID of a specific file translator. For example,
if a plugin needs to read a TIFF image, it can query form•Z for a TIFF translator. If one exists, from•Z will give it
the file translator's reference id. Any translator that sets its keyword to "TIFF" is accessible to any plugin that
needs to use a TIFF translator. Keywords do not have to be unique among translators, however they should be
unique among file formats and all translators that support the same file format should use the same keyword. The
form•Z defined keywords are defined in formZ_vendor.h. A translator can define its own keyword by publishing it
in a C include file.

File translator options

Each file translator can choose to display an options dialog or not. This is the dialog that is invoked when the user
clicks on the "Options..." button in the import or export standard file Open dialog (this dialog also invoked when
the OK button in the import or export standard file Open dialog is clicked when the "Always Open File Format
Options Dialogs" preference is set). File translator options dialogs are discussed in sections 3.13 and 3.14 of the
form•Z Users Manual.

There are separate options dialogs for image import, image export, model import, model export, draft import and
draft export. Each of these dialogs contains two major sections, the common options section and the custom
options section. The common options section contains options that are common to all translators of a type (image
import, model export, etc). Flags can be set to enable each item on the common options section. Only items for
options the file translator supports should be enabled. The translator can also change the default value of any of
the options in the common section. This would be necessary if the form•Z default value is not supported by the
translator.

If a file translator needs to specify options that are not in the common section, it can define custom options. A file
translator must do several things to define custom options. It must define the data structure that defines the
options and must allocate the memory for storing the values of the options. It must provide a function to set the
default values of the custom options. It must provide a function to save and load the options. And finally, it must
provide a function to implement the custom section of the options dialog. This function uses the form•Z user
interface manager function set to add items to the custom section of the options dialog.

More details on this are in the sections for each translator type.

File format Identification

On the Macintosh, form•Z uses the file type, the file extension and an optional translator provided file validation
function to filter files listed in the file open dialog and to select an appropriate file translator to import the file. On
Windows, only the file extension and the file validation function are used.

File translator information callback function set

Each file translator plugin (structured or unstructured) needs to provide a file translator information function set,
fz_ffmt_cbak_info_fset. This tells form•Z certain information about the translator so that it can be added to
the form•Z interface and associated with the file format it supports.

This function set contains the following functions:

The translator name function (required)

fzrt_error_td fz_ffmt_cbak_name (
 char *fmt_name,
 long fmt_name_max_len
);

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 149

This function is called by form•Z to get a name for the file format. This is the name that will appear in the form•Z
interface. It is recommended that the format name and sort strings are stored in a .fzr file so that they are
localizable.

The fmt_name string is the name of the format that will displayed in the form•Z interface.
ffmt_name_max_len is the maximum length for this string.

An example of a translator name function is shown below.

fzrt_error_td my_name(
 char *fmt_name,
 long fmt_name_max_len)
{
 fzrt_error_td err = FZRT_NOERR;

strncpy(fmt_name, "MY FORMAT NAME", fmt_name_max_len);

 return(err);
}

The translator uuid function (required)

fzrt_error_td fz_ffmt_cbak_uuid (
 fzrt_UUID_td fmt_uuid
);

The file translator's fmt_id is a unique identifier for the translator. This can be the same as the plugin's id if the
plugin only implements one translator (in other words, only adds one translator information function set to the
plugin).

An example of a translator id function is shown below.

#define MY_PLUGIN_UUID "\xfc\x98\x6f\x83\xf2\xd6\x4b\x9c\xb1\xc4\x0\x32\xf\x96\x8a\xfc"

fzrt_error_td my_uuid(
 fzrt_UUID_td fmt_uuid)
{
 fzrt_error_td err = FZRT_NOERR;

 fzrt_UUID_copy(MY_PLUGIN_UUID, fmt_id);

 return(err);
}

The translator information function (required)

fzrt_error_td fz_ffmt_cbak_info (
 char *file_ext,
 long file_ext_max_len,
 char *sortby,
 long sortby_max_len,
 char *keywd,
 long keywd_max_len,
 long *attr_flags
);

This function is called by form•Z to get general information about a file translator. This information includes the
file extension of the file format, a string for sorting the file format in form•Z lists and menus, the file format
keyword, and flags describing data needs of the format and capabilities of the translator. It is recommended that
the sort string is stored in a .fzr file so that it is localizable. The file extension and keyword strings must not be
localized. This function must be implemented by all file translators.

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 150

The sortby string is used to alphabetically sort format names displayed in the form•Z interface. This string, not
the format's name, is used to sort format name in lists and menus. sortby_max_len is the maximum length for
this string.

The file_ext string identifies the file's file extension. file_ext_max_len is the maximum length of
file_ext.

keywd is a keyword string for the file format supported by the translator. keywd_max_len is the maximum
length of keywd.

attr_flags is a set of bit flags that describe the data needs and certain caveats about the translator or file
format. Appropriate bits for these flags are defined in fz_ffmt_format_attr_flags_enum. For example a
bitmap format that stores depth data needs access to a rendered image's depth buffer. This would be specified
by setting the FZ_FFMT_FORMAT_ATTR_NEEDS_DEPTH_BIT bit of the flags. A translator that is capable of
exporting procedural textures should set the FZ_FFMT_FORMAT_ATTR_SUPPORTS_PROCTXTR_BIT. This would
prevent form•Z from displaying a warning to the user that procedural texture will be lost by exporting to the file.

An example of a translator information function is shown below.

#define MY_PLUGIN_KEYWD "My Keyword"

fzrt_error_td my_info(
 char *sortby,
 long sortby_max_len,
 char *file_ext,
 long file_ext_max_len,
 char *keywd,
 long keywd_max_len,
 long *attr_flags)
{
 fzrt_error_td err = FZRT_NOERR;

 strncpy(sortby, "my sort string", sortby_max_len);
 strncpy(file_ext, "ext", file_ext_max_len);
 strncpy(keywd, MY_PLUGIN_KEYWD, keywd_max_len);

*attr_flags = 0;

 return(err);
}

The Macintosh file type function (optional)

fzrt_error_td fz_ffmt_cbak_ftype (
 fzrt_ostype *type,
 fzrt_ostype *creator
);

This function is called to get the Macintosh file type and creator associated with the file format. This function
is needed only when a Macintosh file type and creator are defined for the file format. On the Macintosh, the
file type and creator are assigned to an exported file. The default values for the file type and creator are
'????' which represents an unknown file type and creator.

An example of a translator file type function is shown below.

fzrt_error_td my_ftype (
 fzrt_ostype *type,
 fzrt_ostype *creator)
{
 *type = 'MYTP';

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 151

 *creator = 'MYCR';

 return(FZRT_NOERR);
}

The translator icon from resource function (optional)

fzrt_error_td fz_ffmt_cbak_icon_rsrc (
 fzrt_icon_ptr *icon
);

This function is called by form•Z to get an icon that is associated with the file format. This function is needed
when the icon is stored in the plugin file's resources. The icon can be obtained by calling
fzrt_rlib_load_icon and passing it the resource id of the icon.

An example of a translator icon from resource function is shown below.

unsigned long my_plugin_runtime_id;
#define MY_ICON_NUM 10

fzrt_error_td my_icon_rsrc(
 fzrt_icon_ptr *icon)
{
 long err = FZRT_NOERR;
 short rlib_index;

 if(icon != NULL)
 {
 err = fzpl_plugin_get_rlib_idx(my_plugin_runtime_id, &rlib_index);
 if(err == FZRT_NOERR)
 {

err = fzrt_rlib_load_icon (
rlib_index,
FZRT_LOAD_ICON_COLOR,MY_ICON_NUM,
icon);

 }
 }

 return(err);
}

The translator icon from file function (optional)

fzrt_error_td fz_ffmt_cbak_icon_file (
 fzrt_floc_ptr floc,
 long *hpos,
 long *vpos,
 fzrt_floc_ptr floc_mask,
 long *hpos_mask,
 long *vpos_mask
);

This function is called by form•Z to get an icon that is associated with the file format. This function is needed
when the icon is stored in a bitmap file. The icon file's format must be TIFF. Two files fully define an icon. The
first is the icon's color bitmap that defines the color image of the icon. The second is the icon's mask bitmap that
defines the transparent areas of the icon. The mask file is optional.

floc is the file location of the icon's color bitmap file. hpos and vpos are horizontal and vertical offsets (in
pixels) into the color bitmap. This allows one image file to contain multiple icons.

floc_mask is the file location of the icon's mask file. hpos_mask and vpos_mask are horizontal and vertical
offsets (in pixels) into the mask bitmap. This allows one image file to contain multiple icon masks.

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 152

An example of a translator icon from file function is shown below.

fzrt_error_td my_icon_file(
 fzrt_floc_ptr floc,
 long *hpos,
 long *vpos,
 fzrt_floc_ptr floc_mask,
 long *hpos_mask,
 long *vpos_mask)
{

fzrt_error_td err;
fzrt_floc_ptr floc_local;

fzrt_file_floc_init(&floc_local);

err = _fset_glue->fzpl_plugin_file_get_floc (floc_local);
if(err == FZRT_NOERR)
{

err = fzrt_file_floc_copy(floc_local, floc);
 if(err == FZRT_NOERR)

err = fzrt_file_floc_set_name(floc, "my_col.tif");
 *hpos = 0;
 *vpos = 0;
 }

if(err == FZRT_NOERR)
{

 err = fzrt_file_floc_copy(floc_local, floc_mask);
 if(err == FZRT_NOERR)

err = fzrt_file_floc_set_name(floc_mask, "my_mask.tif");
 *hpos_mask = 0;
 *vpos_mask = 0;
 }

fzrt_file_floc_finit(&floc_local);

 return(err);
}

The file validation function (optional)

fzrt_boolean fz_ffmt_cbak_is_file (
 fzrt_floc_ptr floc,
 const fzrt_ptr data,
 long size
);

This function is called to determine if a specific file can be read by a translator. This function is called only if the
file extension and, on the Macintosh, the file type matches that specified by the translator. The file's floc and the
first size bytes of the file (data) are passed into this function. This function determines if the file is of the
supported format by inspecting the contents of the file. If the file format can be verified by inspecting the contents
of the first size bytes of the file (i.e. check a header at the beginning of the file), then the data passed in should
be used for verification. Otherwise, the file must be opened, read, and closed by this function. Checking the
data passed in is recommended because it is more efficient.

An example of a translator file validation function is shown below.

#define MY_HEADER_DATA 0x05551212

fzrt_boolean my_is_file(

fzrt_floc_ptr floc,
const fzrt_ptr buffer,
long size)

{
 fzrt_boolean is = FALSE;

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 153

 long testval = MY_HEADER_DATA;

 if(memcmp(buffer, &testval, 4) == 0) is = TRUE;

 return(is);
}

The translator custom options IO function (optional)

fzrt_error_td fz_ffmt_cbak_opts_io (
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
);

This function is called by form•Z to save and load the translator's custom options. This function is only needed if
the translator has custom options.

This function saves and loads the file translator's custom options via a form•Z IO Stream (iost). The dir
parameter specifies whether the options are being read or written. A file translator's custom options are written as
a block of data. This data starts with a header that contains the version and size of the block. If the options
are being read, the version and block size are passed into this function. If the size or version are not an
expected value, an error must be returned. form•Z will then skip that block of data. Otherwise, the data should
be read and FZRT_NOERR returned. If the options are being written, the version is set by this function and data
is written. If any of the IO Stream functions return an error, writing/reading should stop and the error returned.

An example of a translator custom options IO function is shown below.

#define MY_PLUGIN_VERSION FZPL_VERS_MAKE(1,0,0,0)
long my_read_opts_flags;
long my_write_opts_flags;

fzrt_error_td my_opts_io (

fz_iost_ptr iost,
fz_iost_dir_td_enum dir,
fzpl_vers_td * const version,
unsigned long size)

{
 fzrt_error_td err = FZRT_NOERR;

 if(dir == FZ_IOST_WRITE) *version = MY_PLUGIN_VERSION;
 else
 {
 if(*version > MY_PLUGIN_VERSION || size < (2*sizeof(long)))
 {
 err = fzrt_error_set(

FZPL_BAD_VERSION_ERROR,
FZRT_ERROR_SEVERITY_WARNING,
FZRT_ERROR_CONTEXT_FZRT, FZPL_CONTEXT_ID);

 }
 }

 if(err == FZRT_NOERR)
 {
 err = fz_iost_long(iost, &my_read_opts_flags, 1);
 err = fz_iost_long(iost, &my_write_opts_flags, 1);
 }

 return(err);
}

Structured file translators

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 154

Structured image file translators

Image file translators read and/or write bitmap data, vector data or both. What functions an image translator
performs (read or write) and which data formats (bitmap or vector) a translator supports are determined by which
functions in the fz_ffmt_cbak_image_fset are implemented by the translator. Callback functions in the
fz_ffmt_cbak_image_fset function set that begin with fz_ffmt_cbak_image_bmap_read are for reading
bitmap images. Callback functions in the fz_ffmt_cbak_image_fset function set that begin with
ffmt_cbak_image_bmap_write are for writing bitmap images. Callback functions in the
fz_ffmt_cbak_image_fset function set that begin with fz_ffmt_cbak_image_vect_read are for reading
vector images. Callback functions in the fz_ffmt_cbak_image_fset function set that begin with
ffmt_cbak_image_vect_write are for writing vector images. Callback functions in the
fz_ffmt_cbak_image_fset function set that begin with fz_ffmt_cbak_image_read are functions
common to reading bitmap and vector images. Callback functions in the fz_ffmt_cbak_image_fset function
set that begin with ffmt_cbak_image_write are functions common to writing bitmap and vector images.

Two function sets are needed for an image file translator, the translator information function set and the image
translator function set. The translator information function set is identified by the following constants,
FZ_FILE_IMAGE_EXTS_TYPE (plugin type UUID), FZ_FILE_IMAGE_EXTS_NAME (plugin type name), and
FZ_FILE_IMAGE_EXTS_VERSION (plugin type version).

The example below shows the definition of an image file translator and the registration of the two function sets
within that plugin.

#define MY_STRINGS 1
#define MY_NAME_STR 1
#define MY_PLUGIN_UUID "\xfc\x98\x6f\x83\xf2\xd6\x4b\x9c\xb1\xc4\x0\x32\xf\x96\x8a\xfc"
#define MY_PLUGIN_VERSION FZPL_VERS_MAKE(1,0,0,0)
#define MY_PLUGIN_VENDOR "My Company Name"
#define MY_PLUGIN_URL "www.myurl.com"

static fzrt_error_td my_image_register_plugin ()
{
 fzrt_error_td err = FZRT_NOERR;
 long num_failed = 0;
 char pname[FZPL_NAME_SIZE];

 /* Register the plugin */

err = fzrt_fzr_get_string (
_fz_rsrc_ref,
MY_STRINGS,
MY_NAME_STR,
pname);

 if (err == FZRT_NOERR)
 {
 err = fset_glue->fzpl_plugin_register (

MY_PLUGIN_UUID,
pname,
MY_PLUGIN_VERSION,
MY_PLUGIN_VENDOR,
MY_PLUGIN_URL,
FZ_FILE_IMAGE_EXTS_TYPE,
FZ_FILE_IMAGE_EXTS_VERSION,
NULL,
0,
NULL,
&my_plugin_runtime_id);

 }
 if (err == FZRT_NOERR)
 {
 /* Add the function sets implemented by the plugin */

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 155

err = fset_glue->fzpl_plugin_add_fset (
my_plugin_runtime_id,
FZ_FFMT_CBAK_INFO_FSET_TYPE,

 FZ_FFMT_CBAK_INFO_FSET_VERSION,
FZ_FFMT_CBAK_INFO_FSET_NAME,
FZPL_TYPE_STRING(fz_ffmt_cbak_info_fset),
sizeof (fz_ffmt_cbak_info_fset),
my_fill_translator_info_fset,
FALSE);

 if(err == FZRT_NOERR)
 {
 err = fset_glue->fzpl_plugin_add_fset (

my_plugin_runtime_id,
FZ_FFMT_CBAK_IMAGE_FSET_TYPE,
FZ_FFMT_CBAK_IMAGE_FSET_VERSION,
FZ_FFMT_CBAK_IMAGE_FSET_NAME,
FZPL_TYPE_STRING(fz_ffmt_cbak_image_fset),
sizeof (fz_ffmt_cbak_image_fset),
my_fill_image_cbak_fset,
FALSE);

 }
 }

 return(err);
}

The example below shows the function set fill functions for the fz_ffmt_cbak_info_fset and the
fz_ffmt_cbak_image_fset function sets.

fzrt_error_td my_translator_info_get_fset (

const fzpl_fset_def_ptr fset_def,
fzpl_fset_td * const fset)

{
 fzrt_error_td err = FZRT_NOERR;
 fz_ffmt_cbak_info_fset *info_funcs;

 err = fzpl_glue->fzpl_fset_def_check (fset_def,

FZ_FFMT_CBAK_INFO_FSET_VERSION,
FZPL_TYPE_STRING(fz_ffmt_cbak_info_fset),
sizeof(fz_ffmt_cbak_info_fset),
FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 info_funcs = (fz_ffmt_cbak_info_fset *)fset;

 info_funcs->fz_ffmt_cbak_name = my_name;
 info_funcs->fz_ffmt_cbak_uuid = my_uuid;
 info_funcs->fz_ffmt_cbak_info = my_info;
 info_funcs->fz_ffmt_cbak_ftype = my_ftype;
 info_funcs->fz_ffmt_cbak_icon_rsrc = my_icon_rsrc;
 info_funcs->fz_ffmt_cbak_icon_file = my_icon_file;
 info_funcs->fz_ffmt_cbak_opts_io = my_opts_io;
 info_funcs->fz_ffmt_cbak_is_file = my_is_file;
 }

 return(err);
}

fzrt_error_td my_get_image_cbak_fset (

const fzpl_fset_def_ptr fset_def,
fzpl_fset_td * const fset)

{
 fzrt_error_td err = FZRT_NOERR;
 fz_ffmt_cbak_image_fset *image_funcs;

 err = _fset_glue->fzpl_fset_def_check (fset_def,

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 156

FZ_FFMT_CBAK_IMAGE_FSET_VERSION,
FZPL_TYPE_STRING(fz_ffmt_cbak_image_fset),
sizeof (fz_ffmt_cbak_image_fset),
FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 image_funcs = (fz_ffmt_cbak_image_fset *)fset;

 image_funcs->fz_ffmt_cbak_image_read_dlog_cust = my_read_dlog_cust;
 image_funcs->fz_ffmt_cbak_image_read_predloginit = my_read_predloginit;
 image_funcs->fz_ffmt_cbak_image_read_opts_default = my_read_opts_default;
 image_funcs->fz_ffmt_cbak_image_read_opts_flags = my_read_opts_get_flags;
 image_funcs->fz_ffmt_cbak_image_read_opts_changed = my_read_opts_changed;

 image_funcs->fz_ffmt_cbak_image_bmap_read_info = my_bmap_read_info;
 image_funcs->fz_ffmt_cbak_image_bmap_read = my_bmap_read;

 image_funcs->fz_ffmt_cbak_image_vect_read_frame = my_vect_read_frame;
 image_funcs->fz_ffmt_cbak_image_vect_read = my_vect_read;
 image_funcs->fz_ffmt_cbak_image_vect_read_raw_data = my_vect_read_raw;
 image_funcs->fz_ffmt_cbak_image_vect_read_printer_data = my_vect_read_printer;
 image_funcs->fz_ffmt_cbak_image_read_plat_native_draft_image
 = my_read_platform_data;

 image_funcs->fz_ffmt_cbak_image_write_dlog_cust = my_write_dlog_cust;
 image_funcs->fz_ffmt_cbak_image_write_predloginit = my_write_predloginit;
 image_funcs->fz_ffmt_cbak_image_write_opts_default = my_write_opts_default;
 image_funcs->fz_ffmt_cbak_image_write_opts_flags = my_write_opts_get_flags;
 image_funcs->fz_ffmt_cbak_image_write_opts_changed = my_write_opts_changed;

 image_funcs->fz_ffmt_cbak_image_bmap_write_file_begin = my_bmap_write_file_begin;
 image_funcs->fz_ffmt_cbak_image_bmap_write_file_end = my_bmap_write_file_end;
 image_funcs->fz_ffmt_cbak_image_bmap_write_image_begin = my_bmap_write_image_begin;
 image_funcs->fz_ffmt_cbak_image_bmap_write_image_scanline_byte =
 my_bmap_write_image_scanline;
 image_funcs->fz_ffmt_cbak_image_bmap_write_image_end = my_bmap_write_image_end;
 image_funcs->fz_ffmt_cbak_image_bmap_write_progress_str = my_bmap_write_progress_str;
 image_funcs->fz_ffmt_cbak_image_bmap_write_err_label = my_bmap_write_err_label;

 image_funcs->fz_ffmt_cbak_image_vect_write_begin =
 my_vect_write_begin;
 image_funcs->fz_ffmt_cbak_image_vect_write_end =
 my_vect_write_end;
 image_funcs->fz_ffmt_cbak_image_vect_write_progress_str =
 my_vect_write_progress_str;
 image_funcs->fz_ffmt_cbak_image_vect_write_err_label =
 my_vect_write_err_label;
 image_funcs->fz_ffmt_cbak_image_vect_write_line =
 my_vect_write_line;
 image_funcs->fz_ffmt_cbak_image_vect_write_point =
 my_vect_write_point;
 image_funcs->fz_ffmt_cbak_image_vect_write_simple_text =
 my_vect_write_simple_text;
 image_funcs->fz_ffmt_cbak_image_vect_write_set_line_color =
 my_vect_write_set_line_color;
 image_funcs->fz_ffmt_cbak_image_vect_write_set_fill_color =
 my_vect_write_set_fill_color;
 image_funcs->fz_ffmt_cbak_image_vect_write_set_line_weight =
 my_vect_write_set_line_weight;
 image_funcs->fz_ffmt_cbak_image_vect_write_lineset =
 my_vect_write_lineset;
 image_funcs->fz_ffmt_cbak_image_vect_write_begin_compound =
 my_vect_write_begin_compound;
 image_funcs->fz_ffmt_cbak_image_vect_write_end_compound =
 my_vect_write_end_compound;
 image_funcs->fz_ffmt_cbak_image_vect_write_save_gstate =
 my_vect_write_save_gstate;
 image_funcs->fz_ffmt_cbak_image_vect_write_restore_gstate =

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 157

 my_vect_write_restore_gstate;
 image_funcs->fz_ffmt_cbak_image_vect_write_set_line_style =
 my_vect_write_set_line_style;
 image_funcs->fz_ffmt_cbak_image_vect_write_can_do_arc =
 my_vect_write_can_do_arc;
 image_funcs->fz_ffmt_cbak_image_vect_write_arc = my_vect_write_arc;
 image_funcs->fz_ffmt_cbak_image_vect_write_set_text_angle =
 my_vect_write_set_text_angle;
 image_funcs->fz_ffmt_cbak_image_vect_write_set_text_font =
 my_vect_write_write_text_font;
 image_funcs->fz_ffmt_cbak_image_vect_write_write_text_char =
 my_vect_write_text_char;
 image_funcs-> fz_ffmt_cbak_image_vect_write_set_fill_pattern =
 my_vect_write_fill_pattern;
 image_funcs->fz_ffmt_cbak_image_vect_write_string_header =
 my_vect_write_string_header;
 image_funcs->fz_ffmt_cbak_image_vect_write_string_newline =
 my_vect_write_string_newline;
 image_funcs->fz_ffmt_cbak_image_vect_write_string_font =
 my_vect_write_string_font;
 image_funcs->fz_ffmt_cbak_image_vect_write_string_write =
 my_vect_write_string_write;
 image_funcs->fz_ffmt_cbak_image_vect_write_string_trailer =
 my_vect_write_string_trailer;
 }

 return(err);
}

Import options

Image import translators can display an import options dialog. The "Options..." button on the import standard file
Open dialog will be enabled if the options flags set by the fz_ffmt_cbak_image_read_opts_flags function
has the FZ_FFMT_OPTS_INIT_HAS_READ_OPTS_BIT bit set. Individual items in the common section of the
options dialog are enabled by setting the appropriate bits of the flags parameter to
fz_ffmt_cbak_image_read_opts_flags. The appropriate bits are defined in
fz_ffmt_image_read_iface_opts_flags_enum. Image import options are discussed in section 3.14.1 of
the form•Z Users Manual.

The call back functions to import an image are defined in the fz_cbak_ffmt_image_fset.

The fz_ffmt_cbak_image_fset contains the following functions to support image import options:

The image translator import options dialog enable function (required)

fzrt_error_td fz_ffmt_cbak_image_read_opts_flags (
 fz_ffmt_ref_td ffmt_id,
 long *flags,
 long *opts_flags
);

This function is called by form•Z to get the enable state of the image import "Options..." button and the enable
states of each item in the image import options dialog. The flags parameter is used to set the enable states of
items in the common section of the options dialog. Appropriate bits for this parameter are defined in
fz_ffmt_image_read_iface_opts_flags_enum. By default, all items are disabled. The opts_flags
parameter enables the "Options..."button on the "Image Import" standard file Open dialog by setting it to
FZ_FFMT_OPTS_INIT_HAS_READ_OPTS_BIT. If the "Options..." button is to be disabled, opts_flags should
be set to 0 (this is the default).

An example of an image translator import options dialog enable function is shown below.

fzrt_error_td my_read_opts_get_flags (

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 158

fz_ffmt_ref_td ffmt_id,
long *flags,
long *opts_flags)

{
 fzrt_error_td err = FZRT_NOERR;

 FZ_SETBIT(*flags, FZ_FFMT_IMAGE_READ_IFACE_OPTS_ENABLEIMPORTASDRAFTBITMAP_BIT);

FZ_SETBIT(*flags, FZ_FFMT_IMAGE_READ_IFACE_OPTS_ENABLEORIGINALSIZE_BIT);
FZ_SETBIT(*flags, FZ_FFMT_IMAGE_READ_IFACE_OPTS_ENABLEPROPORTIONS_BIT);
FZ_SETBIT(*flags, FZ_FFMT_IMAGE_READ_IFACE_OPTS_ENABLESTOREINPROJECT_BIT);

 FZ_SETBIT(*opts_flags , FZ_FFMT_OPTS_INIT_HAS_READ_OPTS_BIT);

 return(err);
}

The image translator import options defaults function (optional)

fzrt_error_td fz_ffmt_cbak_image_read_opts_default (
 fz_ffmt_ref_td ffmt_id
);

This function is called by form•Z to set default values of options. All custom options and any common options
whose default values the file translator wishes to change must be set here. This function is only needed if the
translator has custom options or the translator needs to change default values of any of the common options.

form•Z will have set the default values for common options prior to calling this function. This function can then
change any of those values by calling fz_ffmt_image_read_opts_parm_set using the options pointer
obtained from fz_ffmt_image_read_opts_get_ptr. If the translator needs to inspect the value of an option,
it can be obtained by calling fz_ffmt_image_read_opts_parm_get.

An example of an image translator import options defaults function is shown below.

long my_read_opts_flags;

fzrt_error_td my_read_opts_default (

fz_ffmt_ref_td ffmt_id)
{
 fzrt_error_td err = FZRT_NOERR;
 fz_type_td fz_type;
 fz_xy_td size = {24.0, 24.0};

 /* Change a default value in the common options */
 fz_type_set_xy(&size, &fz_type);
 fz_ffmt_image_read_opts_parm_set (

ffmt_id,
FZ_FFMT_IMAGE_READ_OPTS_PARM_SIZE,
&fz_type);

 /* Set a default value for a custom option */
 my_read_opts_flags = 0;

 return(err);
}

This example changes the image value options to 2 feet (the form•Z default is 1 foot) and initializes a custom
option.

The image translator import options changed function (optional)

fzrt_error_td fz_ffmt_cbak_image_read_opts_changed (
 fz_ffmt_ref_td ffmt_id,
 fz_ffmt_image_read_opts_enum which
);

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 159

This function is called by form•Z when the user changes the value of an option in the common section of the
options dialog. This allows the translator to override the behavior of the common section of the options dialog by
setting values of options or setting enable states of items. The which parameter specifies which parameter's
value changed. Values of the common options can be set by calling fz_ffmt_image_read_opts_parm_set
using the options pointer obtained from fz_ffmt_image_read_opts_get_ptr. If the translator needs to
inspect the value of an option, it can be obtained by calling fz_ffmt_image_read_opts_parm_get. The
enable states of items can be changed by first getting the enable flags by calling
fz_ffmt_image_read_get_dlog_flags, then changing the enable bit of the item whose state needs to
change and calling fz_ffmt_image_read_set_dlog_flags. Appropriate bits are defined in
fz_ffmt_image_read_iface_opts_flags_enum. All these functions are in the fz_ffmt_image_fset
function set.

An example of an image translator import options changed function is shown below.

fzrt_error_td my_read_opts_changed (
 fz_ffmt_ref_td ffmt_id,
 fz_ffmt_image_read_opts_enum which
)
{
 fzrt_error_td err = FZRT_NOERR;
 fz_type_td fz_type;
 fz_xy_td size = {24.0, 24.0};

 if(which == FZ_FFMT_IMAGE_READ_OPTS_PARM_SIZE)

{
 fz_ffmt_image_read_opts_parm_get (

ffmt_id,
FZ_FFMT_IMAGE_READ_OPTS_PARM_SIZE,
&fz_type);

 fz_type_get_xy(&fz_type, &size);

 size.x = (round(size.x/12.0)*12);
 size.y = (round(size.y/12.0)*12);

 fz_type_set_xy(&size, &fz_type);
 fz_ffmt_image_read_opts_parm_set (

ffmt_id,
FZ_FFMT_IMAGE_READ_OPTS_PARM_SIZE,
&fz_type);

}

 return(err);
}

This example rounds the image world size that the user entered to the nearest foot.

The image translator import custom options dialog function (optional)

fzrt_error_td fz_ffmt_cbak_image_read_dlog_cust (
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 fz_ffmt_ref_td ffmt_id
);

This function is called by form•Z to add items to the custom section of the options dialog. This function should
add items by calling functions in the fz_fuim_fset function set using fuim_mngr and parent parameter
(passed into this function) as the top level parent for all items. The ffmt_id parameter specifies the file
translator's reference id.

An example of an image translator import custom options dialog function is shown below.

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 160

#define MY_STRINGS 1
#define MY_COMPRESS_STR 2

#define MY_COMPRESS_BIT 1
long my_read_opts_flags;

fzrt_error_td my_read_dlog_cust (
 fz_fuim_tmpl_ptr fuim_tmpl,

short parent,
fz_ffmt_ref_td ffmt_id)

{
 fzrt_error_td err = FZRT_NOERR;

short gindx;
char title[256];

 err = fzrt_fzr_get_string (

_fz_rsrc_ref,
MY_STRINGS,
MY_COMPRESS_STR,
title);

 if(err == FZRT_NOERR)
 {
 if((gindx = fz_fuim_new_check(fuim_tmpl, parent, 0,

FZ_FUIM_FLAG_GFLT | FZ_FUIM_FLAG_HORZ, title, NULL, NULL)) > -1)
 {
 fz_fuim_item_encod_long(fuim_tmpl, gindx, & my_read_opts_flags,

TRUE, FZ_FUIM_BIT2_MASK(MY_COMPRESS_BIT));
 }
 }

 return(err);
}

The image translator import pre-options dialog function (optional)

fzrt_error_td fz_ffmt_cbak_image_read_predloginit (
 long windex,
 fz_ffmt_ref_td ffmt_id,
);

This function is called by form•Z just prior to displaying the options dialog. This is done so the file translator can
check the current state of form•Z and make any adjustments to the values of options or the enable states of items
on the options dialog. For example, a translator may have a custom option that is only appropriate if the
rendering is vector and not appropriate for a bitmap rendering. In this case, this function would check the type of
the current rendering and disable the option's dialog item if the render type is bitmap. Options values and item
enable states can be changed as described in for the fz_ffmt_cbak_image_read_opts_changed function.

Structured image bitmap file import

Bitmap images are imported into form•Z in several ways, import to draft, view file, texture map and underlay
image. Each of these are accomplished by simply reading the image pixels into a pixel buffer (fzrt_pbuf_ptr)
and form•Z does the rest.

The fz_ffmt_cbak_image_fset contains the following functions to support importing image bitmap files:

The image bitmap translator import file information function (required for bitmap import)

fzrt_error_td fz_ffmt_cbak_image_bmap_read_info (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 fzrt_floc_ptr floc,
 long *width,

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 161

 long *height,
 short *pixel_depth,
 fzrt_boolean *has_alpha,
 double *resolution
);

This function is called by form•Z to get information about a specific bitmap image file. This information includes
the width and height of the image (in pixels), pixel_depth (the number of bits per pixel, i.e. 8 for grayscale,
24 for RGB), has_alpha (whether or not the image has an alpha (transparency) channel), and the resolution
of the image (in pixels per inch). If the resolution of the image is not known (not stored in the file format), use
72.0.

An example of an image bitmap translator import file information function is shown below.

fzrt_error_td my_bmap_read_info (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 fzrt_floc_ptr floc,
 long *width,
 long *height,
 short *pixel_depth,
 fzrt_boolean *has_alpha,
 double *resolution)
{
 fzrt_error_td err = FZRT_NOERR;
 short num_color_channels;
 my_file_td file;

 err = my_file_open(floc, &file);
 if(err == FZRT_NOERR)
 {
 err = my_read_header_data(&file, &width, &height, &num_color_channels);
 if(err = FZRT_NOERR)
 {
 if(num_color_channels = 1)
 {
 *pixel_depth = 8;
 *has_alpha = FALSE;
 }
 if(num_color_channels = 3)
 {
 *pixel_depth = 24;
 *has_alpha = FALSE;
 }
 if(num_color_channels = 4)
 {
 *pixel_depth = 32;
 *has_alpha = TRUE;
 }
 *resolution = 72.0;
 }
 if (err == FZRT_NOERR)
 err = my_file_close(&file);
 }

 return(err);
}

The image bitmap translator import pixels function (required for bitmap import)

fzrt_error_td fz_ffmt_cbak_image_bmap_read (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 fzrt_floc_ptr floc,

fz_ffmt_image_channel_enum which_channel,

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 162

 fzrt_pbuf_ptr *pbuf
);

This function is called by form•Z to read the pixels of a bitmap image. The pixels are read into the pixel buffer
passed into this function. To avoid two memory buffers for all the pixels (one for the pixel buffer and a working
buffer for the translator), bitmap images are read a single scanline at a time. This way the translator only needs to
allocate a buffer for one scanline. form•Z provides some functions in the fz_ffmt_image_fset function set which
are used to assemble the scanlines, and put the pixels into a form that can be drawn to a window. Reading pixels
from a bitmap image is as follows.
 Initialize an image scanline data pointer
 loop until all of image read
 read a scanline
 add the scanlines to the image scanline data
 Uninitialize the image scanline data pointer

To initialize an image scanline data pointer, call ffmt_image_scanline_data_init in the
fz_ffmt_image_fset function set. This function takes several parameters that describe the image pixels. The
first parameter is the pixel buffer to read he image into. The last parameter is a pointer to an image scanline data
pointer to initialize. The middle parameters describe the image pixels as follows:
 img_width - the number of pixels in a single scanline.
 bits_per_pixel - the number of bit for each pixel. Valid values are 8, 16, 24, and 32.
 bytes_per_pixel - the number of bytes per pixel.
 channels - the number of color channels per pixel.
 which_channel - which channel(s) to add to the pixel buffer. This must be the

which_channel parameter passed into this function.
 rgb_order - the order of the color channels (RGB or BGR)
 alpha_first - if TRUE, the aplha channel precedes the rgb channels.
 img_type - True color or colormapped.
 color_map - If the img_type is colormapped, this must point to a colormap.
 map_entry_bits - bits used by each entry in the colormap
 map_entry_bytes - bytes used by each entry in the colormap.
 map_n_entries - number of entries in the color map.
 map_order - RGB-RGB-RGB or RRR-GGG-BBB
 map_type - the type of colormap needed by the image.
 gamma - a gamma value to apply to the image.
Once the image scanline data pointer is initialized each scanline read is added to the pixel buffer by calling
ffmt_image_scanline_data_import in the fz_ffmt_image_fset function set. The first parameter is the
pixel buffer to write the pixels to, the second parameter is the initialized image scanline data pointer, the third
parameter is a pointer to the scanline pixel data, the fourth parameter is the scanline row number, The fifth
parameter is a pixel offset into the scanline (some images may sufficiently large that only a part of a scanline can
be read. This parameter allows for that. The last parameter is the number of pixels added to the image.
Once the whole image is read, ffmt_image_scanline_data_finit in the fz_ffmt_image_fset function
set is called to uninitialize the image scanline data pointer.

An example of an image bitmap translator import file information function is shown below.

fzrt_error_td my_bmap_read (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 fzrt_floc_ptr floc,

fz_ffmt_image_channel_enum which_channel,
 fzrt_pbuf_ptr *pbuf)
{
 fzrt_error_td err = FZRT_NOERR;
 short num_color_channels;
 my_file_td file;
 long width, height, y;

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 163

 short pixel_depth, bytes_per_pixel;
fz_ffmt_image_import_ptr img_in_ptr;
fzrt_ptr pixels;

 err = my_file_open(floc, &file);
 if(err == FZRT_NOERR)
 {
 err = my_read_header_data(&file, &width, &height, &num_color_channels);
 if(err = FZRT_NOERR)
 {
 if(num_color_channels = 1)
 {
 pixel_depth = 8;
 bytes_per_pixel = 1;
 }
 if(num_color_channels = 3)
 {
 pixel_depth = 24;
 bytes_per_pixel = 3;
 }
 if(num_color_channels = 4)
 {
 pixel_depth = 32;
 bytes_per_pixel = 4;
 }
 pixels = (fzrt_ptr)fzrt_new_ptr(bytes_per_pixel * width);
 if(pixels == NULL)
 {
 err = fzrt_error_set (

FZRT_MALLOC_ERROR,
FZRT_ERROR_SEVERITY_ERROR,
FZRT_ERROR_CONTEXT_FZRT, 0);

 }
 else

{
err = fz_ffmt_image_bmap_scanline_init (

 pbuf,
 width,
 pixel_depth,
 bytes_per_pixel,
 num_color_channels,
 which_channel,
 FZ_FFMT_IMAGE_ORDER_RGB,
 FALSE,
 FZ_FFMT_IMAGE_TYPE_TRUE_COLOR,
 NULL,
 0,
 0,
 0,
 0,
 FZ_FFMT_IMAGE_MAP_TYPE_GRAY_BLACK_FIRST,
 0.0,
 &img_in_ptr);
 for(y = 0; y < height && err == FZRT_NOERR; y++)
 {
 err = my_read_scanline(y, pixels);
 if(err == FZRT_NOERR)

fz_ffmt_image_bmap_scanline_import (
pbuf,
img_in_ptr,
pixels,
(unsigned short)y,
(unsigned short)0,
(unsigned short)width);

 }
 fz_ffmt_image_bmap_scanline_finit (&img_in_ptr);
 }

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 164

 }
 }

if (err == FZRT_NOERR)
 err = my_file_close(&file);

 return(err);
}

Structured image vector file import

Vector images are imported into form•Z in one of two ways, as objects in the modeling environment, or as draft
elements in the drafting environment. To acomplish this, form•Z first calls the translators import frame function to
get the extents of the vector data. Then form•Z calls the translator's read function. This function reads the
contents of the file and constructs model objects using functions in fz_model_fset or draft elements using
functions in fz_draft_fset.

The fz_ffmt_cbak_image_fset contains the following functions to support importing image vector files:

The image vector translator import frame function

fzrt_error_td fz_ffmt_cbak_image_vect_read_frame (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 fzrt_floc_ptr floc,
 long size,
 fzrt_rect *rect
);

This function is called by form•Z to get the extents of the vector data contained in a file. windex is the active
window and ffmt_id is the reference id of the file format. floc contains the file's name and path. rect is filled
by this plugin with the extents of the vector data. form•Z will scale and offset this rect as dictated by the import
options.

An example of an image vector translator import frame function is shown below.

fzrt_error_td my_vect_read_frame (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 fzrt_floc_ptr floc,
 long size,
 fzrt_rect *rect)
{
 fzrt_error_td err = FZRT_NOERR;
 my_file_td file;
 long top,left,bottom,right;

 err = my_file_open(floc, &file);
 if(err == FZRT_NOERR)
 {

err = my_file_read_extents(&file, &left, &top, &right, &bottom);
 if(err == FZRT_NOERR)
 {

 rect->top = top;
 rect->left = left;
 rect->right = right;

 rect->bottom = bottom;
 }
 if (err == FZRT_NOERR)
 err = my_file_close(&file);
 }

return(TRUE);

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 165

}

The image vector translator import function

fzrt_error_td fz_ffmt_cbak_image_vect_read (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 fzrt_floc_ptr floc
);

This function is called by form•Z to import the vector data in a file. This function creates model objects from the
vector geometry by calling functions in the fz_model_fset function set.

A simple example of an image vector translator import function which imports circles is shown below.

fzrt_error_td my_vect_read (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 fzrt_floc_ptr floc)
{
 fzrt_error_td err = FZRT_NOERR;
 my_file_td file;
 double cx, cy, radius;
 fzrt_boolean read_more_data = TRUE;
 fz_xyz_td origin;
 fz_objt_ptr obj;

 err = my_file_open(floc, &file);
 if(err == FZRT_NOERR)
 {
 while(read_more_data)
 {

err = my_file_read_circle(&file, &cx, &cy, &radius, &read_more_data);

if(err == FZRT_NOERR)
{
 origin.x = cx;
 origin.y = cy;
 origin.z = 0.0;

 err = fz_objt_cnstr_circle(windex,
radius,
FZ_OBJT_MODEL_TYPE_SMOD,
&origin,
NULL,
NULL,
&obj);

}
 }

 if (err == FZRT_NOERR)
 err = my_file_close(&file);
 }

 return(err);
}

Export options

Image export translators can display an export options dialog. The "Options..." button on the image export
standard file Open dialog will be enabled if the options flags set by the fz_ffmt_image_write_opts_flags
function has the FZ_FFMT_OPTS_INIT_HAS_WRITE_OPTS_BIT bit set. Individual items in the common section
of the options dialog are enabled by setting the appropriate bits of the flags parameter to
fz_ffmt_image_write_opts_flags. The appropriate bits are defined in

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 166

fz_ffmt_image_write_iface_opts_flags_enum. Image export options are discussed in section 3.14.2 of
the form•Z Users Manual.

The call back functions to export an image are defined in the fz_ffmt_cbak_image_fset.

The fz_ffmt_cbak_image_fset contains the following functions to support image export options:

The image translator export options dialog enable function (Required)

fzrt_error_td fz_ffmt_cbak_image_write_opts_flags (
 fz_ffmt_ref_td ffmt_id,
 long *flags,
 long *opts_flags
);

This function is called by form•Z to get the enable state for the image export "Options..." button and the enable
states for each item on the image export options dialog. The flags parameter is used to set the enable states of
items on the common section of the options dialog. Appropriate bits for this parameter are defined in
fz_ffmt_image_write_iface_opts_flags_enum. By default, all items are disabled. The opts_flags
parameter enables the "Options..."button on the "Image Export" standard file Open dialog by setting it to
FZ_FFMT_OPTS_INIT_HAS_WRITE_OPTS_BIT. If the "Options..." button is to be disabled, opts_flags should
be set to 0 (this is the default).

An example of an image translator export options dialog enable function is shown below.

fzrt_error_td my_write_opts_get_flags (

fz_ffmt_ref_td ffmt_id,
long * flags,
long * opts_flags)

{
 fzrt_error_td err = FZRT_NOERR;

 FZ_SETBIT(*flags, FZ_FFMT_IMAGE_WRITE_IFACE_OPTS_ENABLEPREVIEW_BIT);

FZ_SETBIT(*opts_flags, FZ_FFMT_OPTS_INIT_HAS_WRITE_OPTS_BIT);

 return(err);
}

The image translator export options defaults function (optional)

fzrt_error_td fz_ffmt_cbak_image_write_opts_default (
 fz_ffmt_ref_td ffmt_id
);

This function is called by form•Z to set default values of options. All custom options and any common options
whose default values the file translator wishes to change must be set here. This function is only needed if the
translator has custom options or the translator needs to change default values of any of the common options.

form•Z will have set the default values for common options prior to calling this function. This function can then
change any of those values by calling fz_ffmt_image_write_opts_parm_set using the options pointer
obtained from fz_ffmt_image_write_opts_get_ptr. If the translator needs to inspect the value of an
option, it can be obtained by calling fz_ffmt_image_write_opts_parm_get.

An example of an image translator export options defaults function is shown below.

long my_write_opts_flags;

fzrt_error_td my_write_opts_default (

fz_ffmt_ref_td ffmt_id)

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 167

{
 fzrt_error_td err = FZRT_NOERR;
 fz_type_td fz_type;
 long flags;

 /* Change a default value in the common options */
 fz_ffmt_image_write_opts_parm_get(image_write_opts,

FZ_FFMT_IMAGE_WRITE_OPTS_PARM_FLAGS, &fz_type);
 fz_type_get_long(&fz_type, &flags);
 FZ_SETBIT(flags, FZ_FFMT_IMAGE_WRITE_OPTS_PREVIEW_BIT);
 fz_type_set_long(&flags, &fz_type);
 fz_ffmt_image_write_opts_parm_set(image_write_opts,

FZ_FFMT_IMAGE_WRITE_OPTS_PARM_FLAGS, &fz_type);

 /* Set a default value for a custom option */
 my_write_opts_flags = 0;

 return(err);
}

This function sets the "Include Preview" option (this not set in the form•Z default) and initializes a custom option.

The image translator export options changed function (optional)

fzrt_error_td fz_ffmt_cbak_image_write_opts_changed (
 fz_ffmt_ref_td ffmt_id,
 fz_ffmt_image_write_opts_enum which
);

This function is called by form•Z when the user changes the value of an option in the common section of the
options dialog. This allows the translator to override the behavior of the common section of the options dialog by
setting values of options or setting enable states of items. The which parameter specifies which parameter's
value changed. Values of the common options can be set by calling fz_ffmt_image_write_opts_parm_set
using the options pointer (fz_ffmt_image_write_opts_ptr) obtained from
fz_ffmt_image_write_opts_get_ptr. If the translator needs to inspect the value of an option, it can be
obtained by calling fz_ffmt_image_write_opts_parm_get. The enable states of items can be changes by
first getting the enable flags by calling fz_ffmt_image_write_get_dlog_flags, then changing the enable
bit of the item whose state needs to change and calling fz_ffmt_image_write_set_dlog_flags.
Appropriate bits are defined in fz_ffmt_image_write_iface_opts_flags_enum. All these functions are in
the fz_ffmt_image_fset function set.

The image translator export custom options dialog function (Optional)

fzrt_error_td fz_ffmt_cbak_image_write_dlog_cust (
 fz_fuim_tmpl_ptr fuim_tmpl,
 short parent,
 fz_ffmt_ref_td ffmt_id
);

This function is called by form•Z to add items to the custom section of the options dialog. This function should
add items by calling functions in the fz_fuim_fset function set using the fz_fuim_mngr_ptr and parent
parameter (passed into this function) as the top level parent for all items. The ffmt_id parameter specifies the
file translator's reference id.

An example of an image translator export custom options dialog function is shown below.

#define MY_STRINGS 1
#define MY_COMPRESS_STR 2

#define MY_READ_SUB_IMAG_BIT 1

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 168

long my_write_opts_flags;

fzrt_error_td my_write_dlog_cust (

fz_fuim_tmpl_ptr fuim_tmpl,
short parent,
fz_ffmt_ref_td ffmt_id)

{
fzrt_error_td err = FZRT_NOERR;
short gindx;
char title[256];

 err = fzrt_fzr_get_string (

_fz_rsrc_ref,
MY_STRINGS,
MY_COMPRESS_STR,
title);

 if(err == FZRT_NOERR)
 {
 if((gindx = fz_fuim_new_check(fuim_tmpl, parent, 0,

FZ_FUIM_FLAG_GFLT | FZ_FUIM_FLAG_HORZ, title, NULL, NULL)) > -1)
 {
 fz_fuim_item_encod_long(fuim_tmpl, gindx, & my_write_opts_flags,

TRUE, FZ_FUIM_BIT2_MASK(MY_READ_SUB_IMAG_BIT));
 }
 }

 return(FZRT_NOERR);
}

The image translator export pre-options dialog function (Optional)

fzrt_error_td fz_ffmt_cbak_image_write_predloginit (
 long windex,
 fz_ffmt_ref_td ffmt_id
);

This function is called by form•Z just prior to displaying the options dialog. This is done so the file translator can
check the current state of form•Z and make any adjustments to the values of options or the enable states of items
on the options dialog. For example, a translator may have a custom option that is only appropriate if the
rendering is vector and not appropriate for a bitmap rendering. In this case, this function would check the type of
the current rendering and disable the option's dialog item if the render type is bitmap. Options values and item
enable states can be changed as described in for the fz_ffmt_image_read_opts_changed function.

Structured image bitmap file export

form•Z only exports renderings and draft window contents as bitmap images. The export process is more
structured than the import process. form•Z calls several translator functions to write a bitmap image. The export
of a bitmap image is as follows.
 Initialize the export process, open the file and write the file header data
 Write any bitmap image header data
 Loop until entire image is written
 Write a few scanlines at a time
 Write any trailing data to the file
 Close the file and uninitialize the export process

To perform each of these steps form•Z calls the following image translator functions in the order listed.
 fz_ffmt_cbak_image_bmap_write_file_begin
 fz_ffmt_cbak_image_bmap_write_image_begin
 fz_ffmt_cbak_image_bmap_write_image_band - This may be called multiple times.
 fz_ffmt_cbak_image_bmap_write_image_end
 fz_ffmt_cbak_image_bmap_write_file_end

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 169

The fz_ffmt_cbak_image_fset contains the following functions to support reading image bitmap files:

The image bitmap export file begin function

fzrt_error_td fz_ffmt_cbak_image_bmap_write_file_begin (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void **data_ptr,
 fzrt_floc_ptr floc
);

This function is called by form•Z to open a file for writing. This function should write the image file header and
allocate any memory required for parameters and working data. If the file open or memory allocation fails an error
should be returned. floc is the file to open. data_ptr is a hook for passing translator defined data to
subsequent translator functions. A common component of this data is the opened file pointer.

An example of an image bitmap export file begin function is shown below.

typedef struct
{
 my_file_td file;
} my_trans_data_td;

fzrt_error_td my_bmap_write_file_begin (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void **data_ptr,
 fzrt_floc_ptr floc)
{
 fzrt_error_td err = FZRT_NOERR;
 my_trans_data_td *my_data = NULL;

 *data_ptr = NULL;
 my_data = (my_trans_data_td *)fzrt_new_ptr_clear(sizeof(my_trans_data_td));
 if(my_data != NULL)
 {
 *data_ptr = my_data ;
 err = my_open(my_data);
 if(err == FZRT_NOERR)
 {
 my_write_file_header(my_data);
 }
 }
 else
 {
 err = fzrt_error_set (

FZRT_MALLOC_ERROR,
FZRT_ERROR_SEVERITY_ERROR,
FZRT_ERROR_CONTEXT_FZRT, 0);

 }
 return err;
}

The image bitmap export image begin function

fzrt_error_td fz_ffmt_cbak_image_bmap_write_image_begin (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 long width,
 long height,
 fzrt_boolean has_alpha
);

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 170

This function is called by form•Z to begin writing an image. data is a pointer to the translator data created in
ffmt_cbak_image_bmap_write_file_begin. width and height specify the number of columns and rows
of pixels for the image being exported. fz_rndr_ibuf_get_parm in the fz_rndr_mngr_fset function set
can be used to get additional information about the image being exported.

All images exported from formZ have either 3 or 4 color channels (red, green, blue or red, green, blue, alpha). If
has_alpha is set to TRUE, the exported image will have 4 color channels. Otherwise, the exported image will
have 3 color channels.

An example of an image bitmap export image begin function is shown below.

typedef struct
{
 my_file_td file;
 long width;
 long height;
 long pix_depth;
} my_trans_data_td;

fzrt_error_td my_bmap_write_image_begin (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 long width,
 long height,
 fzrt_boolean has_alpha
)
{
 fzrt_error_td err = FZRT_NOERR;
 my_trans_data_td *my_data = (my_trans_data_td *)data;
 short res, pix_depth;
 double dres;

fz_type_td var_data;
double gamma;

 if(my_data != NULL)
 {

fz_wind_image_opts_get_parm_data(windex, FZ_WIND_IMAGE_OPTS_SIZE_RES_VALUE,
&var_data);

fz_type_get_short(&var_data, &res);
fz_wind_image_opts_get_parm_data(windex, FZ_WIND_IMAGE_OPTS_SIZE_TYPE,

&var_data);
 fz_type_get_long(&var_data, (long *)&size_type);
 fz_wind_image_opts_get_parm_data(windex, FZ_WIND_IMAGE_OPTS_CUSTOM_TYPE,

&var_data);
 fz_type_get_long(&var_data, (long *)&dimn_type);

fz_wind_image_opts_get_parm_data(windex, FZ_WIND_IMAGE_OPTS_SIZE_RES_TYPE,
&var_data);

 fz_type_get_long(&var_data, (long *)&res_type);

 if(has_alpha) my_data->pix_depth = 32;
 else my_data->pix_depth = 24;
 my_data->width = width;
 my_data->height = height;

fz_rndr_ibuf_get_parm(windex, FZRT_UUID_NULL, FZ_RNDR_IBUF_PARM_GAMMA,
 &fz_type);

 fz_type_get_float(&fz_type, &gamma);

 if(size_type == FZ_WIND_IMAGE_SIZE_TYPE_CUSTOM &&

 dimn_type == FZ_WIND_IMAGE_CUST_DIMN_TYPE_SIZE)
 { /* convert to english */
 if(res_type == FZ_WIND_IMAGE_RES_TYPE_CM)
 {

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 171

 dres = res * FZ_METRIC_FACTOR;
 res = (short)floor(dres + 0.5);
 }
 }
 else res = 72;

 my_write_image_header(my_data, width, height, res, pix_depth, gamma);
 }
 return err;
}

The image bitmap export image band function

fzrt_error_td fz_ffmt_cbak_image_bmap_write_image_scanline_byte (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 fz_rgb_uchar_td *pixels,
 unsigned char *alpha,
 long row
);

This function is called by form•Z to write a single scanline of an image. data is a pointer to the translator data
created in ffmt_cbak_image_bmap_write_file_begin. pixels contains red,green,blue pixelsof the
image beign exported. alpha contains the alpha value pixels. If the image being exported does not contain any
alpha pixels, this pointer will be NULL. fz_rndr_ibuf_get_parm in the fz_rndr_mngr_fset function set can
be used to get additional information about the image being exported. form•Z will call this function for each
scanline (row) of pixels (a band is one or more scanlines) until all the entire image has been exported. Scanlines
are exported in order from the top of the image to the bottom. row is the index of the scanline being exported.

An example of an image bitmap export band function is shown below.

typedef struct
{
 my_file_td file;
} my_trans_data_td;

fzrt_error_td my_bmap_write_image_scanline (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_rgb_uchar_td *pixels,
 unsigned char *alpha,
 long row
)
{
 fzrt_error_td err = FZRT_NOERR;
 my_trans_data_td *my_data = (my_trans_data_td *)data;

 if(my_data != NULL)
 {
 my_write_image_pixels(my_data, pixels, alpha, row);
 }
 return err;
}

The image bitmap export image end function

fzrt_error_td fz_ffmt_cbak_image_bmap_write_image_end (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
);

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 172

This function is called by form•Z to end the writing of a bitmap image. data is a pointer to the translator data
created in ffmt_cbak_image_bmap_write_file_begin.

An example of an image bitmap export image end function is shown below.

typedef struct
{
 my_file_td file;
} my_trans_data_td;

fzrt_error_td my_bmap_write_image_end (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data
)
{
 fzrt_error_td err = FZRT_NOERR;
 my_trans_data_td *my_data = (my_trans_data_td *)data;

 if(my_data != NULL)
 {
 my_write_image_trailer(my_data);
 }
 return err;
}

The image bitmap export file end function

fzrt_error_td fz_ffmt_cbak_image_bmap_write_file_end (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void **data_ptr,
 fzrt_floc_ptr floc,

fzrt_error_td err
);

This function is called by form•Z to close an image file and cleanup if any error occurred during the export of the
image. This function should free any memory allocated in fz_ffmt_cbak_image_bmap_write_file_begin.
data is a pointer to the translator data created in fz_ffmt_cbak_image_bmap_write_file_begin. floc is
the file. err is the last encountered error. This can be used for any extra cleanup in case of an error. err is set
to FZRT_NOERR if no error occurred during export.

An example of an image bitmap export file end function is shown below.

typedef struct
{
 my_file_td file;
} my_trans_data_td;

fzrt_error_td my_bmap_write_file_end (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void **data_ptr,
 fzrt_floc_ptr floc,

fzrt_error_td err)
{
 fzrt_error_td err2 = FZRT_NOERR;
 my_trans_data_td *my_data = *((my_trans_data_td **)data_ptr);

 if(err != FZRT_NOERR) err2 = my_cleanup_from_error(my_data, err);
 if(my_data != NULL)
 {
 if(my_data->file != NULL)

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 173

 {
 err2 = my_write_file_trailer(my_data);
 if (err2 == FZRT_NOERR)
 err2 = my_file_close(my_data);
 }
 fzrt_dispose_ptr((fzrt_ptr)my_data);
 *data_ptr = NULL;
 }

 return(err2);
}

The image bitmap export progress string function

fzrt_error_td fz_ffmt_image_cbak_bmap_write_progress_str (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 char *str,
 long max_len
);

During the export of an image, form•Z displays a progress dialog. This function is called by form•Z to get a string
for display on the image export progress dialog.

An example of an image bitmap export progress string function is shown below.

#define MY_STRINGS 1
#define MY_WRITING_FILE_STR 3

fzrt_error_td my_bmap_write_progress_str(

long windex,
fz_ffmt_ref_td ffmt_id,
char *str,
long max_len)

{
 char str1[256];

 if(str != NULL && max_len > 0)
 {
 fzrt_fzr_get_string(_fz_rsrc_ref, MY_STRINGS, MY_WRITING_FILE_STR, str1);
 strncpy(str, str1, max_len);
 }

 return(FZRT_NOERR);
}

The image bitmap export error label function

fzrt_error_td fz_ffmt_cbak_image_bmap_write_err_label (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 char *str,
 long max_len,
 short *err_id
);

If an error occurs when exporting an image, form•Z will display an error dialog indicating the error. This function
is called by form•Z to obtain a string to display to the user. This is a general error message for all errors. Specific
error strings are returned by the error string function registered with the plugin.

An example of an image bitmap export error label function is shown below.

#define MY_STRINGS 1
#define MY_WRITE_ERR_STR 4

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 174

fzrt_error_td my_bmap_write_err_label(

long windex,
fz_ffmt_ref_td ffmt_id,
char *str,
long max_len,
short *err_id)

{
 fzrt_error_td err = FZRT_NOERR;
 char str1[256];

 err = fzrt_fzr_get_string(_fz_rsrc_ref, MY_STRINGS, MY_WRITE_ERR_STR, str1);
 if(err == FZRT_NOERR) strncpy(str, str1, max_len);

 return(err);
}

Structured image vector file export

form•Z only exports vector renderings and draft window contents as vector images. The export process is more
structured than the import process. form•Z calls several translator functions to export a vector image.

Vector data consists of geometry and attributes. form•Z can export vector geometry as single points, single line
segments, linesets (linesets are a connected set of line segments), text, circles, ellipses, and arcs. form•Z
exports geometry in a pixel coordinate system. This is normally screen pixels except in the case where a model
rendering is exported with a user specified image size. The x axis is horizontal and the y axis is vertical with
positive y is bottom up. The positive y can by changed to top down by setting the invrt_proj parameter of the
fz_ffmt_cbak_image_vect_write_begin to TRUE.

Attributes that form•Z exports consist of line color, fill color, line weight, line style, and fill pattern. The line color is
the color used to draw points, line segments and linesets. The fill color is the color used to fill the interior of
linesets. The line weight is described in section 5.15.2 of the form•Z Users Manual. The line style is described in
section 5.15.1 of the form•Z Users Manual. The fill pattern is an 8x8 pixel pattern. Each pixel is represented by
one bit. A pixel value of 0 designates a transparent pixel (don't draw that pixel). A pixel value of 1 designates the
current fill color. form•Z will set an attribute then all subsequent exported geometry will have that attribute. For
example, if the line color is set to red all following points and line will have the color red until the line color is set to
another color.

The export of a bitmap image is as follows.
 Initialize the export process and open the file
 Loop until all vector data is written
 If attributes have changed
 set new attributes
 Write vector data
 Close the file and uninitialize the export process

The fz_ffmt_cbak_image_fset contains the following functions to support reading image bitmap files:

The image vector export begin function

fzrt_error_td fz_ffmt_cbak_image_vect_write_begin (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void **data_ptr,
 fzrt_floc_ptr floc
 fzrt_boolean *invrt_proj,
 fz_ffmt_image_vect_write_text_method_enum *text_method,
 double *deflt_line_weight,

fzrt_boolean *full_faces,
fzrt_boolean *pnts_as_pnts
);

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 175

This function is called by form•Z to open a file for writing. This function should write the image file header and
allocate any memory required for parameters and working data. If the file open or memory allocation fails an error
should be returned.

An example of an image vector export begin function is shown below.

typedef struct
{
 my_file_td file;
 fzrt_rgb_color_td line_color;
 fzrt_rgb_color_td fill_color;
 double line_weight;
 my_line_style _td line_style;
 my_fill_pat_td fill_pattern;
} my_trans_data_td;

fzrt_error_td my_vect_write_begin (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void **data_ptr,
 fzrt_floc_ptr floc,
 fzrt_boolean *invrt_proj,
 fz_ffmt_image_vect_write_text_method_enum *text_method,
 double *deflt_line_weight,

fzrt_boolean *full_faces,
fzrt_boolean *pnts_as_pnts)

{
 fzrt_error_td err = FZRT_NOERR;
 my_trans_data_td *my_data = NULL;

 *data_ptr = NULL;
 my_data = (my_trans_data_td *)fzrt_new_ptr_clear(sizeof(my_trans_data_td));
 if(my_data != NULL)
 {
 *data_ptr = my_data ;
 err = my_open(&my_data->file);
 if(err == FZRT_NOERR)
 {
 my_data->line_color.red = 0;
 my_data->line_color.green = 0;
 my_data->line_color.blue = 0xffff;
 my_data->fill_color.red = 0xffff;
 my_data->fill_color.green = 0xffff;
 my_data->fill_color.blue = 0;
 my_data->line_weight= 1.0;
 my_init_line_style(my_data->line_style);
 my_init_fill_pat(my_data->fill_pattern);
 err = my_write_file_header(my_data->file);
 if(err == FZRT_NOERR)
 {
 *invrt_proj = 0;
 *text_method = FZ_FFMT_IMAGE_VECT_WRITE_TEXT_METH_AS_PATHS;
 *deflt_line_weight = 1.0;
 *full_faces = FALSE;
 *pnts_as_pnts = FALSE;
 }
 }
 }
 else
 {
 err = fzrt_error_set (

FZRT_MALLOC_ERROR,
FZRT_ERROR_SEVERITY_ERROR,
FZRT_ERROR_CONTEXT_FZRT, 0);

 }

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 176

 return err;
}

The image vector export end function

fzrt_error_td fz_ffmt_cbak_image_vect_write_end (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void **data_ptr,
 fzrt_floc_ptr floc,

fzrt_error_td err
);

This function is called by form•Z to close an image file and cleanup if any error occurred during the export of the
image. This function should free any memory allocated in fz_ffmt_cbak_image_vect_write_begin.
data is a pointer to the translator data created in fz_ffmt_cbak_image_vect_write_begin. floc is the
file. err is the last encountered error. This can be used for any extra cleanup in case of an error. err is set to
FZRT_NOERR if no error occurred during export.

An example of an image vector export end function is shown below.

typedef struct
{
 my_file_td file;
 fzrt_rgb_color_td line_color;
 fzrt_rgb_color_td fill_color;
 double line_weight;
 my_line_style _td line_style;
 my_fill_pat_td fill_pattern;
} my_trans_data_td;

fzrt_error_td my_vect_write_end (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void **data_ptr,
 fzrt_floc_ptr floc,

fzrt_error_td err)
{
 fzrt_error_td err2 = FZRT_NOERR;
 my_trans_data_td *my_data = *((my_trans_data_td **)data_ptr);

 if(my_data != NULL)
 {
 if(my_data->file != NULL)
 {
 err2 = my_write_file_trailer(my_data->file);
 if (err2 == FZRT_NOERR)

 err2 = my_file_close(my_data->file);
 }
 fzrt_dispose_ptr((fzrt_ptr)my_data);
 *data_ptr = NULL;
 }

 return(err2);
}

The image vector export point function

fzrt_error_td fz_ffmt_cbak_image_vect_write_point (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 double x,
 double y
);

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 177

This function is called by form•Z to write a single point to the file. data is a pointer to the translator data created
in ffmt_image_vect_write_begin. x and y specify the location of the point in image coordinates.

An example of an image vector export point function is shown below.

typedef struct
{
 my_file_td file;
 fzrt_rgb_color_td line_color;
 fzrt_rgb_color_td fill_color;
 double line_weight;
 my_line_style _td line_style;
 my_fill_pat_td fill_pattern;
} my_trans_data_td;

fzrt_error_td my_vect_write_point (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 double x,
 double y)
{
 fzrt_error_td err = FZRT_NOERR;
 my_trans_data_td *my_data = (my_trans_data_td *)data;

err = my_write_point(&my_data->file, my_data->line_color, x, y);

 return(err);
}

The image vector export line function

fzrt_error_td fz_ffmt_cbak_image_vect_write_line (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 double x1,
 double y1,
 double x2,
 double y2
);

This function is called by form•Z to write a single line segment to a file. data is a pointer to the translator data
created in fz_ffmt_cbak_image_vect_write_begin. x1, y1 and x2, y2 are the end points of the line
segment.

An example of an image vector export line function is shown below.

typedef struct
{
 my_file_td file;
 fzrt_rgb_color_td line_color;
 fzrt_rgb_color_td fill_color;
 double line_weight;
 my_line_style _td line_style;
 my_fill_pat_td fill_pattern;
} my_trans_data_td;

fzrt_error_td my_vect_write_line (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 double x1,

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 178

 double y1,
 double x2,
 double y2)
{
 fzrt_error_td err = FZRT_NOERR;
 my_trans_data_td *my_data = (my_trans_data_td *)data;

err = my_write_line(&my_data->file, my_data->line_color, my_data->line_style,
x1, y2, x2, y2);

 return(err);
}

The image vector export lineset function

fzrt_error_td fz_ffmt_cbak_image_vect_write_lineset (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 long how,
 fz_ffmt_image_lineset_ptr line_set
);

This function is called by form•Z to write a lineset to a file. data is a pointer to the translator data created in
fz_ffmt_cbak_image_vect_write_begin. The how parameter specifies what the lineset represents. It
could represent an outline, a filled polygon, both, or a clipping region. The number of points and an array of
points in the lineset are obtained by calling fz_ffmt_image_lineset_get_pnts in the
fz_ffmt_image_fset function set. fz_ffmt_image_lineset_get_pnts also sets an indicator of whether
the lineset is open or closed. If an open lineset is specified by the how parameter as being filled, it should be filled
as if it is a closed lineset.

An example of an image vector export lineset function is shown below.

fzrt_error_td my_vect_write_lineset (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 long how,
 fz_ffmt_image_lineset_ptr line_set)
{
 fzrt_error_td err = FZRT_NOERR;
 my_trans_data_td *my_data = (my_trans_data_td *)data;
 fz_xy_td *lset_pnts = NULL;
 fzrt_boolean close_lineset;
 long n;

 err = fz_ffmt_image_lineset_get_pnts (windex, line_set, NULL, &n, &close_lineset);
 if(err == FZRT_NOERR && n > 0)
 {
 lset_pnts = (fz_xy_td *)fzrt_new_ptr (sizeof(fz_xy_td) * n);
 if(lset_pnts != NULL)
 {
 err = fz_ffmt_image_lineset_get_pnts (windex, line_set, lset_pnts, &n,

&close_lineset);
if(err == FZRT_NOERR)

 {
 if(FZ_CHKBIT(how , FZ_FFMT_LINESET_FLAGS_FILL_BIT))
 {
 err = my_write_fill_polyline(my_data->file,

my_data->fill_color,
my_data->fill_pattern,

 n, lset_pnts);
}

 if(FZ_CHKBIT(how , FZ_FFMT_LINESET_FLAGS_STROKE_BIT))
 {

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 179

 err = my_write_outline_polyline(my_data->file,
my_data->line_color,

 my_data->line_style,
 my_data->line_weight,
 n, lset_pnts);

}
 if(FZ_CHKBIT(how , FZ_FFMT_LINESET_FLAGS_CLIP_BIT))
 {
 err = my_write_clip_polyline(my_data->file, n, lset_pnts);
 }
 }
 }
 }

 return(err);
}

The image vector export begin compound function

fzrt_error_td fz_ffmt_cbak_image_vect_write_begin_compound (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_ffmt_image_lineset_ptr line_set
);

form•Z may at times need to represent multiple linesets a parts of a single vector object. This could be because
several linesets are grouped or joined as a single object or it could be because a filled lineset has one or more
holes. For example, if text is exported as paths (linesets), the lower case 'i' is exported as a single object with 2
linesets, the lower case 'e' is exported as two linesets with the second representing a hole. This function is called
by form•Z to begin a grouping of linesets. data is a pointer to the translator data created in
fz_ffmt_cbak_image_vect_write_begin.

The image vector export end compound function

fzrt_error_td fz_ffmt_cbak_image_vect_write_end_compound (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_ffmt_image_lineset_ptr line_set
);

This function is called by form•Z to end a grouping of linesets which was begun by
fz_ffmt_image_vect_write_begin_compound. data is a pointer to the translator data created in
fz_ffmt_cbak_image_vect_write_begin.

The image vector export can do arc function

fzrt_boolean fz_ffmt_cbak_image_vect_write_can_do_arc (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 double cx,
 double cy,
 double rx,
 double ry,
 double start_ang,
 double end_ang,
 double pitch,
 long how
);

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 180

This function is called by form•Z to determine if the translator can export a specific circle, ellipse, or arc. Arcs can
be circular or elliptical. If the translator can not export the specified arc as an arc, it should return FALSE and
form•Z will then export the arc as a lineset. For example, if a translator can not export elliptical arcs or rotated
ellipses, it should return FALSE when such an arc is detected and the arc or ellipse will be exported as a lineset.
data is a pointer to the translator data created in fz_ffmt_cbak_image_vect_write_begin. cx and cy
designate the center of the arc, circle or ellipse. rx specifies the radius along the x axis and ry specifies the radius
along the y axis. For circles and circular arcs rx will equal ry. start_ang and end_ang specify the starting and
ending angles for an arc. For circles and ellipses, these values will be 0.0 and FZ_2PI respecitvely. pitch
specifies a rotation to be applied to the generated circle, ellipse or arc. The how parameter specifies what the
lineset represents. It could represent an outline, a filled polygon, both, or a clipping region.

An example of an image vector export can do arc function is shown below.

fzrt_boolean my_vect_write_can_do_arc (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 double cx,
 double cy,
 double rx,
 double ry,
 double start_ang,
 double end_ang,
 double pitch,
 long how)
{
 fzrt_boolean rv = TRUE;

 if(rx != ry) /* ellipse */
 {
 if(start_ang != 0.0 || end_ang != FZ_2PI)
 {
 /* Elliptical Arc */
 rv = FALSE;
 }
 else if(fmod(pitch, FZ_PI2) != 0.0)
 {
 /* Rotated Ellipse */
 rv = FALSE;
 }
 }

 return(rv);
}

The image vector export arc function

fzrt_error_td fz_ffmt_cbak_image_vect_write_arc (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 double cx,
 double cy,
 double rx,
 double ry,
 double start_ang,
 double end_ang,
 double pitch,
 long how
);

This function is called by form•Z to export circles, ellipses, and arcs. Arcs can be circular or elliptical. data is a
pointer to the translator data created in fz_ffmt_cbak_image_vect_write_begin. cx and cy designate the

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 181

center of the arc, circle or ellipse. rx specifies the radius along the x axis and ry specifies the radius along the y
axis. For circles and circular arcs rx will equal ry. start_ang and end_ang specify the starting and ending angles
for an arc. For circles and ellipses, these values will be 0.0 and FZ_2PI respecitvely. pitch specifies a rotation
to be applied to the generated circle, ellipse or arc. The how parameter specifies what the lineset represents. It
could represent an outline, a filled polygon, both, or a clipping region.

An example of an image vector export arc function is shown below.

fzrt_error_td my_vect_write_arc (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 double cx,
 double cy,
 double rx,
 double ry,
 double start_ang,
 double end_ang,
 double pitch,
 long how)
{
 fzrt_error_td err = FZRT_NOERR;
 my_trans_data_td *my_data = (my_trans_data_td *)data;
 double my_rx, my_ry;

 if(rx != ry) /* ellipse */
 {
 if((long)(pitch/FZ_PI2) & 1) /* if rotated 90 deg */
 { /* swap rx and ry */
 my_rx = ry;
 my_ry = rx;
 }
 else
 {
 my_rx = rx;
 my_ry = ry;
 }
 if(FZ_CHKBIT(how, FZ_FFMT_LINESET_FLAGS_FILL_BIT))
 {
 err = my_write_fill_ellipse(my_data->file, my_data->fill_color,

my_data->fill_pattern,
 cx, cy, my_rx, my_ry);

}
 if(FZ_CHKBIT(how, FZ_FFMT_LINESET_FLAGS_STROKE_BIT))
 {
 err = my_write_outline_ellipse(my_data->file, my_data->line_color,
 my_data->line_style,
 my_data->line_weight,
 cx, cy, my_rx, my_ry);

}
 if(FZ_CHKBIT(how, FZ_FFMT_LINESET_FLAGS_CLIP_BIT))
 {
 err = my_write_clip_ellipse(my_data->file, cx, cy, my_rx, my_ry);
 }

}
else /* circle */
{
 if(fmod((end_ang-start_ang),_2PI) == 0.0) /* closed circle */
 {

 if(FZ_CHKBIT(how, FZ_FFMT_LINESET_FLAGS_FILL_BIT))
 {
 my_write_fill_circle(my_data->file, my_data->fill_color,
 my_data->fill_pattern, cx, cy, rx);

 }
 if(FZ_CHKBIT(how, FZ_FFMT_LINESET_FLAGS_STROKE_BIT))
 {

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 182

 my_write_outline_circle(my_data->file, my_data->fill_color,
 my_data->fill_pattern, cx, cy, rx);

}
 if(FZ_CHKBIT(how, FZ_FFMT_LINESET_FLAGS_CLIP_BIT))
 {
 my_write_clip_circle(my_data->file, cx, cy, rx);
 }

}
 else /* arc */
 {

 if(FZ_CHKBIT(how, FZ_FFMT_LINESET_FLAGS_FILL_BIT))
 {
 my_write_fill_arc(my_data->file, my_data->fill_color,
 my_data->fill_pattern, cx, cy, rx,

start_ang + pitch,
end_ang + pitch);

 }
 if(FZ_CHKBIT(how, FZ_FFMT_LINESET_FLAGS_STROKE_BIT))
 {
 my_write_outline_arc(my_data->file, my_data->fill_color,
 my_data->fill_pattern, cx, cy, rx,

start_ang + pitch,
end_ang + pitch);

}
 if(FZ_CHKBIT(how, FZ_FFMT_LINESET_FLAGS_CLIP_BIT))
 {
 my_write_clip_arc(my_data->file, cx, cy, rx,

start_ang + pitch,
end_ang + pitch);

}
 }
}

 return(err);
}

The image vector export simple text function

fzrt_error_td fz_ffmt_cbak_image_vect_write_simple_text (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 char *fname,
 double txsize,
 double x,
 double y,
 char *str
);

This function is called by form•Z to export simple text. Simple text is text that is all the same font and size. It has
no style (normal, bold, italic, etc) unless the style is implicit in the font. It is not rotated and follows a linear path.
Any new line characters will be ignored and the text will export on one line. Currently, form•Z only calls this
function to export axis labels. fname is the name of the font to be applied to the text and txsize is the font's
point size. x, y is the position of the lower left corner of the text. str is the actual text to export.

An example of an image vector export point function is shown below.

#define MY_NORMAL_TEXT_STYLE 1

typedef struct
{
 my_file_td file;
 fzrt_rgb_color_td line_color;
 fzrt_rgb_color_td fill_color;
 double line_weight;

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 183

 my_line_style _td line_style;
 my_fill_pat_td fill_pattern;
} my_trans_data_td;

fzrt_error_td my_vect_write_simple_text (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 char *fname,
 double txsize,
 double x,
 double y,
 char *str)
{
 fzrt_error_td err = FZRT_NOERR;
 my_trans_data_td *my_data = (my_trans_data_td *)data;

err = my_write_text(my_data->file, my_data->line_color, font, MY_NORMAL_TEXT_STYLE,
tx_size, x, y, str);

 return(err);
}

The image vector export set line color function

fzrt_error_td ffmt_cbak_image_vect_write_set_line_color (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 const fzrt_rgb_color_td *const rgb_color
);

This function is called by form•Z to set the line color. All points and lines exported after this call will have the
color specified by rgb_color. data is a pointer to the translator data created in
fz_ffmt_cbak_image_vect_write_begin.

An example of an image vector export set line color function is shown below.

typedef struct
{
 my_file_td file;
 fzrt_rgb_color_td line_color;
 fzrt_rgb_color_td fill_color;
 double line_weight;
 my_line_style _td line_style;
 my_fill_pat_td fill_pattern;
} my_trans_data_td;

fzrt_error_td my_vect_write_set_line_color (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 const fzrt_rgb_color_td *const rgb_color)
{
 fzrt_error_td err = FZRT_NOERR;
 my_trans_data_td *my_data = (my_trans_data_td *)data;

 my_data->line_color = *rgb_color;

 return(rv);
}

The image vector export set fill color function

fzrt_error_td fz_ffmt_cbak_image_vect_write_set_fill_color (

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 184

 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 const fzrt_rgb_color_td *const rgb_color
);

This function is called by form•Z to set the fill color. All filled linesets exported after this call will be filled with the
color specified by rgb_color. data is a pointer to the translator data created in
fz_ffmt_cbak_image_vect_write_begin.

An example of an image vector export set fill color function is shown below.

typedef struct
{
 my_file_td file;
 fzrt_rgb_color_td line_color;
 fzrt_rgb_color_td fill_color;
 double line_weight;
 my_line_style _td line_style;
 my_fill_pat_td fill_pattern;
} my_trans_data_td;

fzrt_error_td my_vect_write_set_fill_color (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 const fzrt_rgb_color_td *const rgb_color)
{
 fzrt_error_td err = FZRT_NOERR;
 my_trans_data_td *my_data = (my_trans_data_td *)data;

 my_data->fill_color = *rgb_color;

 return(err);
}

The image vector export set line style function

fzrt_error_td fz_ffmt_cbak_image_vect_write_set_line style (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 char type,
 short lsty_flag,
 double delta,
 double d1,
 double ddd,
 double drawn
);

This function is called by form•Z to set the line style. All lines exported after this call will have the specified line
style. data is a pointer to the translator data created in fz_ffmt_cbak_image_vect_write_begin. type
designates an item in the form•Z draft line style palette. If type is -1, the line style is set to solid.

The image vector export set line weight function

fzrt_error_td fz_ffmt_cbak_image_vect_write_set_line_weight (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 double line_weight
);

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 185

This function is called by form•Z to set the line weight. All lines exported after this call will have the specified line
weight. data is a pointer to the translator data created in fz_ffmt_cbak_image_vect_write_begin.
line_weight is specified in points (1 point = 1/72 inch). Fractional values are allowed.

An example of an image vector export set fill color function is shown below.

typedef struct
{
 my_file_td file;
 fzrt_rgb_color_td line_color;
 fzrt_rgb_color_td fill_color;
 double line_weight;
 my_line_style _td line_style;
 my_fill_pat_td fill_pattern;
} my_trans_data_td;

fzrt_error_td my_vect_write_set_line_weight (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 double line_weight)
{
 fzrt_error_td err = FZRT_NOERR;
 my_trans_data_td *my_data = (my_trans_data_td *)data;

 my_data->line_weight = line_weight;

 return(err);
}

The image vector export set fill pattern function

fzrt_error_td fz_ffmt_cbak_image_vect_write_set_fill_pattern (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fzrt_pen_pattern_ptr pat,
 ffmt_image_lineset_ptr line_set
);

This function is called by form•Z to set the fill pattern. data is a pointer to the translator data created in
fz_ffmt_cbak_image_vect_write_begin.

The image vector export progress string function

fzrt_error_td fz_ffmt_cbak_image_vect_write_progress_str (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 char *str,
 long max_len
);

During the export of an image, form•Z displays a progress dialog. This function is called by form•Z to get a string
for display on the image export progress dialog.

An example of an image bitmap export progress string function is shown below.

#define MY_STRINGS 1
#define MY_WRITING_FILE_STR 3

fzrt_error_td my_vect_write_progress_str(

long windex,

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 186

fz_ffmt_ref_td ffmt_id,
char *str,
long max_len)

{
 char str1[256];

 if(str != NULL && max_len > 0)
 {
 fzrt_fzr_get_string(_fz_rsrc_ref, MY_STRINGS, MY_WRITING_FILE_STR, str1);
 strncpy(str, str1, max_len);
 }

 return(FZRT_NOERR);
}

The image vector export error label function

fzrt_error_td fz_ffmt_cbak_image_vect_write_err_label (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 char *str,
 long max_len,
 short *err_id
);

If an error occurs when exporting an image, form•Z will display an error dialog indicating the error. This function
is called by form•Z to obtain a string to display to the user. This is a general error message for all errors. Specific
error strings are returned by the error string function registered with the plugin.

An example of an image bitmap export error label function is shown below.

#define MY_STRINGS 1
#define MY_WRITE_ERR_STR 4

fzrt_error_td my_vect_write_err_label(

long windex,
fz_ffmt_ref_td ffmt_id,
char *str,
long max_len,
short *err_id)

{
 err = FZRT_NOERR;
 char str1[256];

 err = fzrt_fzr_get_string(_fz_rsrc_ref, MY_STRINGS, MY_WRITE_ERR_STR, str1);
 if(err == FZRT_NOERR) strncpy(str, str1, max_len);

 return(err);
}

Structured data file translators

Data file translators read and/or write 2D and 3D model and draft data. What functions a data translator performs
(read or write; model or draft) a translator supports are determined by which functions and function sets are
implemented by the translator. At this time only model data translators are supported in the API.

Structured data model file translators

Data model file translators read and/or write model data. What functions a data translator performs (read or write)
a translator supports are determined by which functions in the fz_ffmt_cbak_data_model_fset are
implemented by the translator. Callback functions in the fz_ffmt_cbak_data_model_fset function set that
begin with fz_ffmt_cbak_data_model_read are for reading model data. Callback functions in the

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 187

fz_ffmt_cbak_data_model_fset function set that begin with fz_ffmt_cbak_data_model_write are for
writing model data.

The transform options (described in section 3.13.1 of the form•Z Users Manual) are shared between the import
and export options. When accessing the transform options, it is important to check the transform direction. This
is defined as either import or export. If the direction is import that means that the transform options are defined for
an import operation. Therefore if these options are accessed by an exporter, the values of the options will need to
be inverted. By default, form•Z defines the transform options for import. Normally a translator wil not need to
access the transform options since form•Z transforms data on import and export.

Two function sets are needed for a data model file translator, the translator information function set and the data
model function set. The translator information function set is identified by the following constants,
FZ_FILE_DATA_EXTS_TYPE (plugin type UUID), FZ_FILE_DATA_EXTS_NAME (plugin type name), and
FZ_FILE_DATA_EXTS_VERSION (plugin type version).

The example below shows the definition of a data model file translator and the registration of the two function sets
within that plugin.

#define MY_STRINGS 1
#define MY_NAME_STR 1
#define MY_PLUGIN_UUID "\xfc\x98\x6f\x83\xf2\xd6\x4b\x9c\xb1\xc4\x0\x32\xf\x96\x8a\xfc"
#define MY_PLUGIN_VERSION FZPL_VERS_MAKE(1,0,0,0)
#define MY_PLUGIN_VENDOR "My Company Name"
#define MY_PLUGIN_URL "www.myurl.com"

static fzrt_error_td my_data_translator_register_plugin ()
{
 fzrt_error_td err = FZRT_NOERR;
 long num_failed = 0;
 char pname[FZPL_NAME_SIZE];

 /* Register the plugin */

err = fzrt_fzr_get_string (
_fz_rsrc_ref,
MY_STRINGS,
MY_NAME_STR,
pname);

 if (err == FZRT_NOERR)
 {
 err = fset_glue->fzpl_plugin_register (

MY_PLUGIN_UUID,
pname,
MY_PLUGIN_VERSION,
MY_PLUGIN_VENDOR,
MY_PLUGIN_URL,
FZ_FILE_DATA_EXTS_TYPE,
FZ_FILE_DATA_EXTS_VERSION,
NULL,
0,
NULL,
&my_plugin_runtime_id);

 }
 if (err == FZRT_NOERR)
 {
 /* Add the function sets implemented by the plugin */

err = fset_glue->fzpl_plugin_add_fset (
my_plugin_runtime_id,
FZ_FFMT_CBAK_INFO_FSET_TYPE,

 FZ_FFMT_CBAK_INFO_FSET_VERSION,
FZ_FFMT_CBAK_INFO_FSET_NAME,
FZPL_TYPE_STRING(fz_ffmt_cbak_info_fset),
sizeof (fz_ffmt_cbak_info_fset),

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 188

my_fill_translator_info_fset,
FALSE);

 if(err == FZRT_NOERR)
 {
 err = fset_glue->fzpl_plugin_add_fset (

my_plugin_runtime_id,
FZ_FFMT_CBAK_DATA_MODEL_FSET_TYPE,
FZ_FFMT_CBAK_DATA_MODEL_FSET_VERSION,
FZ_FFMT_CBAK_DATA_MODEL_FSET_NAME,
FZPL_TYPE_STRING(fz_ffmt_cbak_data_model_fset),
sizeof (fz_ffmt_cbak_data_model_fset),
my_fill_data_model_cbak_fset,
FALSE);

 }
 }

 return(err);
}

The example below shows the function set fill functions for the fz_ffmt_cbak_info_fset and the
fz_ffmt_cbak_data_model_fset function sets.

fzrt_error_td my_fill_translator_info_fset (

const fzpl_fset_def_ptr fset_def,
fzpl_fset_td * const fset)

{
 fzrt_error_td err = FZRT_NOERR;
 fz_ffmt_cbak_info_fset *info_funcs;

 err = _fset_glue->fzpl_fset_def_check (fset_def,

FZ_FFMT_CBAK_INFO_FSET_VERSION,
FZPL_TYPE_STRING(fz_ffmt_cbak_info_fset),
sizeof(fz_ffmt_cbak_info_fset),
FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 info_funcs = (fz_ffmt_cbak_info_fset *)fset;

 info_funcs->fz_ffmt_cbak_name = my_name;
 info_funcs->fz_ffmt_cbak_uuid = my_uuid;
 info_funcs->fz_ffmt_cbak_info = my_info;
 info_funcs->fz_ffmt_cbak_ftype = my_ftype;
 info_funcs->fz_ffmt_cbak_icon_rsrc = my_icon_rsrc;
 info_funcs->fz_ffmt_cbak_icon_file = my_icon_file;
 info_funcs->fz_ffmt_cbak_opts_io = my_opts_io;
 info_funcs->fz_ffmt_cbak_is_file = my_is_file;
 }

 return(err);
}

fzrt_error_td my_fill_data_model_cbak_fset(

const fzpl_fset_def_ptr fset_def,
fzpl_fset_td * const fset)

{
 fzrt_error_td err = FZRT_NOERR;
 fz_ffmt_cbak_data_model_fset *data_model_funcs;

 err = _fset_glue->fzpl_fset_def_check (fset_def,

FZ_FFMT_CBAK_DATA_MODEL_FSET_VERSION,
FZPL_TYPE_STRING(fz_ffmt_cbak_data_model_fset),
sizeof (fz_ffmt_cbak_data_model_fset),
FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 data_model_funcs = (fz_ffmt_cbak_data_model_fset *)fset;

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 189

 data_model_funcs->fz_ffmt_cbak_data_model_read_dlog_cust = my_read_dlog_cust;
 data_model_funcs->fz_ffmt_cbak_data_model_read_predloginit = my_read_predloginit;
 data_model_funcs->fz_ffmt_cbak_data_model_read_opts_default = my_read_opts_default;
 data_model_funcs->fz_ffmt_cbak_data_model_read_opts_flags = my_read_opts_get_flags;
 data_model_funcs->fz_ffmt_cbak_data_model_read_opts_changed = my_read_opts_changed;

 data_model_funcs->fz_ffmt_cbak_data_model_read = my_model_read;

 data_model_funcs->fz_ffmt_cbak_data_model_write_dlog_cust = my_write_dlog_cust;
 data_model_funcs->fz_ffmt_cbak_data_model_write_predloginit = my_write_predloginit;
 data_model_funcs->fz_ffmt_cbak_data_model_write_opts_default = my_write_opts_default;
 data_model_funcs->fz_ffmt_cbak_data_model_write_opts_flags = my_write_opts_get_flags;
 data_model_funcs->fz_ffmt_cbak_data_model_write_opts_changed = my_write_opts_changed;

 data_model_funcs->fz_ffmt_cbak_data_model_write_begin = my_write_begin;
 data_model_funcs->fz_ffmt_cbak_data_model_write_end = my_write_end;
 data_model_funcs->fz_ffmt_cbak_data_model_write_grup_begin = my_write_group_begin;
 data_model_funcs->fz_ffmt_cbak_data_model_write_grup_end = my_write_group_end;
 data_model_funcs->fz_ffmt_cbak_data_model_write_points = my_write_points;
 data_model_funcs->fz_ffmt_cbak_data_model_write_lines = my_write_lines;
 data_model_funcs->fz_ffmt_cbak_data_model_write_polylines = my_write_polylines;
 data_model_funcs->fz_ffmt_cbak_data_model_write_faces = my_write_faces;
 data_model_funcs->fz_ffmt_cbak_data_model_write_objt = my_write_objt;
 data_model_funcs->fz_ffmt_cbak_data_model_write_smod_solid = my_write_smod_solid;
 data_model_funcs->fz_ffmt_cbak_data_model_write_smod_trimmed_surf =
 my_write_smod_trimmed_surf;
 data_model_funcs->fz_ffmt_cbak_data_model_write_can_do_smooth =
 my_write_can_do_smooth;
 data_model_funcs->fz_ffmt_cbak_data_model_write_ctrl = my_write_ctrl;
 data_model_funcs->fz_ffmt_cbak_data_model_write_can_do_ctrl = my_write_can_do_ctrl;
 data_model_funcs->fz_ffmt_cbak_data_model_write_err_label = my_write_err_label;
 data_model_funcs->fz_ffmt_cbak_data_model_write_units_conv = my_write_units_conv;
 data_model_funcs->fz_ffmt_cbak_data_model_write_symb_def_start =
 my_write_symb_def_start;
 data_model_funcs->fz_ffmt_cbak_data_model_write_symb_def_end =
 my_write_symb_def_end;

 data_model_funcs->fz_ffmt_cbak_data_model_tmap_list = my_tmap_list;
 data_model_funcs->fz_ffmt_data_cbak_model_tform_opts_changed =
 my_tform_opts_changed;
 }

 return(err);
}

Surface styles and texture maps

fzrt_error_td fz_ffmt_cbak_data_model_tmap_list

fz_ffmt_ref_td ffmt_id,
fz_ffmt_ref_td *fmt_list,
long *fmt_list_knt_ptr)

Model files typically store bitmap texture data in one of two ways, a separate bitmap image file which the model
file references, or bitmap pixels stored within the model file. If the model file stores bitmap textures in separate
files, the data model file translator need to implement the fz_ffmt_data_cbak_model_tmap_list function
to tell form•Z what bitmap file formats the model format supports. If this function is not implemented, form•Z will
assume that the bitmap pixels are stored in the model file. This will disable the Save Texture Maps As menu on
the Texture Map Import Options dialog and the Image File Format menu and Options… button on the Wrapped
Texture Options and the Rendered Texture Options dialogs. If the fz_ffmt_data_cbak_model_tmap_list
function is implemented, form•Z will call it twice. The first time will be to get a count of the supported bitmap
formats. In this case the fmt_list parameter will be set to NULL. form•Z will then allocate memory for the
array of bitmap formats and call the fz_ffmt_data_cbak_model_tmap_list function a second time. This

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 190

time with fmt_list set to the array to fill. form•Z can manage texture bitmap file format conversions as
specified by the texture options.

The example below shows the fz_ffmt_data_cbak_model_tmap_list function.

fzrt_error_td my_tmap_list(

fz_ffmt_ref_td ffmt_id,
fz_ffmt_ref_td *fmt_list,
long *fmt_list_knt_ptr)

{
 long knt, i, num, max;
 fz_ffmt_ref_td *ref_ids = NULL;
 long num_ids = 0;
 fzrt_error_td err = FZRT_NOERR;

 knt = 0;
 max = 0;

 if(fz_ffmt_keyword_to_ref_id_list(TIFF_PLUGIN_KEYWD, NULL, &num))
 {
 knt += num;
 if(num > max) max = num;
 }
 if(fz_ffmt_keyword_to_ref_id_list(TGA_PLUGIN_KEYWD, NULL, &num))
 {
 knt += num;
 if(num > max) max = num;
 }

 if(max > 0)
 {
 ref_ids = (fz_ffmt_ref_td *)fzrt_new_ptr(max * sizeof(fz_ffmt_ref_td));
 num_ids = max;
 }

 if(wave_list != NULL && ref_ids != NULL)
 {
 knt = 0;
 if(fz_ffmt_keyword_to_ref_id_list(TIFF_PLUGIN_KEYWD, ref_ids, &num))
 {
 for(i = 0; i < num; i++)
 {
 fmt_list[knt + i] = ref_ids[i];
 }
 knt += num;
 }
 if(fz_ffmt_keyword_to_ref_id_list(TGA_PLUGIN_KEYWD, ref_ids, &num))
 {
 for(i = 0; i < num; i++)
 {
 fmt_list[knt + i] = ref_ids[i];
 }
 knt += num;
 }
 }

 if(fmt_list_knt_ptr != NULL) *fmt_list_knt_ptr = knt;
 if(ref_ids != NULL) fzrt_dispose_ptr((fzrt_ptr)ref_ids);

 return(err);

}

If desired, form•Z can render procedural textures to bitmap images. In doing so, a bitmap file is created for each
model face that is textured with a procedural texture.

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 191

To manage file format conversions and rendered textures, form•Z provides two tables. The file table which maps
a source texture file to the converted file, the destination texture file. And, the style table which stores a mapping
from surface styles associated with objects and faces with entries in the file table. form•Z also converts all the
different shader parameters to a consistent representation consisting of ambient, diffuse and specular colors.
Data model file translators can use these parameters or they can access the shader parameters directly through
functions in the fz_rmtl_fset function set.

For textures the style table stores three indices into the texture file table, an index for a color texture, an index for
a transparency texture, and an index for a bump map texture. Negative file indices represent rendered textures,
positive file indices represent bitmap textures stored in the surface styles palette. A file indx of 0 means no
texture.

The style and texture file tables are available for both import and export. For import, These tables are prefilled by
form•Z with the surface styles in the surface style palette and any rendered textures. For export, these tables are
initialized but are empty. When reading texture and surface style data from the file, the translator can add entries
to these tables. When adding an entry, form•Z will search the table for duplicate entries. If a duplicate entry is
found, The index of the matching entry is returned. If no duplicate entry is found, a new entry is created and the
index of that entry is returned. form•Z will convert the entries in the style and textutre file tables into surface
styles in the surface style palette. Thus the translator does not have to worry about creating duplicate entries in
the surface style palette. Of course the translator has the option of creating entries in the surface style palette
directly using function in the fz_rmtl_fset function set.

The example below shows how to retrieve data from the style and texture file tables for export by looping over all
the styles.

 fzrt_error_td err = FZRT_NOERR;
 fz_ffmt_tmap_style_ptr style;
 fz_ffmt_tmap_file_ptr file;
 fz_ffmt_tmap_filetab_ptr filetab;
 fz_ffmt_tmap_styletab_ptr styletab;
 char rmtl_name[64];
 char color_name[128];
 char transp_name[128];
 char bmap_name[128];
 double ambient, diffuse, specular;
 double transp, spec_expo, refr;
 fz_rgb_float_td diff_col, spec_col;
 float bmp_amp;
 long color, trans, bump;
 fzrt_floc_ptr floc;
 long num, sindx, num_styles;

fzrt_file_floc_init(&floc);

 err = fz_ffmt_data_model_styletab(ffmt_id, &styletab);
 if(err == FZRT_NOERR)
 {

err = fz_ffmt_data_model_tmap_filetab(ffmt_id, &filetab);
 if(err == FZRT_NOERR)
 {

fz_ffmt_data_model_styletab_count(styletab, &num);
 for (sindx = 0, num_styles = num; sindx < num_styles; ++sindx)
 {
 if (fz_ffmt_data_model_styletab_entry(styletab,

 sindx + 1, &style))
 {
 fz_ffmt_data_model_styletab_surf_name(style, rmtl_name,
64);
 fz_ffmt_data_model_styletab_ambient(style, &ambient);
 fz_ffmt_data_model_styletab_diffuse(style, &diffuse);
 fz_ffmt_data_model_styletab_diffuse_color(style,
&diff_col);
 fz_ffmt_data_model_styletab_specular(style, &specular);

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 192

 fz_ffmt_data_model_styletab_specular_color(
style, &spec_col);

 fz_ffmt_data_model_styletab_transparency(style, &transp);
 fz_ffmt_data_model_styletab_spec_expo(style, &spec_expo);
 fz_ffmt_data_model_styletab_refraction(style, &refr);

 /* Color Texture Map */
 fz_ffmt_data_model_styletab_color_file_id(style, &color);
 if (color != 0)
 {

if(fz_ffmt_data_model_tmap_filetab_entry(filetab,
color,
&file))

 {
 /* Get the file name of the destination

(converted) bitmap file */
 fz_ffmt_data_model_tmap_filetab_dst_floc(

file,floc);
 fzrt_file_floc_get_name(

floc, color_name, 128);
 }
 }
 /* Transparency Texture Map */
 fz_ffmt_data_model_styletab_transparency_file_id(

style, &trans);
 if (trans != 0)
 {

if(fz_ffmt_data_model_tmap_filetab_entry(filetab,
trans,
&file))

 {
 /* Get the file name of the destination

(converted) bitmap file */
 fz_ffmt_data_model_tmap_filetab_dst_floc(

file,floc);
 fzrt_file_floc_get_name(

floc,transp_name,128);
 }
 }
 /* Bump Map Texture Map */
 fz_ffmt_data_model_styletab_bmap_file_id(style, &bump);
 if (bump != 0)

{
if(fz_ffmt_data_model_tmap_filetab_entry(filetab,

bump,
&file))

 {
 /* Get the file name of the destination

(converted) bitmap file */
 fz_ffmt_data_model_tmap_filetab_dst_floc(

file, floc);
 fzrt_file_floc_get_name(floc, bmap_name, 128);

fz_ffmt_data_model_styletab_bmap_amplitude(
style,&bmp_amp);

 }
 }
 }
 }
 }
 }

fzrt_file_floc_finit(&floc);

The example below shows how to retrieve data from the style and texture file tables for export of a specific object
or face.

fzrt_error_td err = FZRT_NOERR;
fz_ffmt_tmap_styletab_ptr styletab;

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 193

fzrt_boolean do_textures = TRUE;
long cindx = -1;

 err = fz_ffmt_data_model_styletab(ffmt_id, &styletab);
 if(err == FZRT_NOERR)
 {
 err = fz_ffmt_data_model_sid_from_face(windex, ffmt_id, styletab,

obj, face_indx, &style);
 }

Import options

Data model import translators can display an import options dialog. The "Options..." button on the import
standard file Open dialog will be enabled if the options flags set by the
fz_ffmt_cbak_data_model_read_opts_flags function has the
FZ_FFMT_OPTS_INIT_HAS_READ_OPTS_BIT bit set. Individual items in the common section of the options
dialog are enabled by setting the appropriate bits of the flags parameter to
fz_ffmt_cbak_data_model_read_opts_flags. The appropriate bits are defined in
fz_ffmt_data_model_read_iface_opts_flags_enum. Data model import options are discussed in
section 3.13.1 of the form•Z Users Manual.

The call back functions to import model data are defined in the fz_cbak_ffmt_data_model_fset.

The fz_ffmt_cbak_data_model_fset contains the following functions to support data model import options:

The data model translator import options dialog enable function (required)

fzrt_error_td fz_ffmt_cbak_data_model_read_opts_flags (
 fz_ffmt_ref_td ffmt_id,
 long *flags,
 long *opts_flags
);

This function is called by form•Z to get the enable state of the data model import "Options..." button and the
enable states of each item in the image import options dialog. The flags parameter is used to set the enable
states of items in the common section of the options dialog. Appropriate bits for this parameter are defined in
fz_ffmt_data_model_read_iface_opts_flags_enum. By default, all items are disabled. The
opts_flags parameter enables the "Options..."button on the "Image Import" standard file Open dialog by setting
it to FZ_FFMT_OPTS_INIT_HAS_READ_OPTS_BIT. If the "Options..." button is to be disabled, opts_flags
should be set to 0 (this is the default).

An example of an data model translator import options dialog enable function is shown below.

fzrt_error_td my_read_opts_get_flags (

fz_ffmt_ref_td ffmt_id,
long * flags,
long * opts_flags)

{
 fzrt_error_td err = FZRT_NOERR;

 FZ_SETBIT(*flags, FZ_FFMT_DATA_MODEL_READ_IFACE_OPTS_ENABLEFORMZUNITS_BIT);
 FZ_SETBIT(*flags, FZ_FFMT_DATA_MODEL_READ_IFACE_OPTS_ENABLEJOINCOPLANAR_BIT);

 FZ_SETBIT(*opts_flags, FZ_FFMT_OPTS_INIT_HAS_READ_OPTS_BIT);

 return(err);
}

The data model translator import options defaults function (optional)

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 194

fzrt_error_td fz_ffmt_cbak_data_model_read_opts_default (
 fz_ffmt_ref_td ffmt_id
);

This function is called by form•Z to set default values of options. All custom options and any common options
whose default values the file translator wishes to change must be set here. This function is only needed if the
translator has custom options or the translator needs to change default values of any of the common options.

form•Z will have set the default values for common options prior to calling this function. This function can then
change any of those values by calling fz_ffmt_data_model_read_opts_parm_set using the options pointer
obtained from fz_ffmt_data_model_read_opts_get_ptr. If the translator needs to inspect the value of an
option, it can be obtained by calling fz_ffmt_data_model_read_opts_parm_get.

An example of an data model translator import options defaults function is shown below.

long my_read_opts_flags;

fzrt_error_td my_read_opts_default (

fz_ffmt_ref_td ffmt_id)
{
 fzrt_error_td err = FZRT_NOERR;
 fz_type_td fz_type;
 fz_ffmt_read_color_meth_enum color_meth = FZ_FFMT_READ_COLOR_METH_CURRENTCOLOR;

 /* Change a default value in the common options */
 fz_type_set_enum(&color_meth, &fz_type);
 fz_ffmt_data_model_read_opts_parm_set(

ffmt_id,
FZ_FFMT_DATA_MODEL_READ_OPTS_PARM_COLR_METHOD,
&fz_type);

 /* Set a default value for a custom option */
 my_read_opts_flags = 0;

 return(err);
}

The data model translator import options changed function (optional)

fzrt_error_td fz_ffmt_cbak_data_model_read_opts_changed (
 fz_ffmt_ref_td ffmt_id,
 fz_ffmt_image_read_opts_enum which
);

This function is called by form•Z when the user changes the value of an option in the common section of the
options dialog. This allows the translator to override the behavior of the common section of the options dialog by
setting values of options or setting enable states of items. The which parameter specifies which parameter's
value changed. Values of the common options can be set by calling
fz_ffmt_data_model_read_opts_parm_set using the options pointer obtained from
fz_ffmt_data_model_read_opts_get_ptr. If the translator needs to inspect the value of an option, it can
be obtained by calling fz_ffmt_data_model_read_opts_parm_get. The enable states of items can be
changed by first getting the enable flags by calling fz_ffmt_data_model_read_get_dlog_flags, then
changing the enable bit of the item whose state needs to change and calling
fz_ffmt_data_model_read_set_dlog_flags. Appropriate bits are defined in
fz_ffmt_data_model_read_iface_opts_flags_enum. All these functions are in the
fz_ffmt_data_model_fset function set.

The data model translator import custom options dialog function (optional)

fzrt_error_td fz_ffmt_cbak_data_model_read_dlog_cust (
 fz_fuim_tmpl_ptr fuim_tmpl,

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 195

 short parent,
 fz_ffmt_ref_td ffmt_id
);

This function is called by form•Z to add items to the custom section of the options dialog. This function should
add items by calling functions in the fz_fuim_fset function set using fuim_mngr and parent parameter
(passed into this function) as the top level parent for all items. The ffmt_id parameter specifies the file
translator's reference id.

An example of a data model translator import custom options dialog function is shown below.

#define MY_STRINGS 1
#define MY_COMPRESS_STR 2

#define MY_COMPRESS_BIT 1
long my_read_opts_flags;

fzrt_error_td my_read_dlog_cust (
 fz_fuim_tmpl_ptr fuim_tmpl,

short parent,
fz_ffmt_ref_td ffmt_id)

{
fzrt_error_td err = FZRT_NOERR;
short gindx;
char title[256];

 err = fzrt_fzr_get_string (_fz_rsrc_ref,MY_STRINGS,MY_COMPRESS_STR, title);
 if(err == FZRT_NOERR)
 {
 if((gindx = fz_fuim_new_check(fuim_tmpl, parent, 0,

FZ_FUIM_FLAG_GFLT | FZ_FUIM_FLAG_HORZ, title, NULL, NULL)) > -1)
 {
 fz_fuim_item_encod_long(fuim_tmpl, gindx, & my_read_opts_flags,

TRUE, FZ_FUIM_BIT2_MASK(MY_COMPRESS_BIT));
 }
 }

 return(err);
}

The data model translator import pre-options dialog function (optional)

fzrt_error_td fz_ffmt_cbak_data_model_read_predloginit(
 long windex,
 fz_ffmt_ref_td ffmt_id
);

This function is called by form•Z just prior to displaying the options dialog. This is done so the file translator can
check the current state of form•Z and make any adjustments to the values of options or the enable states of items
on the options dialog. For example, a translator may have a custom option that is only appropriate if the current
view's projection is panormaic. In this case, this function would check the type of the current view and disable the
option's dialog item if the view's projection is panormaic. Options values and item enable states can be changed
as described in for the fz_ffmt_data_model_read_opts_changed function.

Import

Model data can only be imported into a form•Z model project. To accomplish this, form•Z simply calls the
translator's read function. This function reads the contents of the file and constructs model objects using functions
in fz_model_fset.

After importing all data in a file, form•Z will apply the following model import options to the imported data.
 Transformation

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 196

 form•Z Units
 Format Units
 Construct 3D Solids
 Same Color Surfaces
 Same Layer Surfaces
 Join Adjacent Coplanar Faces
The application of other options is the responsibility of the translator.

The fz_ffmt_cbak_data_model_fset contains the following functions to support importing model data files:

The data model translator import read function

fzrt_error_td fz_ffmt_cbak_data_model_read (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 fzrt_floc_ptr floc
);

This function is called by form•Z to import the model data in a file. This function creates model objects from the
file's contents by calling functions in the fz_model_fset function set. This function also imports lights, views,
surface style, layers, etc. floc is the file to read.

A simple example of a data model translator import function which imports spheres is shown below.

fzrt_error_td my_model_read (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 fzrt_floc_ptr floc)
{
 fzrt_error_td err = FZRT_NOERR;
 my_file_td file;
 double cx, cy, cz, radius;
 fzrt_boolean read_more_data = TRUE;
 fz_xyz_td origin, radii;
 fz_xyz_td rot = {0.0, 0.0, 0.0};

fz_objt_ptr obj;

 err = my_file_open(floc, &file);
 if(err == FZRT_NOERR)
 {
 while(read_more_data)
 {

err = my_file_read_sphere(&file, &cx, &cy, &cz, &radius,
&read_more_data);

if(err == FZRT_NOERR)
{
 origin.x = cx;
 origin.y = cy;
 origin.z = cz;

radii.x = radius;
radii.y = radius;
radii.z = radius;

 err = fz_objt_cnstr_sphr(windex,
&radii,
&origin,
NULL,
NULL,
NULL,
&obj);

}
}

 if (err == FZRT_NOERR)

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 197

 err = my_file_close(&file);
 }

 return(err);
}

Symbol import

A form•Z symbol consists of a symbol definition. When a symbol is placed, a symbol instance is created. When
importing files with symbols, the translator can call fz_objt_symb_def_create in the fz_model_fset to
create a symbol definition. The function, fz_objt_symb_ins_place in the fz_model_fset is used to create
a symbol instance. A symbol definition must be created before it can be instanced (placed).

Export options

Data model export translators can display an export options dialog. The "Options..." button on the export
standard file Open dialog will be enabled if the options flags set by the
fz_ffmt_data_model_write_opts_flags function has the FZ_FFMT_OPTS_INIT_HAS_WRITE_OPTS_BIT
bit set. Individual items in the common section of the options dialog are enabled by setting the appropriate bits of
the flags parameter to fz_ffmt_data_model_write_opts_flags. The appropriate bits are defined in
fz_ffmt_data_model_write_iface_opts_flags_enum. Image export options are discussed in section
3.13.2 of the form•Z Users Manual.

The call back functions to export an image are defined in the fz_ffmt_cbak_data_model_fset.

The fz_ffmt_cbak_data_model_fset contains the following functions to support image export options:

The data model translator export options dialog enable function (required)

fzrt_error_td fz_ffmt_cbak_data_model_write_opts_flags (
 fz_ffmt_ref_td ffmt_id,
 long *flags,
 long *opts_flags
);

This function is called by form•Z to get the enable state for the data model export "Options..." button and the
enable states for each item on the image export options dialog. The flags parameter is used to set the enable
states of items on the common section of the options dialog. Appropriate bits for this parameter are defined in
fz_ffmt_data_model_write_iface_opts_flags_enum. By default, all items are disabled. The
opts_flags parameter enables the "Options..."button on the "Export" standard file Open dialog by setting it to
FZ_FFMT_OPTS_INIT_HAS_WRITE_OPTS_BIT. If the "Options..." button is to be disabled, opts_flags should
be set to 0 (this is the default).

An example of an data model translator export options dialog enable function is shown below.

fzrt_error_td my_write_opts_get_flags (

fz_ffmt_ref_td ffmt_id,
long * flags,
long * opts_flags)

{
 fzrt_error_td err = FZRT_NOERR;

 FZ_SETBIT(*flags, FZ_FFMT_DATA_MODEL_READ_IFACE_OPTS_ENABLEFORMZUNITS_BIT);
 FZ_SETBIT(*flags, FZ_FFMT_DATA_MODEL_READ_IFACE_OPTS_ENABLEFFMTUNITS_BIT);
 FZ_SETBIT(*flags, FZ_FFMT_DATA_MODEL_READ_IFACE_OPTS_ENABLECONSTRUCT3DSOLIDS_BIT);

FZ_SETBIT(*flags, FZ_FFMT_DATA_MODEL_READ_IFACE_OPTS_ENABLESAMECOLOR_BIT);
 FZ_SETBIT(*flags, FZ_FFMT_DATA_MODEL_READ_IFACE_OPTS_ENABLESAMELAYER_BIT);

FZ_SETBIT(*flags, FZ_FFMT_DATA_MODEL_READ_IFACE_OPTS_ENABLEJOINCOPLANAR_BIT);
 FZ_SETBIT(*flags, FZ_FFMT_DATA_MODEL_READ_IFACE_OPTS_ENABLECOLOR_BIT);

FZ_SETBIT(*flags, FZ_FFMT_DATA_MODEL_READ_IFACE_OPTS_ENABLEIMPORTTEXTUREMAPS_BIT);

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 198

 FZ_SETBIT(*flags, FZ_FFMT_DATA_MODEL_READ_IFACE_OPTS_ENABLETEXTUREOPTS_BIT);

FZ_SETBIT(*opts_flags, FZ_FFMT_OPTS_INIT_HAS_WRITE_OPTS_BIT);

 return(err);
}

The data model translator export options defaults function (optional)

fzrt_error_td fz_ffmt_cbak_data_model_write_opts_default (
 fz_ffmt_ref_td ffmt_id
);

This function is called by form•Z to set default values of options. All custom options and any common options
whose default values the file translator wishes to change must be set here. This function is only needed if the
translator has custom options or the translator needs to change default values of any of the common options.

form•Z will have set the default values for common options prior to calling this function. This function can then
change any of those values by calling fz_ffmt_data_model_write_opts_parm_set using the options
pointer obtained from fz_ffmt_data_model_write_opts_get_ptr. If the translator needs to inspect the
value of an option, it can be obtained by calling fz_ffmt_data_model_write_opts_parm_get.

The data model translator export options changed function (optional)

fzrt_error_td fz_ffmt_cbak_data_model_write_opts_changed (
 fz_ffmt_ref_td ffmt_id,
 fz_ffmt_data_model_write_opts_enum which
);

This function is called by form•Z when the user changes the value of an option in the common section of the
options dialog. This allows the translator to override the behavior of the common section of the options dialog by
setting values of options or setting enable states of items. The which parameter specifies which parameter's
value changed. Values of the common options can be set by calling
fz_ffmt_data_model_write_opts_parm_set using the options pointer
(fz_ffmt_data_model_write_opts_ptr) obtained from fz_ffmt_data_model_write_opts_get_ptr.
If the translator needs to inspect the value of an option, it can be obtained by calling
fz_ffmt_data_model_write_opts_parm_get. The enable states of items can be changes by first getting
the enable flags by calling fz_ffmt_data_model_write_get_dlog_flags, then changing the enable bit of
the item whose state needs to change and calling fz_ffmt_data_model_write_set_dlog_flags.
Appropriate bits are defined in fz_ffmt_data_model_write_iface_opts_flags_enum. All these
functions are in the fz_ffmt_data_model_fset function set.

The data model translator export custom options dialog function (optional)

fzrt_error_td ffmt_cbak_data_model_write_dlog_cust (
 fz_fuim_tmpl_ptr fuim_tmpl,
 short tindx,
 short parent,
 fz_ffmt_ref_td ffmt_id
);

This function is called by form•Z to add items to the custom section of the options dialog. This function should
add items by calling functions in the fz_fuim_fset function set using the fz_fuim_mngr_ptr and parent
parameter (passed into this function) as the top level parent for all items. The ffmt_id parameter specifies the
file translator's reference id.

An example of a data model translator export custom options dialog function is shown below.

#define MY_STRINGS 1
#define MY_COMPRESS_STR 2

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 199

#define MY_READ_SUB_IMAG_BIT 1
long my_write_opts_flags;

fzrt_error_td my_write_dlog_cust (

fz_fuim_tmpl_ptr fuim_tmpl,
short parent,
fz_ffmt_ref_td ffmt_id)

{
 fzrt_error_td err = FZRT_NOERR;

short gindx;
char title[256];

 err = fzrt_fzr_get_string (

_fz_rsrc_ref,
MY_STRINGS,
MY_COMPRESS_STR,
title);

 if(err == FZRT_NOERR)
 {
 if((gindx = fz_fuim_new_check(fuim_tmpl, parent, 0,

FZ_FUIM_FLAG_GFLT | FZ_FUIM_FLAG_HORZ, title, NULL, NULL)) > -1)
 {
 fz_fuim_item_encod_long(fuim_tmpl, gindx, & my_write_opts_flags,

TRUE, FZ_FUIM_BIT2_MASK(MY_READ_SUB_IMAG_BIT));
 }
 }

 return(err);
}

The data model translator export pre-options dialog function (optional)

fzrt_error_td fz_ffmt_cbak_data_model_write_predloginit (
 long windex,
 fz_ffmt_ref_td ffmt_id,
);

This function is called by form•Z just prior to displaying the options dialog. This is done so the file translator can
check the current state of form•Z and make any adjustments to the values of options or the enable states of items
on the options dialog. For example, a translator may have a custom option that is only appropriate if the project's
units are English and not appropriate for Metric units. In this case, this function would check the type of the
project's units and disable the option's dialog item if the units is Metric. Options values and item enable states
can be changed as described in for the fz_ffmt_data_model_read_opts_changed function.

Export

form•Z only exports model objects to model files. The export process is more structured than the import process.
form•Z calls several translator functions to export a model data.

Normally form•Z exports the contents of a project to one file. However if the Grouping Method option is not set to
Single Group and the Separate Files option is set, the project may be split into several files. To support grouping
and file splitting, form•Z calls several export functions as follows.
 for each file
 Begin file export (open the file, write file header, etc)
 for each group
 Begin group export
 loop over all objects in group
 export object
 End group export

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 200

 End file export (close file, etc.)

If the Grouping Method is set to By Color (which really means by surface style), form•Z will split objects with
multiple face surface styles into multiple objects prior to export.

If the Grouping Method is set to By Group or By Layer and the translator supports hierarchial grouping (it can
represent form•Z's nested groups/layer groups), then the Begin group export may happen several times before
an End group export happens. A call to the Begin group export function followed by another call to the Begin
group function represents a parent child relationship for groups. The first call represents the parent group of the
second call. Begin group exports move deeper down the grouping tree and End grouping functions move up.
Begins and Ends will be ballanced.

If the Grouping Method is set to By Group or By Layer and the translator does not supports hierarchial grouping,
the Begin group export End group export pair will be called once for each group or for each Layer in the project.

If the Grouping Method is set to Single Group, The Begin file export/End file export and Begin group export/End
group export pairs will each be call only once.

When exporting an object, form•Z looks at both the object type and the export options to determine how the
object should be exported. The export of each object is as follows.
 exported = false
 If the object is a controlled object and the Controlled Objects export option is As Parametric Data
 If the translator can export this parametric object
 (The translator needs to check the specific controlled object type (sphere, NURBS, etc.))
 Export the object as a controlled object
 exported = true
 If not exported and object is a smooth object and the Smooth export option is not set to Facetted
 If the translator can export this smooth object
 If the Smooth export option is set to As Smooth Solids
 Export the object as a smooth solid
 exported = true
 Else if the Smooth export option is set to As Trimmed Surfaces
 Export the object as a trimmed surface
 exported = true
 If not exported
 If the Facetted option is set to As Object and the object is not points or open wire
 If the translator has implemented an object export function

Export the object as a facetted object
 exported = true
 If not exported or the Facetted option is set to As Faces and the object is not points or open wire
 If the translator has implemented a faces export function
 Export the object as individual faces
 exported = true
 If not exported or if the Facetted option is set to As Polylines and the object is not points
 If the translator has implemented a polylines export function
 Export the object as polylines
 exported = true
 If not exported or if the Facetted option is set to As Lines and the object is not points
 If the translator has implemented a lines export function

 Export the object as individual line segments
 exported = true
 If not exported or if the Facetted option is set to As Points
 If the translator has implemented a points export function
 Export the object as individual points
 exported = true

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 201

In addition to objects, other data in a form•Z project (i.e. lights, views and layers) can be exported as well
although in a less structured way. Light data, view data and layer data can be access by functions in the
fz_lite_fset, fz_view_fset, and fz_layr_fset function sets respectively. It is up to the translator to
access this data at a place in the export process that is appropriate for the file format; typically one of the begin or
end functions.

Prior to export, form•Z will transform all Lights, views, texture mappings and objects by a combination of the
transform defined in the transform options and any units conversion that needs to take place. Also, prior to
export, form•Z will decompose all objects as specified by the Decomposition options.

Export method menu items enable states for Plain Objects, Smooth, & Controlled Objects are controlled by
existance of the following functions.
 Plain Objects - Facetted - As Points - fz_ffmt_cbak_data_model_write_points
 Plain Objects - Facetted - As Lines - fz_ffmt_cbak_data_model_write_lines
 Plain Objects - Facetted - As Polylines - fz_ffmt_cbak_data_model_write_polylines
 Plain Objects - Facetted - As Faces - fz_ffmt_cbak_data_model_write_faces
 Plain Objects - Facetted - As Objects - fz_ffmt_cbak_data_model_write_objt
 Plain Objects - Smooth - As Facetted - Any of the above functions
 Plain Objects - Smooth - As Smooth Solids - fz_ffmt_cbak_data_model_write_smod_solid

Plain Objects - Smooth - As Trimmed Surfaces -
fz_ffmt_cbak_data_model_write_smod_trimmed_surf

 Controlled Objects - As Plain Objects - Any of the above functions
 Controlled Objects - As Parametric Data - fz_ffmt_cbak_data_model_write_ctrl
Each item in the Plain Objects - Facetted menu corresponds to a facetted object's topological level as follows:
 point - point
 line - segment
 polyline - outline
 face - face
 object - object
Topological levels are described in section 4.0.1 of the form•Z Users manual. If the decomposition option,
Connect Holes To Face Edged is set, each face will only contain one outline.

The fz_ffmt_cbak_data_model_fset contains the following functions to support writing model data files:

The data model translator export begin function

fzrt_error_td fz_ffmt_cbak_data_model_write_begin (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void **data_ptr,
 fzrt_floc_ptr floc
);

This function is called by form•Z to begin the export of a project. This function should allocate any memory
required for parameters and working data. If the memory allocation fails an error should be returned.

typedef struct
{
 my_file_td file;
} my_trans_data_td;

fzrt_error_td my_write_begin (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void **data_ptr,
 fzrt_floc_ptr floc)
{
 fzrt_error_td err = FZRT_NOERR;
 my_trans_data_td *my_data = NULL;

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 202

 *data_ptr = NULL;
 my_data = (my_trans_data_td *)fzrt_new_ptr_clear(sizeof(my_trans_data_td));
 if(my_data == NULL)
 {
 err = fzrt_error_set (

FZRT_MALLOC_ERROR,
FZRT_ERROR_SEVERITY_ERROR,
FZRT_ERROR_CONTEXT_FZRT, 0);

 }
 else

{
 *data_ptr = my_data ;

 err = my_open(my_data);
 if(err == FZRT_NOERR)
 {
 err = my_write_file_header(my_data);
 if(err == FZRT_NOERR) err = my_write_views(my_data);
 if(err == FZRT_NOERR) err = my_write_lights(my_data);
 if(err == FZRT_NOERR) err = my_write_layers(my_data);
 if(err == FZRT_NOERR) err = my_write_surface_styles(my_data);
 if(err == FZRT_NOERR) err = my_write_symbols(windex, ffmt_id, my_data);

 if(err != FZRT_NOERR)
 {

 my_file_close(my_data);
 }
 }
}

 return err;
}

The data model translator export end function

fzrt_error_td fz_ffmt_cbak_data_model_write_end (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void **data_ptr,
 fzrt_floc_ptr floc,
 fzrt_error_td err
);

This function is called by form•Z to end the export of a project. floc is the file to open in the case the the
Separate Files option is not set. If the Separate Files option is set, this is the name of the folder the files will be
written to. data_ptr is a pointer to the translator data created in
fz_ffmt_cbak_data_model_write_begin. floc is the file.

typedef struct
{
 my_file_td file;
} my_trans_data_td;

fzrt_error_td my_write_end (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void **data_ptr,
 fzrt_floc_ptr floc,

fzrt_error_td err
)

{
 fzrt_error_td err2 = FZRT_NOERR;
 my_trans_data_td *my_data = *((my_trans_data_td **)data_ptr);

 if(err == FZRT_NOERR) err = my_cleanup_after_err(my_data, err);
 if(my_data != NULL)

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 203

 {
 err2 = my_write_file_trailer(my_data);
 my_file_close(my_data);

 fzrt_dispose_ptr((fzrt_ptr)my_data);
 *data_ptr = NULL;
 }

 return(err2);
}

The data model translator export group begin function

fzrt_error_td fz_ffmt_cbak_data_model_write_grup_begin (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 long cur_indx,
 char *name
);

This function is called by form•Z to designate the beginning of a group. data is a pointer to the translator data
created in fz_ffmt_cbak_data_model_write_begin.

The data model translator export group end function

fzrt_error_td fz_ffmt_cbak_data_model_write_group_end (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 long cur_indx,
 char *name
);

This function is called by form•Z to the end of a group. data is a pointer to the translator data created in
fz_ffmt_cbak_data_model_write_begin.

The data model translator export error label function

fzrt_error_td ffmt_cbak_data_model_write_err_label (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 char *str,
 long max_len,
 short *err_id
);

If an error occurs when exporting an image, form•Z will display an error dialog indicating the error. This function
is called by form•Z to obtain a string to display to the user. This is a general error message for all errors. Specific
error strings are returned by the error string function registered with the plugin.

An example of a data model export error label function is shown below.

#define MY_STRINGS 1
#define MY_WRITE_ERR_STR 4

fzrt_error_td my_write_err_label(

long windex,
fz_ffmt_ref_td ffmt_id,
char *str,
long max_len,
short *err_id)

{
 fzrt_error_td err = FZRT_NOERR;

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 204

 char str1[256];

 err = fzrt_fzr_get_string(_fz_rsrc_ref, MY_STRINGS, MY_WRITE_ERR_STR, str1);
 if(err == FZRT_NOERR) strncpy(str, str1, max_len);

 return(err);
}

The data model translator export units conversion function (optional)

fzrt_error_td fz_ffmt_cbak_data_model_write_units_conv (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 fz_unit_type_enum units_type,
 double *conv_factor
);

This function is called by form•Z with a scale factor, conv_factor, to convert positions in the form•Z project to
appropriate units for the file format. For English projects, form•Z stores all positions in units of Inches. For Metric
projects, form•Z stored all positions in units of Centimenters. For example, if the form•Z project is in English
units (positions stored as inches) and the file format specifies that positions are stores in meters, conv_factor
would be the multiplier to convert inches to meters. This function is not needed if the file format is unitless. In this
case, form•Z uses a default conv_factor of 1.0. units_type specifies the units of the form•Z project.

An example of a data model export error label function is shown below for a file format which stores data in units
of Meters.

fzrt_error_td my_write_units_conv (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 fz_unit_type_enum units_type,
 double *conv_factor)
{
 fzrt_error_td err = FZRT_NOERR;

 if(units_type == FZ_UNIT_TYPE_ENGLISH)

{
 conv_factor = 0.0254000508; / Inches to Meters */
}
else
{
 conv_factor = 0.01; / Centimeters to Meters */
}

 return(err);
}

The data model translator export points function (optional)

fzrt_error_td fz_ffmt_cbak_data_model_write_points (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_objt_ptr obj,
 fz_xyz_td *vertex_normals,
 fz_xy_td *vertex_texture_uvs
);

This function is called by form•Z to export the geometry of an object as individual points. In other words, only the
location, normals and texture coordinates of the objects vertices are exported. This is the only function which will
export point objects and point cloud objects. obj is the object to export. The locations of the vertices can be
obtained by calling fz_objt_point_get_xyz in the fz_model_fset function set. vertex_normals is an
array of vertex normals which correspond to vertices in the object. The order of the normals in the array match

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 205

the order of the vertices stored in the object. For instance, vertex_normals[10] is the normal for the point at
the location filled by fz_objt_point_get_xyz(windex, obj, 10, FZ_OBJT_MODEL_TYPE_FACT,
&location). vertex_texture_uvs are the uv texture coordinates which correspond to vertices in the object.
They are ordered the same as vertex_normals. This function is only needed if the file format supports point
objects.

A simple example of a data model export points function is shown below.

fzrt_error_td my_write_points (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_objt_ptr obj,
 fz_xyz_td *vertex_normals,
 fz_xy_td *vertex_texture_uvs)
{
 fzrt_error_td err = FZRT_NOERR;
 long num_verts;

long i;
 fz_xyz_td location;
 my_trans_data_td *my_data = (my_trans_data_td *)data;

 err = fz_objt_get_point_count(windex, obj, FZ_OBJT_MODEL_TYPE_FACT, &num_verts);
 if(err == FZRT_NOERR)

{
 for(i = 0; i < num_verts && err == FZRT_NOERR; i++)
 {
 err = fz_objt_point_get_xyz(windex, obj, 10, FZ_OBJT_MODEL_TYPE_FACT,

&location);
if(err == FZRT_NOERR)
{
 err = my_write_vertex(my_data, location.x, location.y, location.x,

vertex_normals[i].x,
vertex_normals[i].y,
vertex_normals[i].z,
vertex_texture_uvs[i].x, vertex_texture_uvs[i].y);

 }
}

}

 return(err);
}

The data model translator export lines function (optional)

fzrt_error_td fz_ffmt_cbak_data_model_write_lines (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_objt_ptr obj,
 fz_xyz_td *vertex_normals,
 fz_xy_td *vertex_texture_uvs
);

This function is called by form•Z to export the geometry of an object as individual line segments. obj is the
object to export. The locations of the vertices can be obtained described in the
fz_ffmt_data_model_write_points function. vertex_normals and vertex_texture_uvs parameters
are as described ffmt_data_model_write_points. Which points form line segments can be determined
from calls to fz_objt_segt_get_start_pindx and fz_objt_segt_get_end_pindx functions in the
fz_model_fset function set. This function is only needed if the file format supports line segment objects.

A simple example of a data model export lines function is shown below.

fzrt_error_td my_write_lines (

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 206

 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_objt_ptr obj,
 fz_xyz_td *vertex_normals,
 fz_xy_td *vertex_texture_uvs)
{
 fzrt_error_td err = FZRT_NOERR;
 long num_verts;

long num_lines;
long i;
long start, end;

 fz_xyz_td location;
 my_trans_data_td *my_data = (my_trans_data_td *)data;

 /* Export Vertices */
 err = fz_objt_get_point_count (windex, obj, FZ_OBJT_MODEL_TYPE_FACT, &num_verts);
 if(err == FZRT_NOERR)

{
 for(i = 0; i < num_verts && err == FZRT_NOERR; i++)
 {
 err = fz_objt_point_get_xyz(windex, obj, 10, FZ_OBJT_MODEL_TYPE_FACT,
&location);

if(err == FZRT_NOERR)
{
 err = my_write_vertex(my_data, location.x, location.y, location.x,

vertex_normals[i].x, vertex_normals[i].y,
vertex_normals[i].z,
vertex_texture_uvs[i].x, vertex_texture_uvs[i].y);

 }
}

}

/* Export segments */
if(err == FZRT_NOERR)
{
 err = fz_objt_get_segt_count(windex, obj, FZ_OBJT_MODEL_TYPE_FACT,&num_lines);
 for(i = 0; i < num_lines && err == FZRT_NOERR; i++)

{
err = fz_objt_segt_get_start_pindx(windex, obj, i,

FZ_OBJT_MODEL_TYPE_FACT, &start);
if(err == FZRT_NOERR)
{

err = fz_objt_segt_get_end_pindx(windex, obj, i,
FZ_OBJT_MODEL_TYPE_FACT, &end);

 }
 if(err == FZRT_NOERR)
 {
 err = my_write_line(my_data, start, end);
 }

}
 }

 return(err);
}

The data model translator export polylines function (optional)

fzrt_error_td fz_ffmt_cbak_data_model_write_polylines (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_objt_ptr obj,
 fz_xyz_td *vertex_normals,
 fz_xy_td *vertex_texture_uvs
);

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 207

This function is called by form•Z to export the geometry of an object as a connected set of line segments. obj is
the object to export. The locations of the vertices can be obtained described in the
fz_ffmt_data_model_write_points function. vertex_normals and vertex_texture_uvs parameters
are as described. Which points form line segments can be determined frim calls to
fz_objt_segt_get_start_pindx and fz_objt_segt_get_end_pindx functions in the fz_model_fset
function set. This function is only needed if the file format supports polyline connected objects.

A simple example of a data model export polylines function is shown below.

fzrt_error_td my_write_polylines (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_objt_ptr obj,
 fz_xyz_td *vertex_normals,
 fz_xy_td *vertex_texture_uvs)
{
 fzrt_error_td err = FZRT_NOERR;
 long num_verts, num_lines, num_faces, num_curvs;

long i,j,k;
long beg_seg_index, crv_index;

 fz_xyz_td location;
 long* pnts;
 my_trans_data_td *my_data = (my_trans_data_td *)data;

 /* Export Vertices */
 err = fz_objt_get_point_count (windex, obj, FZ_OBJT_MODEL_TYPE_FACT, &num_verts);
 if(err == FZRT_NOERR)

{
 for(i = 0; i < num_verts && err == FZRT_NOERR; i++)
 {
 err = fz_objt_point_get_xyz(windex, obj, 10, FZ_OBJT_MODEL_TYPE_FACT,

 &location);
if(err == FZRT_NOERR)
{
 err = my_write_vertex(my_data, location.x, location.y, location.x,

vertex_normals[i].x, vertex_normals[i].y,
vertex_normals[i].z,
vertex_texture_uvs[i].x, vertex_texture_uvs[i].y);

 }
}

}

/* allocate memory for pnts array */
. . .

/* Export polylines */
if(err == FZRT_NOERR)
{
 err = fz_objt_get_face_count(windex, obj, FZ_OBJT_MODEL_TYPE_FACT,&num_faces);
 if(err == FZRT_NOERR)

{
 for(i = 0; i < num_faces && err == FZRT_NOERR; i++)

{
 fz_objt_face_get_curv_count(windex, obj, i,

FZ_OBJT_MODEL_TYPE_FACT,&num_curvs);
 err = fz_objt_face_get_cindx(windex, obj, i,

FZ_OBJT_MODEL_TYPE_FACT, &crv_index);

for(j = 0; j < num_curvs && err == FZRT_NOERR; j++)
{
 fz_objt_curv_get_segt_count(windex, obj, crv_index,

 FZ_OBJT_MODEL_TYPE_FACT, &num_lines)

fz_objt_curv_get_sindx(windex, obj, crv_index,

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 208

FZ_OBJT_MODEL_TYPE_FACT, &beg_seg_index);

 k = beg_seg_index;

 while(err == FZRT_NOERR)
{

err = fz_objt_segt_get_start_pindx(windex, obj,
k, FZ_OBJT_MODEL_TYPE_FACT, &pnts[k]);

 fz_objt_segt_get_next(windex, obj, k,
FZ_OBJT_MODEL_TYPE_FACT, &k);

 if (k == beg_seg_index || /* at beg again */
 k == -1 /* open line */)
 {
 break;
 }
 }
 if(err == FZRT_NOERR)

{
err = my_write_polyline(my_data, pnts);

}
fz_objt_curv_get_next(windex, obj, crv_index,

FZ_OBJT_MODEL_TYPE_FACT, &crv_index);
}

}
}

}

/* deallocate memory for pnts array */
. . .

 return(err);
}

The data model translator export faces function (optional)

fzrt_error_td fz_ffmt_cbak_data_model_write_faces (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_objt_ptr obj,
 fz_xyz_td *face_normals,
 fz_xyz_td *vertex_normals,
 fz_xy_td *vertex_texture_uvs
);

This function is called by form•Z to export the geometry of an object as individual faces. Faces are a collection of
curves (outlines) which are made up of an ordered set of line segments (edges). The curves that make up a face
can be accessed by the fz_objt_face_get_cindx function in the fz_model_fset function set. If the
Connect Holes To Face Edges option is set, each face will only have one curve. The segments that make up a
curve can be accessed by the fz_objt_curv_get_sindx function in the fz_model_fset function set.
Determining which points form line segments is described in the fz_ffmt_data_model_write_lines
function. face_normals is an array of face normals which corresponds to the faces in an object. The order of
the normals in the array matches the order of the faces stored in the object. For instance, face_normals[10]
is the normal for the face with index 10 of the object. This function is only needed if the file format supports faces
of objects.

A simple example of a data model export faces function is shown below.

fzrt_error_td my_write_faces (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_objt_ptr obj,

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 209

 fz_xyz_td *face_normals,
 fz_xyz_td *vertex_normals,
 fz_xy_td *vertex_texture_uvs)
{
 fzrt_error_td err = FZRT_NOERR;
 long num_verts, num_lines, num_faces, num_curvs;

long i, j, k;
long beg_seg_index, crv_index;

 fz_xyz_td location;
 long* pnts;
 my_trans_data_td *my_data = (my_trans_data_td *)data;

 /* Export Vertices */
 err = fz_objt_get_point_count(windex, obj, FZ_OBJT_MODEL_TYPE_FACT, &num_verts);
 if(err == FZRT_NOERR)

{
 for(i = 0; i < num_verts && err == FZRT_NOERR; i++)
 {
 err = fz_objt_point_get_xyz(windex, obj, 10, FZ_OBJT_MODEL_TYPE_FACT,

 &location);
if(err == FZRT_NOERR)
{
 err = my_write_vertex(my_data, location.x, location.y, location.x,

vertex_normals[i].x, vertex_normals[i].y,
vertex_normals[i].z,
vertex_texture_uvs[i].x, vertex_texture_uvs[i].y);

 }
}

}

/* allocate memory for pnts array */
. . .

/* Export faces */
if(err == FZRT_NOERR)
{
 err = fz_objt_get_face_count(windex, obj, FZ_OBJT_MODEL_TYPE_FACT,&num_faces);
 if(err == FZRT_NOERR)

{
 for(i = 0; i < num_faces && err == FZRT_NOERR; i++)

{
 fz_objt_face_get_curv_count(windex, obj, i,

FZ_OBJT_MODEL_TYPE_FACT,&num_curvs);
 err = fz_objt_face_get_cindx(windex, obj, i,

FZ_OBJT_MODEL_TYPE_FACT, &crv_index);

/* first curve is outline of face, subsequent curves
 are holes in face */

for(j = 0; j < num_curvs && err == FZRT_NOERR; j++)
{
 fz_objt_curv_get_segt_count(windex, obj, crv_index,

 FZ_OBJT_MODEL_TYPE_FACT, &num_lines)

fz_objt_curv_get_sindx(windex, obj, crv_index,
FZ_OBJT_MODEL_TYPE_FACT, &beg_seg_index);

 k = beg_seg_index;

 while(err == FZRT_NOERR)
{

err = fz_objt_segt_get_start_pindx(windex, obj,
k, FZ_OBJT_MODEL_TYPE_FACT, &pnts[k]);

 fz_objt_segt_get_next(windex, obj, k,
FZ_OBJT_MODEL_TYPE_FACT, &k);

 if (k == beg_seg_index || /* at beg again */
 k == -1 /* open line */)

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 210

 {
 break;
 }
 }
 if(err == FZRT_NOERR)

{
err = my_write_face_polyline(my_data, pnts);

}
fz_objt_curv_get_next(windex, obj, crv_index,

FZ_OBJT_MODEL_TYPE_FACT, &crv_index);
}

}
}

}

/* deallocate memory for pnts array */
. . .

 return(err);
}

The data model translator export object function (optional)

fzrt_error_td fz_ffmt_cbak_data_model_write_objt (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_objt_ptr obj,
 fz_xyz_td *face_normals,
 fz_xyz_td *vertex_normals,
 fz_xy_td *vertex_texture_uvs
);

This function is called by form•Z to export the geometry and topology of an object.

The data model translator export can do smooth function (optional)

fzrt_error_td fz_ffmt_cbak_data_model_write_can_do_smooth (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_objt_ptr obj,
 fzrt_boolean do_tmap,
 fz_ffmt_data_model_write_smod_meth_enum *smod_method
);

This function is called by form•Z to determine if a specific smooth object can be exported as a smooth object.

The data model translator export trimmed surface function (optional)

fzrt_error_td fz_ffmt_cbak_data_model_write_smod_trimmed_surf (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_objt_ptr obj,
 fzrt_boolean do_tmap
);

This function is called by form•Z to export an object as a trimmed surface.

The data model translator export smooth solid function (optional)

fzrt_error_td fz_ffmt_cbak_data_model_write_smod_solid (
 long windex,
 fz_ffmt_ref_td ffmt_id,

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 211

 void *data,
 fz_objt_ptr obj,
 fzrt_boolean do_tmap
);

This function is called by form•Z to export an object as a smooth solid.

The data model translator export can do controlled object function (optional)

fzrt_boolean fz_ffmt_cbak_data_model_write_can_do_ctrl (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_objt_ptr obj,
 fzrt_boolean do_tmap,
 fz_ffmt_data_model_write_cntl_meth_enum cntl_method
);

This function is called by form•Z to determine if a controlled smooth object can be exported as a controlled object.
This function should look at the object's specific type (text, sphere, cone, sweep, symbol instance, etc.). If the file
format supports that specific object type, this function should return TRUE, otherwise it should return FALSE.

A simple example of a data model export can do controlled object function is shown below.

fzrt_boolean my_write_can_do_ctrl(
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_objt_ptr obj,
 fzrt_boolean do_tmap,
 fz_ffmt_data_model_write_cntl_meth_enum cntl_method)
{
 fzrt_boolean rv = FALSE;

fzrt_UUID_td otype;

 if(cntl_method == FZ_FFMT_DATA_MODEL_WRITE_CNTL_AS_CNTL)
 {
 fz_objt_cntl_get_uuid(windex, obj, otype);

 if(fzrt_UUID_is_equal(otype, FZ_OBJT_TYPE_SPHR))
 {
 rv = TRUE;
 }
}

 return(rv);
}

In this example the file format only supports spheres as parametric objects. All other object types will be expored
as plain objects.

The data model translator export controlled object function (optional)

fzrt_error_td ffmt_cbak_data_model_write_ctrl (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_objt_ptr obj,
 fzrt_boolean do_tmap
 fz_ffmt_data_model_write_cntl_meth_enum cntl_method
);

This function is called by form•Z to export a controlled object.

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 212

A simple example of a data model export can do controlled object function is shown below.

fzrt_error_td my_write_ctrl(
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,
 fz_objt_ptr obj,
 fzrt_boolean do_tmap)
{
 fzrt_error_td err = FZRT_NOERR;

fzrt_UUID_td otype;
 my_trans_data_td *my_data = (my_trans_data_td *)data;
 fz_type_td fz_type;
 fz_xyz_td radii,origin;

 fz_objt_cntl_get_uuid (windex, obj, otype);

if(fzrt_UUID_is_equal(otype, FZ_OBJT_TYPE_SPHR))
{
 err = fz_objt_edit_sphr_parm_get(windex, obj,

FZ_OBJT_SPHR_PARM_RADII, &fz_type);
 if(err == FZRT_NOERR)

{
fz_type_get_xyz(&fz_type, &radii);

 }
 err = fz_objt_edit_sphr_parm_get(windex, obj,

FZ_OBJT_SPHR_PARM_ORIGIN, &fz_type);
 if(err == FZRT_NOERR)

{
fz_type_get_xyz(&fz_type, &origin);

 }
 if(err == FZRT_NOERR)

{
 err = my_write_sphere(my_data, origin.x, origin.y, origin.z,

radii.x, radii.y, radii.z);
}

}

 return(err);
}

In this example the file format only supports spheres as parametric objects. All other object types will be expored
as plain objects.

Symbol export

Symbols are described in section 4.20 of the form•Z Users Manual. To export symbols both the symbol definition
and symbol instance need tp be exported. If the export Symbol Option Explode Symbols is selected, form•Z
explodes each symbol instance prior to export. The symbols are then exported as any other object. For file
formats which don't support object instancing, the Explode Symbols option should be set and the "Symbol
Options…" button on the export options dialog should be disabled.

To export symbol definitions (when Explode Symbols is not selected) a translator needs to call
fz_ffmt_data_model_write_sdefs from a place in the export process that's appropriate for the file format.
Then for each symbol definition to be exported, form•Z will call the translator's
fz_ffmt_data_model_write_symb_def_begin. This will let the translator know that a symbol is being
exported and which symbol it is. Then for each object in the symbol, form•Z exports the object as it would any
other object. At the conclusion of writing the objects in the symbol definition, form•Z calls the translator's
fz_ffmt_data_model_write_symb_def_end to let the translator that export of a symbol definition is done.

Symbol definitions can contain lights. The lights can be accessed from either the translator's
fz_ffmt_data_model_write_symb_def_begin or fz_ffmt_data_model_write_symb_def_end

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 213

function. The fz_symb_fset function set has the functions, fz_symb_lev_get_n_lights which gets the
number of lights in a symbol definition and fz_symb_lev_get_light to get a light from the symbol definition.

Symbol instanced are written at the same time as other objects. Symbol objects are controlled objects so a
translator must implement the fz_ffmt_cbak_data_model_write_can_do_ctrl and
fz_ffmt_cbak_data_model_write_ctrl functions. Symbol instances are identified by the
FZ_OBJT_TYPE_SYMB model type.

The data model translator export symbol definition begin function (optional)

fzrt_error_td fz_ffmt_cbak_data_model_write_symb_def_start (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,

fz_symb_lib_ptr lib_ptr,
fz_symb_def_ptr def_ptr,
fz_symb_lev_ptr lev_ptr

);

This function is called by form•Z to let a translator know that the export of a symbol definition is beginning.

typedef struct
{
 my_file_td file;
} my_trans_data_td;

static long _seed = 0; /* Used for generating unique names for symbol definitions */

/* This function is called from my_write_file_begin (previously implemented) */
fzrt_error_td my_write_symbols(

long windex,
fz_ffmt_ref_td ffmt_id,
my_trans_data_td *data)

{
 fzrt_error_td err = FZRT_NOERR;

fzrt_boolean do_tmaps;
long flags;

 fz_type_td fz_type;
 short grup_method, sym_method;

short fact_method, smooth_method, cntl_method;
 my_trans_data_td *my_data = (my_trans_data_td *)data;
 fz_objt_tria_type_enum triang_type;
 fzrt_boolean non_planar_only;
 fzrt_boolean strict_planarity;
 double angle;

 _seed = 0;

fz_ffmt_data_model_write_opts_parm_get(ffmt_id,
FZ_FFMT_DATA_MODEL_WRITE_OPTS_PARM_GRUP_METHOD,
&fz_type);

fz_type_get_short(&fz_type, &grup_method);

 fz_ffmt_data_model_write_opts_parm_get(ffmt_id,

FZ_FFMT_DATA_MODEL_WRITE_OPTS_PARM_FLAGS,
&fz_type);

 fz_type_get_long(&fz_type, &flags);
 do_tmaps = FZ_CHKBIT(flags,

 FZ_FFMT_DATA_MODEL_WRITE_OPTS_TEXTUREMAPS_BIT) ? TRUE : FALSE;

fz_ffmt_data_model_write_opts_parm_get(ffmt_id,

FZ_FFMT_DATA_MODEL_WRITE_OPTS_PARM_SYMB_METHOD,
&fz_type);

 fz_type_get_short(&fz_type, &sym_method);

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 214

 fz_ffmt_data_model_write_opts_get_dcomp_opts(ffmt_id, &triang_type, &non_planar_only,
&strict_planarity);

fz_ffmt_data_model_write_opts_parm_get(ffmt_id,

FZ_FFMT_DATA_MODEL_WRITE_OPTS_PARM_FACT_METHOD,
&fz_type);

fz_type_get_short(&fz_type, &fact_method);
fz_ffmt_data_model_write_opts_parm_get(ffmt_id,

FZ_FFMT_DATA_MODEL_WRITE_OPTS_PARM_SMOD_METHOD,
&fz_type);

fz_type_get_short(&fz_type, &smooth_method);
fz_ffmt_data_model_write_opts_parm_get(ffmt_id,

FZ_FFMT_DATA_MODEL_WRITE_OPTS_PARM_CNTL_METHOD,
&fz_type);

fz_type_get_short(&fz_type, &cntl_method);

fz_ffmt_data_model_write_opts_parm_get(ffmt_id,
FZ_FFMT_DATA_MODEL_WRITE_OPTS_PARM_SMTH_ANG,
&fz_type);

fz_type_get_double(&fz_type, &angle);

if (sym_method != FZ_FFMT_DATA_WRITE_SYMB_METH_SYMEXPLODE)
 {
 err = fz_ffmt_data_model_write_sdefs(

windex,
 ffmt_id,
 sym_method,

 do_tmaps,
 grup_method,
 fact_method,
 smooth_method,
 cntl_method,

angle,
 NULL,
 my_data,
 triang_type,
 non_planar_only,
 strict_planarity

);
 }
 return(err);
}

/* The call to ffmt_3d_objt_write_sdefs causes form•Z to iterate over all symbol definitions
and call this for each definition. */
fzrt_error_td my_write_symb_def_start (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,

fz_symb_lib_ptr lib_ptr,
fz_symb_def_ptr def_ptr,
fz_symb_lev_ptr lev_ptr

)
{
 fzrt_error_td err = FZRT_NOERR;
 my_trans_data_td *my_data = (my_trans_data_td *)data;
 char name[256], unique_name[256];
 long n_lights, j;
 fz_lite_ptr light;

 err = fz_symb_def_get_name (windex, def_ptr, name);
 if(err == FZRT_NOERR)

{
sprintf(unique_name, "%s_%d ", name, _seed);

 err = my_write_symb_begin(my_data, unique_name);
 if(err == FZRT_NOERR)

{
 err = fz_symb_lev_model_get_num_lights(windex, lev_ptr, &n_lights);

2.8.3 File Translator form•Z SDK (v6.0.0.0 rev 05/30/06) 215

 for(j = 0; j < n_lights && err == FZRT_NOERR; j++)
{

 err = fz_symb_lev_get_light(windex, lev_ptr, j, &light);
 if(err == FZRT_NOERR)

{
err = my_write_symb_light(my_data, light);

 }
 }
 }
 }

 return(err);
}

The data model translator export symbol definition end function (optional)

fzrt_error_td fz_ffmt_cbak_data_model_write_symb_def_end (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,

fz_symb_lib_ptr lib_ptr,
fz_symb_def_ptr def_ptr,
fz_symb_lev_ptr lev_ptr

);

This function is called by form•Z to let a translator know that the export of a symbol definition has ended.

typedef struct
{
 my_file_td file;
} my_trans_data_td;

fzrt_error_td my_write_symb_def_end (
 long windex,
 fz_ffmt_ref_td ffmt_id,
 void *data,

fz_symb_lib_ptr lib_ptr,
fz_symb_def_ptr def_ptr,
fz_symb_lev_ptr lev_ptr

)
{
 fzrt_error_td err = FZRT_NOERR;
 my_trans_data_td *my_data = (my_trans_data_td *)data;

 err = my_write_symb_end(my_data);

 return(err);
}

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 216

2.8.4 Object types

In form•Z, there is a large number of object types, also called controlled objects. They are, for
example, extrusions, enclosures, cubes, cones, cylinders, spheres, tori, sweeps, stairs etc. A
controlled object stores its generation parameters in a data block that is maintained with the
object. The parameters can be displayed in a dialog editing environment, which can be invoked
form the Query dialog. The parameters of some controlled objects can also be edited graphically
through the Edit Controls tool. It is possible to create custom object types in a plugin by
registering a function set with a plugin class. The plugin with which the function set is registered is
usually of type FZ_OTYP_EXTS_TYPE, but can be a different type as well. For example, a
command or a file translator plugin may install the object type function set as part of the
functionality added through the plugin. Multiple object type function sets may also be installed
with a single plugin. This allows a plugin to offer a suite of object types, which logically belong
together in a single package.

The function set which defines a custom object type is fz_otyp_cbak_fset. The example
below shows the definition of a plugin of type FZ_OTYP_EXTS_TYPE and the registration of a
single object type within that plugin. This object type defines star shaped objects. It will serve as
an example throughout the remainder of this section. The source code for this plugin is available
as an example as well. It is recommended to build this plugin with the respective compiler
environment and trace the execution of the callback functions.

fzrt_error_td star_register_plugins ()
{
 fzrt_error_td err = FZRT_NOERR;

 err = fzpl_glue->fzpl_plugin_register(
 STAR_OTYP_PLUGIN_UUID,
 "Star Object Type",
 STAR_OTYP_PLUGIN_VERSION,
 STAR_OTYP_PLUGIN_VENDOR,
 STAR_OTYP_PLUGIN_URL,
 FZ_OTYP_EXTS_TYPE,
 FZ_OTYP_EXTS_VERSION,
 star_error_str_func,

0,
NULL,

 &star_otyp_plugin_runtime_id);

 if (err == FZRT_NOERR)
 {
 err = fzpl_glue->fzpl_plugin_add_fset(
 star_otyp_plugin_runtime_id,
 FZ_OTYP_CBAK_FSET_TYPE,
 FZ_OTYP_CBAK_FSET_VERSION,
 FZ_OTYP_CBAK_FSET_NAME,
 FZPL_TYPE_STRING(fz_otyp_cbak_fset),
 sizeof (fz_otyp_cbak_fset),
 star_otyp_fill_cbak_fset,

FALSE);
 }

 return(err);
}

The function set registration passes a function to fzpl_plugin_add_fset, which is executed
by form•Z at startup. In the example above, the registration of the object type passes the function

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 217

star_otyp_fill_cbak_fset. This function must be defined by the plugin developer and must
fill in the object type function set with the pointers of the callback functions which constitute the
functionality of a custom object type. An example of this registration process is shown below. It
assigns the callbacks of the star object type to the function set. It is quite possible to register
more than one object type function set with a plugin. In this case the fzpl_plugin_add_fset
call needs to be repeated for each function set, using the same runtime id, but a different callback
function set fill function.

fzrt_error_td star_otyp_fill_cbak_fset (
 const fzpl_fset_def_ptr fset_def,
 fzpl_fset_td * const fset
)
{
 fzrt_error_td err = FZRT_NOERR;
 fz_otyp_cbak_fset *otyp_fset;

 err = fzpl_glue->fzpl_fset_def_check (
 fset_def,
 FZ_OTYP_CBAK_FSET_VERSION,
 FZPL_TYPE_STRING(fz_otyp_cbak_fset),
 sizeof (fz_otyp_cbak_fset),
 FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 otyp_fset = (fz_otyp_cbak_fset *)fset;

 otyp_fset->fz_otyp_cbak_uuid = star_otyp_uuid;
 otyp_fset->fz_otyp_cbak_info = star_otyp_info;
 otyp_fset->fz_otyp_cbak_init = star_otyp_init;
 otyp_fset->fz_otyp_cbak_finit = star_otyp_finit;
 otyp_fset->fz_otyp_cbak_name = star_otyp_name;
 otyp_fset->fz_otyp_cbak_tform = star_otyp_tform;
 otyp_fset->fz_otyp_cbak_geom = star_otyp_geom;
 otyp_fset->fz_otyp_cbak_regen = star_otyp_regen;
 otyp_fset->fz_otyp_cbak_iface_tmpl = star_otyp_iface_tmpl;
 otyp_fset->fz_otyp_cbak_get_key_pnts = star_otyp_get_key_pnts;
 otyp_fset->fz_otyp_cbak_io = star_otyp_io;

otyp_fset->fz_otyp_cbak_rvrs = NULL;
otyp_fset->fz_otyp_cbak_copy = NULL;
otyp_fset->fz_otyp_cbak_cvsl = NULL;
otyp_fset->fz_otyp_cbak_cvrt_ptch = NULL;
otyp_fset->fz_otyp_cbak_get_ncur = NULL;
otyp_fset->fz_otyp_cbak_get_nsrf = NULL;
otyp_fset->fz_otyp_cbak_cnstr_smod = NULL;
otyp_fset->fz_otyp_cbak_copy_cntl_objts = NULL;

 otyp_fset->fz_otyp_cbak_parm_count = star_parm_count;
 otyp_fset->fz_otyp_cbak_parm_get_info2 = star_parm_get_info;
 otyp_fset->fz_otyp_cbak_parm_get_state_str = star_parm_get_state_str;
 otyp_fset->fz_otyp_cbak_parm_get = star_parm_get;
 otyp_fset->fz_otyp_cbak_parm_set = star_parm_set;

 }

 return err;
}

Of the all the callback functions of an object type function set, only some are required, while the
others are optional. When an optional callback is not assigned to the function set, the respective

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 218

functionality of the object type is disabled or performed by form•Z in a generic fashion. For
example, if the fz_otyp_cbak_iface_tmpl function is not defined, the Edit button in the
Query dialog is disabled when an object of this type is queried. The required functions are:

fz_otyp_cbak_name
fz_otyp_cbak_uuid
fz_otyp_cbak_info
fz_otyp_cbak_init
fz_otyp_cbak_regen
fz_otyp_cbak_io

fz_otyp_cbak_parm_count and fz_otyp_cbak_parm_get_info2 are optional. However,
if they are defined, fz_otyp_cbak_io is optional. That is, either fz_otyp_cbak_io or
fz_otyp_cbak_parm_count and fz_otyp_cbak_parm_get_info2 must be defined.

All others are optional. Note that there is no callback function to explicitly create an object of the
given type. Usually, the object type plugin is not registered alone, but is paired with another
plugin, such as a tool command. This is the case with the star example. The tool command plugin
can be set up to define a new modeling tool, which manifests itself in form of an icon in the main
tool palette. The tool command plugin can be written, so that selecting the tool and clicking in the
modeling window creates a new object using the type defined by the object type plugin. In this
section, only the object type plugin is described in more detail. The tool command plugin is
described in more detail in section 2.6.3.

Object type function implementation

The following section gives a detailed description of each of the object type callback functions and
what task each function is expected to perform.

The name function (required)

fzrt_error_td fz_otyp_cbak_name (
 long windex,
 fz_objt_ptr objt,
 fzrt_ptr parm,
 char *str,
 long max_str
);

The name function defines a name for the object type. This name will show up in the form•Z
interface, whenever object types are listed. The name function must assign a string to the
function's name argument. The length of the string assigned cannot exceed max_len characters.
An example of a name function is shown below.

fzrt_error_td star_otyp_name(
 long windex,
 fz_objt_ptr objt,
 fzrt_ptr parm,
 char *str,
 long max_len
)
{

 strncpy(str,"Star",max_len);

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 219

 return(FZRT_NOERR);
}

The objt and parm parameters may be passed as NULL. In this case a name for all objects of
this type should be returned. If objt and parm are passed in, a particular object of this type
exists, and the type name may be further specified based on the parameters of the object. For
example, the sweep object type in form•Z works this way. When its name function is called with
NULL, it returns "Sweep". However, if it is called with a particular object as the parameter, the
returned name contains which type of sweep it is, for example, "Axial Sweep", or "Two Source
Sweep". Other object types do not make such a distinction and always return the same name,
such as spheres, nurbz or symbols. It is recommended that the object type name is stored in a
.fzr resource file and retrieved from it, when assigned to the name argument, so that it can be
localized for different languages. In the example above, this step is omitted for the purpose of
simplicity.

The uuid function (required)

fzrt_error_td fz_otyp_cbak_uuid (
 fzrt_UUID_td uuid
);

Each object type is tagged with a unique identifier. This allows form•Z to distinguish objects of
one type from all others. When a form•Z project file is written to disk, the uuid of the object type is
saved with the object. When the project file is later opened again, form•Z will connect the loaded
object type data with the installed plugin. If the plugin that created the object type is not installed,
the object is automatically dropped to a plain object. The uuid function needs to assign this
unique identifier string to the function's uuid argument. An example is shown below.

#define STAR_OTYP_UUID \
"\x2d\xa8\x6d\xe1\xdb\xd3\x40\xc4\xa7\xb3\xd9\xe3\xd2\x73\x69\x75"

fzrt_error_td star_otyp_uuid (
 fzrt_UUID_td uuid
)
{
 fzrt_UUID_copy(STAR_OTYP_UUID, uuid);
 return(FZRT_NOERR);
}

The info function (required)

fzrt_error_td fz_otyp_cbak_info (
 long *size,
 long *flags
);

form•Z manages the storage of each occurence of an object type. In order to do so, form•Z
needs to know, what the data size (in # of bytes) of the object type parameters is. The info
function is expected to return the number of bytes that the parameter storage requires. In most
cases, a plugin developer will create a structure with fields which describe the object type
parameters. The size returned to form•Z via this callback can be acquired with a
sizeof(structure_type) call.

form•Z also needs to know some basic information about the object type, for example, whether
the object type is always smooth, always facetted or both. This information is defined in the flags

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 220

argument. This argument should be set with the bit encoded flags defined in the enum
fz_otyp_flags_enum. Setting a bit in the flags argument of the function enables the
functionality described by the bit. Setting a bit can be done with the FZ_SETBIT utility function. In
case of the star object, it is defined to always generate facetted model type objects and also
chooses to let form•Z handle the reversing of the object topology.

The info function for the star object type is shown below.

fzrt_error_td star_otyp_info (
 long *size,
 long *flags
)
{
 *size = sizeof(star_otyp_td);

 *flags = 0;
 FZ_SETBIT(*flags,FZ_OTYP_ALWAYS_FACET);
 FZ_SETBIT(*flags,FZ_OTYP_HANDLE_RVRS);

return(FZRT_NOERR);

}

A complete description of all object type flags follows:

FZ_OTYP_NON_UNI_SCALE
Certain parametric data cannot be scaled non uniformly. For example, local coordinate system
with its own x, y and z axes would be distorted and even skewed with a non uniform scaling. In
such a case, this bit should not be set. If a non uniform scale is applied to the object, the control
parameters are automatically dropped by form•Z. Other parametric data can be scaled non
uniformly. This is the case, for example, with nurbZ curves, which are defined by a set of control
points. Scaling the control points also scales the evaluated shape of the curve. In this case, the
bit should be set. The object can then be scaled non uniformly without loosing the parameters
data.

FZ_OTYP_NO_RENDER
When this bit is set, the object will not be rendered in high end rendering modes, such as
RenderZone. They will only be rendered in the interactive rendering modes. If the bit is not set,
the object will always be rendered. This flag is expected to be used less frequently. It may be
applied to object types, which are temporary in nature.

FZ_OTYP_NO_SYS_FLIP
When this bit is set, the object cannot be transformed so that a coordinate system changes from
left hand to right hand without dropping the object to a plain object. Such a transformation occurs,
for example, when mirroring about a plane or when scaling with one of the scale factors being
negative and the other ones positive. If this bit is not set, such transformations are allowed and
the object controls are not dropped.

FZ_OTYP_ALWAYS_SMOOTH
When this bit is set, the object is always a smooth object. In other words, its model type is always
smooth. It is not possible to have both, FZ_OTYP_ALWAYS_SMOOTH and
FZ_OTYP_ALWAYS_FACET set. However if none are set, the object may be smooth or facetted.

FZ_OTYP_ALWAYS_FACET

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 221

When this bit is set, the object is always a facetted object. In other words, it never has a smooth
object representation. It is not possible to have both, FZ_OTYP_ALWAYS_SMOOTH and
FZ_OTYP_ALWAYS_FACET set. However if none are set, the object may be smooth or facetted.

FZ_OTYP_HANDLE_RVRS
When this bit is set, the parametric representation of the object cannot be reversed in direction. In
this case, form•Z will reverse the object facets after a reverse operation
occurred. If this bit is not set, it is the responsibility of the object type to reverse its parametric
data. This is usually done in the fz_otyp_cbak_rvrs callback function.

FZ_OTYP_EXPL_PER_PART
When this bit is set, the explode operation may yield multiple volumes for this object. When this
bit is not set, the object is always represented by only one volume. In the Convert Options dialog,
the Per Part check box will be added if this bit is set.

FZ_OTYP_NESTED_CURVE_CNTRL
When this bit is set, the object type is assumed to define an open or closed curve, which lends
itself as the source for a number of other derivative objects, such as sweep, helix or revolved
objects.

The init function (required)

fzrt_error_td fz_otyp_cbak_init (
 long windex,
 fz_objt_ptr objt,
 fzrt_ptr parm

);

form•Z calls this function to initialize the parameters of the object with default values. The
storage for the parameters has already been allocated by form•Z and is passed in to this function
as the parm parameter. The object to which the parameters belong and the project in which the
object resides are passed in as well. The init function for the star object type is shown below.

fzrt_error_td star_otyp_init(
 long windex,
 fz_objt_ptr objt,
 fzrt_ptr parm
)
{
 star_otyp_parms_td *star;
 short err = FZRT_NOERR;

 if(parm != NULL)
 {
 star= (star_otyp_parms_td *)parm;

 star->base_type = _star_tool_opts->base_type;

 star->origin.x = 0.0;
 star->origin.y = 0.0;
 star->origin.z = 0.0;

 star->xaxis.x = 1.0;
 star->xaxis.y = 0.0;
 star->xaxis.z = 0.0;
 star->yaxis.x = 0.0;
 star->yaxis.y = 1.0;
 star->yaxis.z = 0.0;

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 222

 star->radius = _star_tool_opts->radius;
 star->rad_ratio = _star_tool_opts->rad_ratio;
 }

 return(err);
}

Note that the base_type, radius and rad_ratio parameters are not set to fixed values, but
are assigned from the tool option's current values. In the example provided, the star object type is
combined with the star tool command plugin, which executes the creation of a star object.

The regeneration function (required)

fzrt_error_td fz_otyp_cbak_regen(

long windex,
fz_objt_ptr obj,
fzrt_ptr parm

);

The regeneration function is called when form•Z needs to recreate the shape of the object based
on the current settings of the object's parameters. This may be necessary, for example, after the
display resolution attribute of the object was edited, or a parameter of the object was altered
through the edit dialog, invoked from the Query dialog. This function constitutes the real essence
of the object type, as it defines the steps necessary to create the final form of the object, executed
by calling various form•Z API functions. There are a number of ways to create the object's shape.
One would be to construct one face at a time, using the API fz_objt_fact_create_face.
This process is illustrated in the regenerate function of the star object type shown below.

fzrt_error_td star_otyp_regen(
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm
)
{
 fzrt_error_td rv = FZRT_NOERR;
 fz_xyz_td rxyz,rot,pnt,vec;
 double radius;
 long i,n,ncord,nsegt,ncurv,nface,

ncord2,nsegt2,ncurv2,nface2;
 long sindx,shead,snext,pindx[3],lval;
 fz_map_plane_td local_mplane;
 fz_objt_ptr temp_obj;
 fz_objt_spid_type_enum spid_type;
 fz_objt_spid_cnstr_opts_ptr spid_opts;
 fz_type_td data;
 fzrt_boolean bval;

 star_otyp_parms_td *star;

 if(parm != NULL)
 {
 star = (star_otyp_parms_td *)parm;

 star_otyp_get_mplane(star,&local_mplane);
 fz_objt_fact_reset(windex, obj);

 fz_math_3d_vec_rotation_xyz(&star->xaxis,&star->yaxis,&rot);

 radius = star->radius *

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 223

 (START_RATIO_MIN + star->rad_ratio *
 (START_RATIO_MAX - START_RATIO_MIN));
 rxyz.x = radius;
 rxyz.y = radius;
 rxyz.z = radius;
 spid_opts = NULL;

 /* SETUP OPTIONS FOR A TEMPORARY SPHEROID OBJECT */
 switch (star->base_type)
 {
 case 0: spid_type = FZ_OBJT_SPID_TYPE_TETRA; break;
 case 1: spid_type = FZ_OBJT_SPID_TYPE_HEXA; break;
 case 2: spid_type = FZ_OBJT_SPID_TYPE_OCTA; break;
 case 3: spid_type = FZ_OBJT_SPID_TYPE_DODECA; break;
 case 4: spid_type = FZ_OBJT_SPID_TYPE_ICOSA; break;
 case 5: spid_type = FZ_OBJT_SPID_TYPE_SOCCER; break;
 case 6:
 case 7:
 spid_type = FZ_OBJT_SPID_TYPE_GEO;
 fz_objt_cnstr_spid_opts_init(windex,&spid_opts);
 if (star->base_type == 6) lval = 1;
 else lval = 2;
 fz_type_set_long(&lval, &data);
 fz_objt_cnstr_spid_opts_set(windex,spid_opts,

FZ_OBJT_SPID_PARM_GEO_LEVEL,&data);
 bval = TRUE;
 fz_type_set_boolean(&bval, &data);

fz_objt_cnstr_spid_opts_set(windex,spid_opts,
FZ_OBJT_SPID_PARM_GEO_BY_LEVEL,&data);

 break;

 }

 /* CONSTRUCT A TEMPORARY SPHEROID OBJECT */
 if((rv = fz_objt_cnstr_spid(windex,
 &rxyz,spid_type,
 &star->origin,
 &rot,spid_opts,&temp_obj)) == FZRT_NOERR)
 {

 /* COUNT HOW MUCH STORAGE IS NEEDED */
 fz_objt_get_face_count(windex,temp_obj,

FZ_OBJT_MODEL_TYPE_FACT,&nface);
 fz_objt_get_curv_count(windex,temp_obj,

FZ_OBJT_MODEL_TYPE_FACT,&ncurv);
 fz_objt_get_segt_count(windex,temp_obj,

FZ_OBJT_MODEL_TYPE_FACT,&nsegt);
 fz_objt_get_point_count(windex,temp_obj,

FZ_OBJT_MODEL_TYPE_FACT,&ncord);

 ncord2 = ncord + nface;
 ncurv2 = 0;
 nface2 = 0;
 nsegt2 = 0;
 for(i = 0; i < ncurv; i++)
 {

fz_objt_curv_get_segt_count(windex,temp_obj,
i,FZ_OBJT_MODEL_TYPE_FACT,&n);

 ncurv2 += n;
 nface2 += n;
 nsegt2 += n * 3;
 }

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 224

 /* ALLOCATE STORAGE FOR FACES, CURVES, SEGMENTS AND POINTS */
 if((rv = fz_objt_fact_allocate(windex,obj,

nface2,ncurv2,nsegt2,ncord2)) == FZRT_NOERR)
 {
 /* COPY SPHEROID POINTS */
 for(i = 0; i < ncord; i++)
 {

fz_objt_point_get_xyz(windex,temp_obj,
i,FZ_OBJT_MODEL_TYPE_FACT,&pnt);

 fz_objt_fact_add_pnts(windex,obj,&pnt,1);
 }

 /* CREATE STAR TIP POINTS */
 radius = star->radius - radius;
 for(i = 0; i < nface; i++)
 {
 fz_objt_alys_get_face_cog(windex,temp_obj,i,

FZ_OBJT_MODEL_TYPE_FACT,&pnt);
 fz_math_3d_create_unit_vec(&star->origin,&pnt,&vec);
 pnt.x += vec.x * radius;
 pnt.y += vec.y * radius;
 pnt.z += vec.z * radius;
 fz_objt_fact_add_pnts(windex,obj,&pnt,1);
 }

 /* CREATE FACES */
 for(i = 0; i < ncurv; i++)
 {

fz_objt_curv_get_segt_count(windex,temp_obj,
i,FZ_OBJT_MODEL_TYPE_FACT,&n);

fz_objt_curv_get_sindx(windex,temp_obj,
i,FZ_OBJT_MODEL_TYPE_FACT,&shead);

 sindx = shead;
 do
 {

fz_objt_segt_get_next(windex,temp_obj,
sindx,FZ_OBJT_MODEL_TYPE_FACT,&snext);

fz_objt_segt_get_start_pindx(windex,temp_obj,
sindx,FZ_OBJT_MODEL_TYPE_FACT,&pindx[0]

);
fz_objt_segt_get_end_pindx(windex,temp_obj,

sindx,FZ_OBJT_MODEL_TYPE_FACT,&pindx[1]
);

 pindx[2] = ncord + i;
fz_objt_fact_create_face(windex,obj,

pindx,3,NULL);

 } while ((sindx = snext) != shead);
 }

 /* LINK FACES */
 fz_objt_fact_link_faces(windex,obj);
 }

 if (spid_opts) fz_objt_cnstr_spid_opts_finit(windex,&spid_opts);

 /* DELETE THE TEMPORARY SPHEROID OBJECT */
 fz_objt_edit_delete_objt(windex, temp_obj);
 }
 }

 return(rv);
}

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 225

Another method to create the object's shape would be to use a sequence of higher level API
construction functions. These will create temporary objects, which can be combined using editing
API function to yield the final object. The temporary objects used along the way need to be
deleted and the content of the final object copied into the object passed into the regeneration
function. For example, the star object could be constructed by creating a number of pyramids (the
star's rays), transforming them to attach to the faces of a spheroid object and then using the
boolean union tool to join the all together into the final shape. The intermediate objects all need to
be deleted. In this case, the direct creation process clearly is the better approach.

The io stream function (required)

fzrt_error_td fz_otyp_cbak_io_func(
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
);

form•Z calls this function to write the parameters of an object to and read it from file. It is
expected from the plugin to keep track of version changes of the object's parameters. For
example, in its first release, the object parameters may consist of one long integer, three xyz and
two double parameters (as it is the case with the sample star object type). When written, the
version reported back to form•Z was 0. In a subsequent release, the plugin developer added a
second long integer value. When writing these new object parameters, the version reported to
form•Z needs to be increased. When reading a file with the old version of the object parameters,
form•Z will pass in the version number of the object parameters when they were written, in this
case 0. This indicates to the plugin that only one long, three xyz and two doubles need to be read
and the second long should be set to a default value. Likewise, it is possible that an older version
of the plugin will be asked to read a newer version of the object parameters. This may be the
case when backsaving a form•Z project file to an older version and then reading that file with and
older version of form•Z that contains the older version of the object type plugin. In this case, the
plugin may choose to read the data written by version 0. For safety it may also choose to skip any
object type data that is written with a newer version, than the one it is currently set to. If the plugin
decides to read a newer version of the data, it is important that additional values are written at the
end, not in the middle of the original values. The io steam function of the star object type is shown
below.

fzrt_error_td star_otyp_io(
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
)
{
 fzrt_error_td err = FZRT_NOERR;
 star_otyp_parms_td *star;

 star = (star_otyp_parms_td *)parm;

 if (dir == FZ_IOST_WRITE)
 { *version = 0;

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 226

 }

 if((err = fz_iost_long(iost,&star->base_type,1)) == FZRT_NOERR &&
 (err = fz_iost_xyz(iost,&star->origin,1)) == FZRT_NOERR &&
 (err = fz_iost_xyz(iost,&star->xaxis,1)) == FZRT_NOERR &&
 (err = fz_iost_xyz(iost,&star->yaxis,1)) == FZRT_NOERR &&
 (err = fz_iost_double(iost,&star->radius,1)) == FZRT_NOERR)
 {
 err = fz_iost_double(iost,&star->rad_ratio,1);
 }

 return(err);
}

The finit function (optional)

fzrt_error_td fz_otyp_cbak_finit (
 long windex,
 fz_objt_ptr objt,
 fzrt_ptr parm

);

form•Z calls the finit function whenever an object of the given type is deleted. The function is
expected to free any dynamic memory or take whatever action is necessary, when an object of
this type ceases to exist. Note that it is not necessary to delete the basic storage for the object's
parameters, which is passed in this function as the parm argument. In case of the star object, the
finit function is not necessary as no dynamic memory is used. A finit function of an arbitrary
sample object type, which has an array is shown below.

fzrt_error_td my_otyp_finit (
 long windex,
 fz_objt_ptr objt,
 fzrt_ptr parm
)
{
 my_otyp_td *my_otyp;
 fzrt_zone_ptr zone_ptr;

 my_otyp = (my_otyp_td*) parm;

 if (my_otyp->array)
 {
 fz_objt_get_zone_ptr(windex,objt,&zone_ptr);

fz_mem_zone_free(zone_ptr,(fzrt_ptr*)&my_otyp->array);
 }

return(FZRT_NOERR);
}

In the example above, the array was allocated using a memory zone. It is important that the same
zone is used for both, allocation and deallocation. In this case, the memory zone which is
assigned to the object is used. It can be retrieved with the API call fz_objt_get_zone_ptr. A
plugin may also define its own memory zone. This is discussed in more detail in section 1.4.4.

The transform function (optional)

fzrt_error_td fz_otyp_cbak_tform (
 long windex,
 fz_objt_ptr objt,
 fzrt_ptr parm,
 fz_mat4x4_td *tform

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 227

);

form•Z calls the transform function whenever an object is transformed (moved, rotated, scaled
and/or mirrored). When an object contains positional geometric properties, such as an origin, 3d
points or even a complete nested control object, they need to be transformed as well. Points can
be transformed with the math API function fz_math_4x4_multiply_mat_xyz. If an object
contains a linear dimension, such as a radius, only the scale factor of the matrix need to be
applied. This scale factor can be extracted with the math API
fz_math_4x4_mat_to_trl_scl_rot. If the parameters of the object type contain an entire
nested object, it should be transformed with the API function fz_objt_edit_transform. The
transform function for the star object type is listed below.

fzrt_error_td star_otyp_tform(
 long windex,
 fz_objt_ptr objt,
 fzrt_ptr parm,
 fz_mat4x4_td *tform
)
{
 star_otyp_parms_td *parms_ptr;
 fz_xyz_td xaxis,yaxis,scl;
 fzrt_error_td rv = FZRT_NOERR;

 if(parm != NULL)
 {
 parms_ptr = (star_otyp_parms_td *)parm;

 xaxis.x = parms_ptr->origin.x + parms_ptr->xaxis.x;
 xaxis.y = parms_ptr->origin.y + parms_ptr->xaxis.y;
 xaxis.z = parms_ptr->origin.z + parms_ptr->xaxis.z;

 yaxis.x = parms_ptr->origin.x + parms_ptr->yaxis.x;
 yaxis.y = parms_ptr->origin.y + parms_ptr->yaxis.y;
 yaxis.z = parms_ptr->origin.z + parms_ptr->yaxis.z;

 fz_math_4x4_multiply_mat_xyz(tform, &parms_ptr->origin);
 fz_math_4x4_multiply_mat_xyz(tform, &xaxis);
 fz_math_4x4_multiply_mat_xyz(tform, &yaxis);

 fz_math_3d_create_unit_vec(&parms_ptr->origin,

&xaxis,
&parms_ptr->xaxis);

 fz_math_3d_create_unit_vec(&parms_ptr->origin,
&yaxis,
&parms_ptr->yaxis);

 /* GET SCALE FROM MATRIX */

fz_math_4x4_mat_to_trl_scl_rot(&tform,NULL,&scl,NULL);
 parms_ptr->radius *= (scl.x + scl.y + scl.z) / 3.0;;
 }

 return(rv);
}

The copy function (optional)

fzrt_error_td fz_otyp_cbak_copy (

 long src_windex,
 fz_objt_ptr src_objt,
 fzrt_ptr src_parm,
 long dst_windex,

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 228

 fz_objt_ptr dst_objt,
 fzrt_ptr dst_parm
);

form•Z calls the copy function whenever an object is copied. It should be implemented when the
parametric data contains dynamically allocated arrays or nested control objects. To copy an
array, the copy function must first allocate space in the destination parameter block and then
transfer the array content from the source to the destination. Since the star object type does not
contain any dynamic arrays, the copy function of an arbitrary object type which contains an array
is shown below.

fzrt_error_td my_otyp_copy (

 long src_windex,
 fz_objt_ptr src_objt,
 fzrt_ptr src_parm,
 long dst_windex,
 fz_objt_ptr dst_objt,
 fzrt_ptr dst_parm
)

{
 my_otyp_td *src_my_otyp,*dst_my_otyp;

fzrt_zone_ptr zone_ptr;
 fzrt_error_td err = FZRT_NOERR;

src_my_otyp = (my_otyp_td *) src_parm;
dst_my_otyp = (my_otyp_td *) dst_parm;

 fz_objt_get_zone_ptr(dst_windex,dst_objt,&zone_ptr);
 if((err = fz_mem_zone_alloc(zone_ptr,

 sizeof(long) * src_my_otyp->n_array,
 FALSE,
 (fzrt_ptr*)&dst_my_otyp->array)

) == FZRT_NOERR)
 {

 fzrt_block_move(src_my_otyp->array,

 dst_my_otyp->array,
 sizeof(long) * src_my_otyp->n_array);

 dst_my_otyp->n_array = src_my_otyp->n_array;

 /* COPY REMAINING FIELDS */

dst_my_otyp->value1 = src_my_otyp->value1;
 dst_my_otyp->value2 = src_my_otyp->value2;
 /* … ETC */
 }

return(err);

}

To copy a nested control object, the copy function can use the API function
fz_objt_edit_copy_objt_geom. For more information about nested control objects, see the
details at the end of the section.

The reverse function (optional)

fzrt_error_td fz_otyp_cbak_rvrs (

long windex,
fz_objt_ptr objt,

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 229

fzrt_ptr parm
);

form•Z calls the reverse function of a controlled object, when the object's topology needs to be
reversed in its direction. This is the case, for example, if the Reverse tool is applied, or if an object
is mirrored. The reverse function gives the object type the opportunity to reverse its parametric
data. If the parametric data is defined in a way that it cannot be reversed, the
FZ_OTYP_HANDLE_RVRS the flags parameter of the fz_otyp_cbak_info function call should
be set. form•Z will then handle the reversal of the objects facets when necessary. An example of
an object type, whose parametric data cannot be reversed is the sphere object. It's shape is
implicitly based on a right handed coordinate system. The sphere object type does not have a
reverse function. The NurbZ object, on the other hand can be reversed. This is done by swapping
all the control points of the nurbs surface on which the NurbZ obejct is build. This swapping is
performed by the reverse function defined by the NurbZ object type. The reverse function of a
sample object type, which is based on an array of xyz points is shown below.

fzrt_error_td my_otyp_rvrs (

long windex,
fz_objt_ptr objt,
fzrt_ptr parm
)

{
 fz_xyz_td temp;
 long nhalf,i,j;
 my_otyp_td *my_otyp;

 my_otyp = (my_otyp_td*) parm;

 nhalf = my_otyp->npnts * 0.5;

 for(i = 0, j = my_otyp->npnts - 1; i < nhalf; i++, j--)
 {
 temp = my_otyp->pnts[i];
 my_otyp->pnts[i] = my_otyp->pnts[j];
 my_otyp->pnts[j] = temp;
 }

 return(FZRT_NOERR);

}

The geometry function (optional)

fzrt_error_td fz_otyp_cbak_geom (

long windex,
fz_objt_ptr obj,
fzrt_ptr parm,
fz_map_plane_td *plane,
fz_xyz_td *center,
fz_xyz_mm_td *bbox
);

form•Z calls the geometry function to retrieve basic geometric information about the object. It
should be implemented if the object has its own, local coordinate system. For example, a sphere
has its own x, y and z axis, which describe the location and orientation of the sphere in 3d space.
The plane parameter returns the origin and rotation of the object's coordinate system in world
space. This information is used, for example, to draw the object axes in wireframe. The center

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 230

parameter returns the object's origin in the coordinate space of the object. Usually the center
would be set to {0.0, 0.0, 0.0}, but may have different values, depending on the nature of the
object. The bbox parameter returns the extent of the object along its x, y and z axis. If this
function is not implemented by the plugin, the information is calculated from the facetted data of
the object. For example, the center is computed as the average of all coordinate points of the
object. The geometry function for the star object type is shown below.

fzrt_error_td star_otyp_geom(
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 fz_map_plane_td *plane,
 fz_xyz_td *center,
 fz_xyz_mm_td *bbox
)
{
 star_otyp_parms_td *star;
 fz_xyz_td xaxis,yaxis;
 fzrt_error_td err = FZRT_NOERR;

 if(parm != NULL)
 {
 star = (star_otyp_parms_td*) parm;

 if (plane)
 {
 xaxis.x = star->origin.x + star->xaxis.x;
 xaxis.y = star->origin.y + star->xaxis.y;
 xaxis.z = star->origin.z + star->xaxis.z;

 yaxis.x = star->origin.x + star->yaxis.x;
 yaxis.y = star->origin.y + star->yaxis.y;
 yaxis.z = star->origin.z + star->yaxis.z;

 fz_math_3d_map_plane_from_pts(&xaxis,

&star->origin,
&yaxis, plane);

 }

 if(center)
 {
 center->x = 0.0;
 center->y = 0.0;
 center->z = 0.0;
 }

 if(bbox)
 {

bbox->xmin = -star->radius;
bbox->ymin = -star->radius;
bbox->zmin = -star->radius;
bbox->xmax = star->radius;
bbox->ymax = star->radius;
bbox->zmax = star->radius;

 }
 }

 return(err);
}

The cvsl function (optional)

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 231

fzrt_error_td fz_otyp_cbak_cvsl (
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 fz_xyz_td *cog,
 double *volume,
 double *surf_area,
 double *length,
 long *result
);

The cvsl function is called by form•Z to retrieve the center of gravity, volume, surface area and
length (abbreviated cvsl) of an object. This function should be implemented, when the object type
can provide more accurate values, than those computed from the facetted or smooth topology
and geometry of the object. Since not all of these properties can be calculated for an object, the
result parameter returned to form•Z tells which properties were computed by the function, by
setting certain bits to on.

bit 0: center of gravity was calculated
bit 1: volume was calculated
bit 2: surface area was calculated
bit 3: perimeter length was calculated

For example, the perimeter length can only be calculated for curve like objects but not for solids.
Therefore, for solids, bit #3 should not be set. The cvsl function for an object type which creates a
regular sphere is shown below.

fzrt_error_td my_sphr_cvsl (
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 fz_xyz_td *cog,
 double *volume,
 double *surf_area,
 double *length,
 long *result
)
{
 my_sphr_td *sphr;
 short rv = FZRT_NOERR;

 sphr = (my_sphr_td*)parm;

 if (cog)
 { *cog = sphr->origin;
 FZ_SETBIT(*result,0);
 }

 if (volume)
 { * volume = (sphr->radius *

 sphr->radius *
 sphr->radius * 4.0 * FZ_PI) / 3.0;

 FZ_SETBIT(*result,1);
 }

 if (surf_area)
 { *surf_area = 4.0 * FZ_PI * sphr->radius * sphr->radius;
 FZ_SETBIT(*result,2);
 }

 return(rv);
}

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 232

The convert to patch function (optional)

fzrt_error_td fz_otyp_cbak_cvrt_ptch (
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 long action,
 fzrt_boolean *can_cvrt
);

This function is called by form•Z to convert the object to a parametric bezier or coons patch
object. It should only be implemented if this can be done without changing the shape of the
object. The function can get called in two ways. When the action argument is 0, the function only
needs to check whether the particular object can be converted. Depending on the parametric
data, it is possible that an object can or cannot be converted to patches. When the action
parameter is 1, the object needs to be converted. Note that this function does not create a new
object, but needs to change the object passed in. An example of an arbitrary object type's convert
to patch function is shown below.

fzrt_error_td my_otyp_cvrt_ptch (
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 long action,
 fzrt_boolean *can_cvrt
)
{
 fz_objt_ptr temp_obj;
 fzrt_error_td rv = FZRT_NOERR;

 if (action == 0)
 {
 *can_cvrt = TRUE;
 }
 else
 {
 *can_cvrt = TRUE;

 /* CODE TO CREATE A TEMPORARY PATCH OBJECT */

 /* COPY THE CONTENT OF THE TEMPORARY PATCH */

/* OBJECT TO THE OBJECT PASSED IN */
 fz_objt_edit_copy_objt_data(windex,temp_obj,obj,FALSE);

 /* DELETE THE TEMPORARY PATCH OBJECT */
 fz_objt_edit_delete_objt(windex, temp_obj);
 }

 return(rv);

}

The nurbs curve function (optional)

fzrt_error_td fz_otyp_cbak_get_ncur(
 long windex,
 fz_objt_ptr obj,

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 233

 fzrt_ptr parm,
 fzrt_boolean clamp_closed,
 long action,
 fzrt_boolean *can_cvrt,
 fz_nurbs_cur_ptr *ncur
);

This function is called by form•Z to create a parametric nurbs curve entity from the object. It
should only be implemented if the shape of the object can be represented by a single nurbs
curve, without any sharp corners (discontinuities). Note that unlike the convert to patch function,
the nurbs curve function does not convert the object passed in, but creates a new nurbs curve,
which is passed back to form•Z through the last function argument. The function can get called in
two ways. When the action argument is 0, the function only needs to check whether the nurbs
curve can be created. Depending on the parametric data, it may or may not be possible to create
a nurbs curve. When the action parameter is 1, the nurbs curve needs to be created. There are a
number of form•Z API functions, which can be used to create nurbs curves. They can be found in
the fz_ncrv_fset function set. The clamp_closed argument has a special meaning. If set to
TRUE, a closed nurbs curve needs to be created with knot multiplicity at the start and end
(clamped). Otherwise a closed curve needs to be created without knot multiplicity but with
overlapping control points. An example of an arbitrary object type's nurbs curve function is shown
below.

fzrt_error_td my_otyp_get_ncur(
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 fzrt_boolean clamp_closed,
 long action,
 fzrt_boolean *can_cvrt,
 fz_nurbs_cur_ptr *ncur
)
{
 fz_xyz_td *cpts;
 long npts;
 long degree;
 double *weights;
 double *knots;
 fzrt_boolean closed;
 fzrt_error_td rv = FZRT_NOERR;

 if (action == 0)
 {
 *can_cvrt = TRUE;
 }
 else
 {
 *can_cvrt = TRUE;

 /* CODE TO SET THE NURBS CURVE */
 /* PARAMETERS FROM THE OBJECT */
 ...

 /* CREATE THE NURBS CURVE */
 fz_ncrv_create_nurbs_curve(cpts,npts,degree,

weights,knots,closed,ncur);

 }

 return(rv);

}

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 234

The nurbs surface function (optional)

fzrt_error_td fz_otyp_cbak_get_nsrf(
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 long action,
 fzrt_boolean *can_cvrt,
 fz_nurbs_srf_ptr *nsrf
);

This function is called by form•Z to create a parametric nurbs surface entity from the object. It
should only be implemented if the shape of the object can be represented by a single nurbs
surface, without any sharp bends (discontinuities). Note that unlike the convert to patch function,
the nurbs surface function does not convert the object passed in, but creates a new nurbs
surface, which is passed back to form•Z through the last function argument. The function can get
called in two ways. When the action argument is 0, the function only needs to check whether the
nurbs surface can be created. Depending on the parametric data, it may or may not be possible
to create a nurbs surface. When the action parameter is 1, the nurbs surface needs to be created.
There are a number of form•Z API functions, which can be used to create nurbs surfaces. They
can be found in the fz_nsrf_fset function set. An example of an arbitrary object type's nurbs
surface function is shown below.

fzrt_error_td my_otyp_get_nsrf(

long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 long action,
 fzrt_boolean *can_cvrt,
 fz_nurbs_srf_ptr *nsrf
)
{
 fz_xyz_td *cpts;
 double *weights;
 long u_npts;
 long u_degree;
 double *u_knots;
 fzrt_boolean closed_u;
 long v_npts;
 long v_degree;
 double *v_knots;
 fzrt_boolean closed_v;
 fzrt_error_td rv = FZRT_NOERR;
 fz_nurbs_srf_ptr srf;

 if (action == 0)
 {
 *can_cvrt = TRUE;
 }
 else
 {
 *can_cvrt = TRUE;

 /* CODE TO SET THE NURBS SURFACE */
 /* PARAMETERS FROM THE OBJECT */
 ...

 /* CREATE THE NURBS SURFACE */
 fz_nsrf_create_nurbs_srf(cpts,weights,

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 235

 u_npts,u_degree,u_knots,closed_u,
 v_npts,v_degree,v_knots,closed_v,
 &srf);

 }

 return(rv);

}

The dialog template function (optional)

fzrt_error_td fz_otyp_cbak_iface_tmpl(
 long windex,
 fz_fuim_tmpl_ptr fuim_tmpl,
 fzrt_ptr obj_ptr
);

form•Z calls this function, when the Edit button in the Query Object dialog is pressed. It is
expected to initialize the dialog template and create all dialog items necessary to display the
parameters of the object. This dialog may just present the parameters in simple text edit fields or
go as far as offering a graphic preview window that shows the effects of the edited parameters.
When this function is not implemented, form•Z will attempt to build the dialog automatically,
based on the output of the parameter info function (see below). If the parameter info reports any
parameters that can be displayed, form•Z will build the dialog with those parameters shown. If
the parameter info function does not report any parameters and the dialog template function is
also not implemented, the Edit button in the Query Object dialog is dimmed. The dialog template
function for the star object is shown below together with the dialog invoked for a star object that
was added to a project. For completion, the callback functions invoked from the dialog function
are shown as well.

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 236

If a parameters of the object is reported by the parameter info function as an animatable
parameter, different fuim item functions need to be called, so that the object parameter can be
properly linked to the animation data. For example, the radius of the star sample object is an
animatable parameter. Instead of using the fz_fuim_new_text_static_edit api function to
build a text field with a title, the api fz_fuim_new_text_static_edit_anim needs to be
used. The extra parameters passed to this function are :
• A flags parameter that is usually 0, unless a radio button item is created.
• The standard project window index parameter (windex).
• An identifier, that tells form•Z, that the interface item is constructed for an object type (instead of
a light or view). It is an enum of type fz_fuim_anim_item_type_enum and needs to have the
value FZ_FUIM_ANIM_OBJECT_TYPE.
The tag of the object being edited.
• A unique identifier for the object parameter. This uuid must be the same as the one reported by
the parameter info function for that specific object parameter.

Note, that an object parameter is animatable if it is reported by the parameter info function and
the parameter info function does not set the FZ_OTYP_PARM_NO_ANIM_BIT flag, but sets the
FZ_OTYP_PARM_ANIM_LEVEL1_BIT or FZ_OTYP_PARM_ANIM_LEVEL2_BIT bit. If the
parameter info function is not implemented or does not report a parameter, it is considered not
animatable.

typedef struct star_otyp_pview_data_td
{

int src_windex;
int dst_windex;
fz_objt_ptr src_obj;
fz_objt_ptr dst_obj;
star_otyp_parms_td star_parms;

} star_otyp_pview_data_td;

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 237

static fzrt_error_td star_otyp_iface_tmpl(
 long windex,
 fz_fuim_tmpl_ptr fuim_tmpl,
 fzrt_ptr objt_ptr
)
{
 fzrt_error_td err = FZRT_NOERR;
 short g1,g2,g3;
 char str[256];
 fz_objt_ptr obj;
 star_otyp_parms_td *star;
 fz_fuim_pview_opts_ptr pview_opts;
 star_otyp_pview_data_td pview_data,*pview_data_ptr;
 fzrt_menu_ptr menu;
 fz_tag_td obj_tag;

 obj = (fz_objt_ptr)objt_ptr;
 // GET THE OBJECT TAG
 fz_objt_ptr_to_tag(windex, obj,&obj_tag);

 // GET THE OBJECT PARAMETER DATA
 fz_objt_parm_get_data(windex,obj,(fzrt_ptr*)&star);

 fzrt_fzr_get_string(fz_rsrc_ref_func, STAR_STR_ID, STAR_STR_EDIT_TITLE, str);
 if((err = fz_fuim_tmpl_init(fuim_tmpl, str, 0, STAR_OTYP_ID, 0)) == FZRT_NOERR)
 {
 pview_data.src_obj = obj;
 pview_data.dst_obj = NULL;
 pview_data.src_windex = windex;
 pview_data.dst_windex = -1;
 pview_data.star_parms = *star;

 fz_fuim_tmpl_set_new_value_func(fuim_tmpl, star_otyp_fuim_newval, NULL);
 fz_fuim_tmpl_set_ok_func(fuim_tmpl,star_otyp_fuim_ok, NULL);
 fz_fuim_tmpl_set_reset_func(fuim_tmpl, star_otyp_fuim_reset, NULL);

 g1 = fz_fuim_new_group(fuim_tmpl, -1, FZ_FUIM_NONE,
 FZ_FUIM_FLAG_HORZ|FZ_FUIM_FLAG_GFLT, NULL);
 g2 = fz_fuim_new_group(fuim_tmpl, g1, FZ_FUIM_NONE,
 FZ_FUIM_FLAG_NONE, NULL);

 // CREATE THE PREVIEW
 fz_fuim_pview_opts_init(&pview_opts,windex);
 fz_fuim_pview_opts_set_load_func(pview_opts, star_otyp_fuim_load_func);
 fz_fuim_pview_create(fuim_tmpl, g2, FZ_FUIM_NONE, pview_opts);
 fz_fuim_stack_put(fuim_tmpl, STAR_OTYP_STACK_PVIEW_DATA,
 sizeof(pview_data), &pview_data);
 fz_fuim_stack_put(fuim_tmpl, STAR_OTYP_STACK_PVIEW_OPTS,
 sizeof(pview_opts), &pview_opts);
 fz_fuim_stack_get_ptr(fuim_tmpl, STAR_OTYP_STACK_PVIEW_DATA,
 (void**)&pview_data_ptr);
 star = &pview_data_ptr->star_parms;

 g2 = fz_fuim_new_group(fuim_tmpl, g1, FZ_FUIM_NONE,
 FZ_FUIM_FLAG_NONE, NULL);

 // CREATE THE TYPE MENU, AS AN ANIMATION ITEM
 fzrt_fzr_get_menu(fz_rsrc_ref_func, STAR_BASE_MENU_ID,&menu);
 fzrt_fzr_get_string(fz_rsrc_ref_func, STAR_STR_ID,
 STAR_STR_BASE_TYPE, str);
 g3 = fz_fuim_new_menu_anim(fuim_tmpl, g2, FZ_FUIM_NONE,
 FZ_FUIM_FLAG_HORZ, str, menu, FALSE, NULL, NULL,
 0,windex,FZ_FUIM_ANIM_OBJECT_TYPE,&obj_tag,STAR_PARM_BASE_TYPE_UUID);
 fz_fuim_item_range_long(fuim_tmpl,g3, &star->base_type, 0, 7,

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 238

 FZ_FUIM_FORMAT_INT_DEFAULT,
 FZ_FUIM_RANGE_MIN | FZ_FUIM_RANGE_MAX |
 FZ_FUIM_RANGE_MIN_INCL | FZ_FUIM_RANGE_MAX_INCL);

 // CREATE THE RADIUS TEXT EDIT FIELD, AS AN ANIMATION ITEM

 fzrt_fzr_get_string(fz_rsrc_ref_func, STAR_STR_ID,
 STAR_STR_RADIUS, str);

 fz_fuim_new_text_static_edit_anim(fuim_tmpl,g2,FZ_FUIM_NONE,str,FZ_FUIM_NONE,
 FZ_FUIM_FLAG_NONE, NULL, NULL,
 0,windex,FZ_FUIM_ANIM_OBJECT_TYPE,&obj_tag,
 STAR_PARM_RADIUS_UUID,&g3);
 fz_fuim_item_range_double(fuim_tmpl, g3, &star->radius, 0.0, 0.0,
 FZ_FUIM_FORMAT_FLOAT_DISTANCE, FZ_FUIM_RANGE_MIN);

 // CREATE THE RATIO SLIDER, AS AN ANIMATION ITEM
 fzrt_fzr_get_string(fz_rsrc_ref_func,
 STAR_STR_ID, STAR_STR_RAY_RATIO, str);
 fz_fuim_new_slider_edit_pcent_double_anim(
 fuim_tmpl,
 g2,
 str,
 FZ_FUIM_NONE,
 FZ_FUIM_NONE,
 0.0,
 1.0,
 0.0,
 100.0,
 0.0,
 100.0,
 FZ_FUIM_RANGE_MIN | FZ_FUIM_RANGE_MIN_INCL |
 FZ_FUIM_RANGE_MAX | FZ_FUIM_RANGE_MAX_INCL,
 NULL,
 NULL,
 &star->rad_ratio,
 0,windex,FZ_FUIM_ANIM_OBJECT_TYPE,&obj_tag,STAR_PARM_RAY_RATIO_UUID,
 NULL,
 NULL);

 }

 return (err);
}

The dialog shown includes the preview capability offered by form•Z. A number or callback
functions used in the object type dialog template function are necessary for this functionality.
They are discussed again briefly below. A complete description of the form•Z user interface API
function can be found in section 1.4.6.

The preview load function

fzrt_error_td star_otyp_fuim_load_func(

fz_fuim_tmpl_ptr fuim_tmpl,
long src_windex,
long dst_windex)

{
 long err=FZRT_NOERR;
 star_otyp_pview_data_td *pview_data;

 fz_fuim_stack_get_ptr(fuim_tmpl,STAR_OTYP_STACK_PVIEW_DATA,
 (void**)&pview_data);

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 239

 if(pview_data->src_obj != NULL)
 {
 pview_data->dst_windex = dst_windex;

 if((err = fz_objt_edit_copy_objt_to_windex(src_windex,
 pview_data->src_obj,dst_windex,
 TRUE, &pview_data->dst_obj)) == FZRT_NOERR)
 {

 err = fz_objt_add_objt_to_project(dst_windex,pview_data->dst_obj);
 }

 }

 return(err);
}

This function is invoked when the preview window is created. The preview window is a separate
project. The load function is expected to copy the object to be preview to the preview project. This
is achieved in this case via fz_objt_edit_copy_objt_to_windex and
fz_objt_add_objt_to_project.

The new value function

fzrt_boolean star_otyp_fuim_newval(
 fz_fuim_tmpl_ptr fuim_mngr,
 fzrt_ptr data_ptr
)
{
 star_otyp_pview_data_td *pview_data;
 star_otyp_parms_td *parm_data;

 fz_fuim_stack_get_ptr(fuim_mngr,STAR_OTYP_STACK_PVIEW_DATA,

(void**)&pview_data);

 fz_objt_parm_get_data(pview_data->dst_windex,

pview_data->dst_obj,(fzrt_ptr*)&parm_data);
 *parm_data = pview_data->star_parms;

 fz_objt_edit_parm_regen(pview_data->dst_windex,pview_data->dst_obj);

 return (TRUE);
}

This function is invoked, anytime a new value was entered in any of the dialog items. Once this
happens, the shape of the object in the preview window needs to be generated. This is
accomplishes via the API call fz_objt_edit_parm_regen in the new value function. Note that
the function which sets up the dialog template uses a copy of the object's parameters to link the
dialog items with parameter values. This is necessary, because the object in the preview window
does not exist yet when the dialog edit function is invoked. In the new value function the copy of
the parameters is copied into the parameter storage of the object in the preview window, which in
return is regenerated.

The OK function

fzrt_boolean star_otyp_fuim_ok(
 fz_fuim_tmpl_ptr fuim_mngr,
 fzrt_ptr data_ptr
)
{
 star_otyp_pview_data_td *pview_data;

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 240

 fz_fuim_stack_get_ptr(fuim_mngr,STAR_OTYP_STACK_PVIEW_DATA,
(void**)&pview_data);

 star_otyp_fuim_newval(fuim_mngr, data_ptr);

 fz_objt_edit_copy_objt_data_to_windex(pview_data->dst_windex,
 pview_data->dst_obj, pview_data->src_windex,
 pview_data->src_obj, TRUE);

 return(TRUE);
}

The OK function is called when the user presses OK to exit the dialog. In this case, the OK
function performs the inverse of the load function. It copies the object from the preview window to
the object that is actually edited.

The copy control objects function (optional)

fzrt_error_td fz_otyp_cbak_copy_cntl_objts(
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 long *nobj,
 fz_objt_ptr *cntrl_objs
);

This function is called when form•Z needs to get a copy of the nested control objects from a parametric
object. This is done, for example when executing the Extract tool. If an object type does not have any
nested objects, this function does not need to be implemented. The function can be called in two modes.
The cntrl_objs parameter may be passed in as NULL. In this case, the function only needs to
determine how many nested control objects there are and pass that value back in the nobj parameter. If
cntrl_objs is passed in, it is an array of pointers to already existing, empty objects, which are ready to
be copied into. This can be done with the function call fz_objt_parm_nested_extract. This API
function is specially designed to handle this copy operation. In addition to copying the content of the
nested object, is also makes sure that any attributes, which may have existed when the nested control
object was initially created, are set to the host objects attributes. This is necessary, since form•Z cannot
maintain the attributes of nested control objects. Note that the empty objects are created by form•Z and
the cntrl_objs array is also allocated by form•Z, based on the value of the nobj parameter when this
function is called with cntrl_objs passed as NULL. The copy control objects function of an arbitrary sample
object type is shown below.

fzrt_error_td my_cntl_objs_copy(
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 long *nobj,
 fz_objt_ptr *cntrl_objs
)
{
 my_otyp_td *my_otyp;
 fzrt_error_td rv = FZRT_NOERR;

 *nobj = 1;
 if (cntrl_objs != NULL)
 {

my_otyp = (my_otyp_td *)parm;

 rv = fz_objt_parm_nested_extract(windex,obj,
 my_otyp->cntl_obj,cntrl_objs[0]);

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 241

 }

 return(rv);
}

The key points function (optional)

form•Z calls the key points function to get important points from the object, which may not be part
of the object's actual geometry. For example, the key points of an arc are its center, its start and
end point. This function is called in two modes. If pnts is passed as NULL the function only
needs to determine how many key points there are and pass that value back in the knt
parameter. If pnts is passed in, it is an array, allocated by form•Z, ready to receive the key
points. knt needs to be set in both cases. The key points function for the star object type is
shown below.

fzrt_error_td star_otyp_get_key_pnts(
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 long *knt,
 fz_xyz_td *pnts
)
{
 fzrt_error_td err = FZRT_NOERR;
 star_otyp_parms_td *star;

 if(knt) *knt = 1;

 if(pnts)
 {
 star = (star_otyp_parms_td*) parm;
 pnts[0] = star->origin;
 }

 return(err);
}

The construct smooth function (required if object has both, a facetted and smooth
representation, not required otherwise)

fzrt_error_td fz_otyp_cbak_cnstr_smod(
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm
);

This function is required, when the object has both, a smooth and a facetted representation. In
form•Z, the revolved object would be of that kind. It is called, when the object is facetted, but
form•Z needs the smooth equivalent. This is the case, for example, when exporting the object to
a SAT file, where the smooth version of the object is much more meaningful, than the facetted.
Other examples of the use of this function are derivative operations. The sweep operation, for
example, when executed as a smooth sweep, will first try to convert the source and path objects
from facetted to smooth, if possible. Assume, the user picked a facetted nurbs curve as the
source. The smooth sweep operation will yield a much better result, if the facetted nurbs will be
converted to a smooth object, before used in the sweep. The construct smooth function can be
efficiently written, by executing the required regeneration function after setting the object's model
type option to smooth. This is shown in an example below:

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 242

fzrt_error_td my_otyp_cnstr_smod(
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm
)
{
 my_otyp_td *my_otyp;
 fzrt_error_td rv;

 my_otyp = (my_otyp_td *)parm;

 my_otyp->do_smooth = TRUE;
 rv = my_otyp_regen(windex,obj,parm);

 return(rv);
}

The parameter count function (recommended)

fzrt_error_td fz_otyp_cbak_parm_count(
 long *count
);

The parameter count function tells form•Z, through how many parameters the object type is
defined. This number may not only include the parameters exposed to the user in the dialog
interface, but also hidden parameters that may be necessary to store additional information.

fzrt_error_td star_parm_count(
 long *count
)
{
 fzrt_error_td err = FZRT_NOERR;

 *count = 3;

 return err;
}

The parameter info function (recommended)

fzrt_error_td fz_otyp_cbak_parm_get_info2 (
 long parm_indx,
 fzrt_UUID_td parm_uuid,
 fz_string_td parm_name,
 fz_type_enum *parm_type,
 fz_fuim_format_int_enum *parm_format_int,
 fz_fuim_format_float_enum *parm_format_float,
 fz_fuim_item_type_enum *parm_fuim_item,
 long *parm_range,
 fz_type_td *parm_range_min,
 fz_type_td *parm_range_max,
 long *flags
);

The parameter info function returns a number of informational values about a particular
parameter. form•Z may invoke this function, for example, to automatically save a parameter's
value to file, if the io function is not implemented. form•Z typically calls this function by looping
over the number of parameters returned by the parameter count function
(fz_otyp_cbak_parm_count). The only input argument to the info function is parm_indx.
This is the nth parameter of the object relative to the parameter count. All other function
arguments are output arguments. Each parameter needs to have a unique id. This id is returned

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 243

by the parm_uuid argument. The name of the parameter, as it appears in a dialog is returned by
parm_name. The data type of the parameter is defined by parm_type. The interface format for
integer and floating point parameters are returned by parm_format_int and
parm_format_float. The choice of dialog interface control by which the parameter is shown in
a dialog is defined by parm_fuim_item. Whether or not the parameter value has lower and
upper range limits is returned by parm_range. The min and max ranges are set in
parm_range_min and parm_range_max. The flags argument defines additional attributes of
the parameter. They are bit encoded. The allowable bits for the flags argument are :

FZ_OTYP_PARM_NO_ANIM_BIT
When this bit is set, form•Z cannot animate the parameter.

FZ_OTYP_PARM_READ_ONLY_BIT
When this bit is set, the parameter cannot be changed through the fz_otyp_cbak_parm_set
function.

FZ_OTYP_PARM_ANIM_LEVEL1_BIT
When this bit is set, the parameter is considered a good parameter for animation. The parameter
usually represents a fluid state. That is, a small change in the parameter causes a small change
in the object. This makes it meaningful for animation. It is therefore added to the object's track list,
by default, when keyframing the object. An example for such a parameter would be the radius of
a sphere.

FZ_OTYP_PARM_ANIM_LEVEL2_BIT
When this bit is set, the parameter is considered a secondary parameter for animation. Usually,
the parameter represents a state, that is not fluid. That is, a change in the parameter causes the
object to take on a significantly different shape. While such a parameter can be animated, it is not
added to the object's track list, by default, when keyframing the object. An example for such a
parameter would be the type of a spherical object (tetrahedron, hexahedron, octahedron ...).

FZ_OTYP_PARM_HIDDEN_BIT
When this bit is set, the parameter is considered hidden, when an automatic dialog interface is
build. This may be the case, for example, when a parameter is used for storage of data only, but
not for modification by the user.

Note, that all return function arguments are optional. That is, any argument may be NULL, in
which case the callback function is expected to ignore the argument. There is also a callback
function called fz_otyp_cbak_parm_get_info. It is outdated and should not be used. The
parameter info function for the star object type is shown below.

#define STAR_PARM_BASE_TYPE_UUID \
"\x6d\x8f\x6d\x80\x73\x37\x72\x4b\xbf\x02\x17\x90\xce\x44\x41\x59"
#define STAR_PARM_RADIUS_UUID \
"\x8a\x5e\x98\xfe\xf4\x56\x8c\x4a\xba\x5d\xca\x66\x88\xb2\x87\xd8"
#define STAR_PARM_RAY_RATIO_UUID \
"\x62\xd3\x3b\x97\xdb\x2a\x3f\x46\xaa\xc9\x03\x8d\xe8\x5d\x54\xc8"

enum
{
 STAR_PARM_BASE_TYPE = 0,
 STAR_PARM_RADIUS,
 STAR_PARM_RAY_RATIO,

 STAR_PARM_MAX
};

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 244

fzrt_error_td star_parm_get_info(
 long parm_indx,
 fzrt_UUID_td parm_uuid,
 fz_string_td parm_name,
 fz_type_enum *parm_type,
 fz_fuim_format_int_enum *parm_format_int,
 fz_fuim_format_float_enum *parm_format_float,
 fz_fuim_item_type_enum *parm_fuim_item,
 long *parm_range,
 fz_type_td *parm_range_min,
 fz_type_td *parm_range_max,
 long *flags
)
{
 fzrt_error_td err = FZRT_NOERR;
 char str[256];
 long lval;
 double dval;

 switch(parm_indx)
 {
 case STAR_PARM_BASE_TYPE:
 if (parm_uuid)
 fzrt_UUID_copy(STAR_PARM_BASE_TYPE_UUID, parm_uuid);
 if (parm_name)
 strcpy(parm_name, "Base Type");
 if (parm_type)
 *parm_type = FZ_TYPE_LONG;
 if (parm_format_int)
 *parm_format_int = FZ_FUIM_FORMAT_INT_DEFAULT;
 if (parm_format_float)
 *parm_format_float = FZ_FUIM_FORMAT_FLOAT_DEFAULT;
 if (parm_range)
 *parm_range = FZ_FUIM_RANGE_MIN |
 FZ_FUIM_RANGE_MIN_INCL |
 FZ_FUIM_RANGE_MAX |
 FZ_FUIM_RANGE_MAX_INCL;
 if (parm_range_min)
 {
 lval = 0;
 fz_type_set_long(&lval, parm_range_min);
 }
 if (parm_range_max)
 {
 lval = 7;
 fz_type_set_long(&lval, parm_range_max);
 }
 if (flags)
 *flags = 0;
 if (parm_fuim_item)
 *parm_fuim_item = FZ_FUIM_ITEM_MENU;
 break;

 case STAR_PARM_RADIUS:
 if (parm_uuid)
 fzrt_UUID_copy(STAR_PARM_RADIUS_UUID, parm_uuid);
 if (parm_name)
 strcpy(parm_name, "Radius");
 if (parm_type)
 *parm_type = FZ_TYPE_DOUBLE;
 if (parm_format_int)
 *parm_format_int = FZ_FUIM_FORMAT_INT_DEFAULT;
 if (parm_format_float)
 *parm_format_float = FZ_FUIM_FORMAT_FLOAT_DISTANCE;

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 245

 if (parm_range)
 *parm_range = FZ_FUIM_RANGE_MIN;
 if (parm_range_min)
 { dval = 0;
 fz_type_set_double(&dval, parm_range_min);
 }
 if (flags)
 *flags = 0;
 if (parm_fuim_item)
 *parm_fuim_item = FZ_FUIM_ITEM_TEXT;
 break;

 case STAR_PARM_RAY_RATIO:
 if (parm_uuid)
 fzrt_UUID_copy(STAR_PARM_RAY_RATIO_UUID, parm_uuid);
 if (parm_name)
 strcpy(parm_name, "Ray Ratio");
 if (parm_type)
 *parm_type = FZ_TYPE_DOUBLE;
 if (parm_format_int)
 *parm_format_int = FZ_FUIM_FORMAT_INT_DEFAULT;
 if (parm_format_float)
 *parm_format_float = FZ_FUIM_FORMAT_FLOAT_PERCENT;
 if (parm_range)
 *parm_range = FZ_FUIM_RANGE_MIN |
 FZ_FUIM_RANGE_MIN_INCL |
 FZ_FUIM_RANGE_MAX |
 FZ_FUIM_RANGE_MAX_INCL;
 if (parm_range_min)
 { dval = 0;
 fz_type_set_double(&dval, parm_range_min);
 }
 if (parm_range_max)
 { dval = 1;
 fz_type_set_double(&dval, parm_range_max);
 }
 if (flags)
 *flags = 0;
 if (parm_fuim_item)
 *parm_fuim_item = FZ_FUIM_ITEM_SLIDER_TEXT;
 break;
 }

 return err;
}

The parameter get state name function (recommended)

fzrt_error_td fz_otyp_cbak_parm_get_state_str(
 fzrt_UUID_td parm_uuid,
 long which_state,
 fz_string_td str
);

This function should be implemented, if an integer or boolean parameter is displayed as a menu
item in a dialog. Given the parameter's uuid, this function returns the nth string associated with
the nth state of that parameter. This function may also be used if the parameter is shown through
a set of radio buttons. The get state name function is mainly used when form•Z automatically
builds a dialog interface and by the animation track editor interface.

fzrt_error_td star_parm_get_state_str(

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 246

 fzrt_UUID_td parm_uuid,
 long which_state,
 fz_string_td str
)
{
 fzrt_error_td err = FZRT_NOERR;

 if (fzrt_UUID_is_equal(parm_uuid, STAR_PARM_BASE_TYPE_UUID))
 {
 switch (which_state)
 {
 case 0 : strcpy(str,"Tetrahedron"); break;
 case 1 : strcpy(str,"Hexahedron"); break;
 case 2 : strcpy(str,"Octahedron"); break;
 case 3 : strcpy(str,"Dodecahedron"); break;
 case 4 : strcpy(str,"Icosahedron"); break;
 case 5 : strcpy(str,"Soccer Ball"); break;
 case 6 : strcpy(str,"Geodesic Level 1"); break;
 case 7 : strcpy(str,"Geodesic Level 2"); break;

 }
 }

 return err;
}

The get parameter function (recommended)

fzrt_error_td fz_otyp_cbak_parm_get (
 long windex,
 fz_objt_ptr objt,
 fzrt_UUID_td parm_uuid
);

form•Z calls this function to get the value of a parameter, which is identified by the parm_uuid
argument.

fzrt_error_td star_parm_get(
 long windex,
 fz_objt_ptr objt,
 fzrt_UUID_td parm_uuid,
 fz_type_td *data
)
{
 fzrt_error_td err = FZRT_NOERR;
 star_otyp_parms_td *star;
 long lval;
 double dval;

 fz_objt_parm_get_data(windex,objt,(fzrt_ptr*)&star);

 if (fzrt_UUID_is_equal(parm_uuid, STAR_PARM_BASE_TYPE_UUID))
 {
 lval = star->base_type;
 fz_type_set_long(&lval, data);
 }
 else if (fzrt_UUID_is_equal(parm_uuid, STAR_PARM_RADIUS_UUID))
 {
 dval = star->radius;
 fz_type_set_double(&dval, data);
 }

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 247

 else if (fzrt_UUID_is_equal(parm_uuid, STAR_PARM_RAY_RATIO_UUID))
 {
 dval = star->rad_ratio;
 fz_type_set_double(&dval, data);
 }

 return err;
}

The set parameter function (recommended)

fzrt_error_td fz_otyp_cbak_parm_set (
 long windex,
 fz_objt_ptr objt,
 fzrt_UUID_td parm_uuid
);

form•Z calls this function to set the value of a parameter, which is identified by the parm_uuid
argument.

fzrt_error_td star_parm_set(
 long windex,
 fz_objt_ptr objt,
 fzrt_UUID_td parm_uuid,
 fz_type_td *data
)
{
 fzrt_error_td err = FZRT_NOERR;
 star_otyp_parms_td *star;
 long lval;
 double dval;

 fz_objt_parm_get_data(windex,objt,(fzrt_ptr*)&star);

 if (fzrt_UUID_is_equal(parm_uuid, STAR_PARM_BASE_TYPE_UUID))
 {
 fz_type_get_long(data, &lval);
 if (lval >= 0 && lval <= 7)
 star->base_type = lval;
 }
 else if (fzrt_UUID_is_equal(parm_uuid, STAR_PARM_RADIUS_UUID))
 {
 fz_type_get_double(data, &dval);
 if (dval > 0)
 star->radius = dval;
 }
 else if (fzrt_UUID_is_equal(parm_uuid, STAR_PARM_RAY_RATIO_UUID))
 {
 fz_type_get_double(data, &dval);
 if (dval >= 0.0 && dval <= 1.0)
 star->rad_ratio = dval;
 }

 return err;
}

Note, that there is a close relationship between the size argument of the object type info function
(fz_otyp_cbak_info) and the parameter count, parameter info, parameter get and parameter

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 248

set functions. A plugin may return -1 as the size in fz_otyp_cbak_info. In this case, the
parameter count and parameter info functions must be defined. form•Z will use those two function
to calculate the size of the parameter block necessary to store an object's parameter data. If this
is the case, the parameter get, parameter set io stream and dialog template functions should
NOT be implemented. In other words, a -1 size tells form•Z, that this object type is a simple type,
where the parameter access is automated as much as possible. If the plugin chooses to maintain
its own data structure that represents the objects parameter data, such as the star example, it is
recommended that all parameter functions are implemented. This ensures, that the object type is
fully integrated in form•Z.

Working with nested objects

For some object types, it may be necessary to store one or more entire objects in the parameter
data block of the object. This is the case, for example, with the form•Z sweep object type. It
stores the sweep source and the sweep path as a nested control object in its parameter block.
Some special rules apply for dealing with nested control objects.

Creating a nested control object

The object which becomes the nested control object is usually supplied to a function which
creates an object of the given type. For example, a plugin may create an object type and a tool.
Executing the tool may involve picking an object, which becomes the nested control object. The
picked object cannot be stored in the object parameter block directly. A new, independent object
must be created with the API function fz_objt_indp_init and the picked object must be
copied into the independent object. Nested control objects must be independent objects. That is,
they cannot not part of the project's main object list and it is the responsibility of the object type
plugin to maintain the nested object. Below is the click function of the frame tool, which creates a
frame object type. The frame object takes a base object, and constructs circular pipes along each
segment, which meet at spheres, placed at each point of the base object. The click function
performs the following main steps:

1. It constructs a new empty object. This will become the frame object.
2. It initializes the new object as a frame object. This allocates the parameter data block.
3. It constructs a new independent object and copies the picked object into it.
4. It sets the default parameters for the frame object and regenerates its shape.

Note that the structure used to store the parameters for a frame object contains a pointer to a
modeling object. This is the nested control object.

fzrt_error_td frame_tool_click(
 long windex,
 fzrt_point *where,
 fz_xyz_td *where_3d,
 fz_map_plane_td *map_plane,
 fz_fuim_click_enum clicks,
 long click_count,
 fzrt_boolean *click_handled,
 fz_fuim_click_wait_enum *click_next,

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 249

 fzrt_boolean *done)
{
 fzrt_error_td err;
 fzrt_zone_ptr zone_ptr;
 fz_objt_ptr obj,pick_obj;
 frame_otyp_parms_td *frame;
 fz_model_pick_enum pkind;
 long i,npick;
 fzrt_boolean pre_pick = FALSE;

 /* CHECK FOR PRE PICKED OBJECTS */
 fz_model_pick_get_count(windex,&npick);
 for(i = 0; i < npick; i++)
 { fz_model_pick_get_data(windex,i,&pkind,NULL,NULL,NULL);
 if (pkind == FZ_MODEL_PICK_OBJT)
 {
 pre_pick = TRUE;
 break;
 }
 }

 /* POST PICKING */
 if (i >= npick)
 { fz_model_pick(windex,where,FZ_MODEL_PICK_OBJT);

 fz_model_pick_get_count(windex, &npick);
 for(i = 0; i < npick; i++)
 { fz_model_pick_get_data(windex,i,&pkind,NULL,NULL,NULL);
 if (pkind == FZ_MODEL_PICK_OBJT) break;
 }
 if (i >= npick) *done = TRUE;
 }

 if (i < npick)
 {
 for(i = 0; i < npick; i++)
 { fz_model_pick_get_data(windex,i,&pkind,NULL,&pick_obj,NULL);
 if (pkind != FZ_MODEL_PICK_OBJT) continue;

 /* CREATE A NEW OBJECT */
 if((err = fz_objt_cnstr_objt_new(windex,&obj)) == FZRT_NOERR)
 {
 /* INIT THE NEW OBJECT AS A FRAME OBJECT */
 if((err = fz_objt_parm_init_data(windex,
 obj,FRAME_OTYP_UUID,(fzrt_ptr*)&frame)) == FZRT_NOERR)
 {

 /* CREATE AN INDEPENDENT OBJECT AND */
 /* COPY THE PICKED OBJECT INTO IT */
 fz_objt_get_zone_ptr(windex,obj,&zone_ptr);
 if((err = fz_objt_indp_init(windex,zone_ptr,
 &frame->base_obj)) == FZRT_NOERR)
 {
 if((err = fz_objt_edit_copy_objt_geom(windex,
 pick_obj,frame->base_obj)) == FZRT_NOERR)
 {
 /* REGENERATE FRAME OBJECT AND ADD IT TO THE PROJECT */
 frame->do_smooth = _frame_tool_opts->do_smooth;
 frame->radius = _frame_tool_opts->radius;
 if((err = fz_objt_edit_parm_regen(windex,obj)) == FZRT_NOERR)
 {
 err = fz_objt_add_objt_to_project(windex,obj);
 }
 }
 }

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 250

 }

 if (err != FZRT_NOERR)
 { fz_objt_edit_delete_objt(windex,obj);
 }
 }
 }

 *done = TRUE;

 /* CLEAR PICK BUFFER */
 if (pre_pick == FALSE) fz_model_pick_clear(windex);
 }

 return FZRT_NOERR;
}

Deleting a nested control object

In the finit function of the object type, a nested control object must be deleted with the API call
fz_objt_indp_finit. This is shown in the finit function of the frame object type.

fzrt_error_td frame_otyp_finit (
 long windex,
 fz_objt_ptr objt,
 fzrt_ptr parm
)
{
 frame_otyp_parms_td *frame;
 frame = (frame_otyp_parms_td *)parm;

 if (frame->base_obj)
 { fz_objt_indp_finit(windex,&frame->base_obj);
 }

 return(FZRT_NOERR);
}

Nested control objects in the io stream function

When writing or reading a nested control object in the io stream callback function of the object
type, the API function fz_objt_io must be called. When writing, the nested object can be
passed directly to this API function. When reading, the io stream function must first create a new,
independent object. It can be assumed that the object passed in the io stream function when
reading, is an object, whose parameter data block has been initialized to default values. When a
nested object is part of the parameter block, the object pointer is usually initialized to NULL. The
io stream function for the frame object is shown below.

fzrt_error_td frame_otyp_iost(
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td *const version,
 unsigned long size
)

2.8.4 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 251

{
 fzrt_error_td err = FZRT_NOERR;
 fzrt_zone_ptr zone_ptr;
 frame_otyp_parms_td *frame;

 frame = (frame_otyp_parms_td *)parm;

 if (dir == FZ_IOST_WRITE) *version = 0;

 if((err = fz_iost_boolean(iost,&frame->do_smooth,1)) == FZRT_NOERR &&
 (err = fz_iost_double(iost,&frame->radius,1)) == FZRT_NOERR)
 {
 if (dir == FZ_IOST_READ)
 {
 fz_objt_get_zone_ptr(windex,obj,&zone_ptr);
 err = fz_objt_indp_init(windex,zone_ptr,&frame->base_obj);
 }

 if (err == FZRT_NOERR && frame->base_obj != NULL)
 { err = fz_objt_io(windex,frame->base_obj,iost,dir);
 }
 }

 return(err);
}

2.8.5 Palette Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 252

2.8.5 Palette Plugins

A palette is a floating window that contains an interface for a feature or set of related features.
The interface is composed of variety of interface elements (buttons, radio buttons, check boxes,
lists etc.) provided by the form•Z interface manager (fuim). Palette plugins are extensions that
complement the form•Z palettes and behave consistently with the form•Z palettes.

Palettes are available in system and project levels. System palettes are global in nature and do
not require a project window index while project palettes require a project or window index and
are expected to operate on project information for provided project, Palettes are flexible
extensions as a lot of functionality can be included in a palette. The interface of the palette is
defined by the extension through a fuim template. A description of fuim templates can be found in
section 2.6 and in the form•Z API reference.

The names of palette plugins are added to a group near the bottom of the Palettes menu. As with
all other palette names in this menu, selecting a palette name toggles the visibility of the palette.
That is, if the palette is visible, then it is hidden and vice versa. Palettes that are visible are
indicated by a check mark in the menu before the name. All palettes appear in the Key Shortcuts
Manage dialog so that they may have key shortcuts assigned for them to open and close the
palette. Note that if it is desirable to have the ability for the user to assign a key shortcut for
individual items within the interface of the palette, then a separate palette plugin must be
implemented for this action.

The Samples directory in the form•Z SDK folder contains a folder named Palettes that contains
an example of a palette plugin named my_view_palette. This example creates a project palette
with buttons for selecting a standard view type. This sample can be very valuable as both starting
points for development as well as examples of how the functions work.

Palette plugin type and registration

Palette plugins are registered with the plugin type identifier FZ_PALT_EXTS_TYPE and version of
FZ_PALT_EXTS_VERSION. System palette plugins must implement the function set
fz_palt_cbak_syst_fset and project palette plugins must implement the function set
fz_palt_cbak_proj_fset.

The following example shows the registration of a palette plugin and the binding of a system
palette and project palette function sets to the plugin. This registration is performed in the plugin
file’s entry function while handling the FZPL_PLUGIN_INITIALIZE message as described in
section 2.3. Note that the normal usage is to register a system palette or a project palette (not
both). Palette plugins may also provide the fz_notf_cbak_fset function set to be notified
when changes occur within form•Z.

fzrt_error_td my_palt_register_plugins()
{
 fzrt_error_td err = FZRT_NOERR;
 char my_name[256];

 /* Get the title string from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 1, my_name)) ==
FZRT_NOERR)
 {
 /* register the palette plugin */
 err = fzpl_glue->fzpl_plugin_register(

MY_PLUGIN_UUID,
my_name,
MY_PLUGIN_VERSION,

2.8.5 Palette Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 253

MY_PLUGIN_VENDOR,
 MY_PLUGIN_URL,
 FZ_PALT_EXTS_TYPE,

FZ_PALT_EXTS_VERSION,
 my_plugin_error_string_func,

0,
NULL,
&my_plugin_runtime_id);

/* add a system palette callback function set */

 if (err == FZRT_NOERR)
 {
 err = fzpl_glue->fzpl_plugin_add_fset(

my_plugin_runtime_id,
 FZ_PALT_CBAK_SYST_FSET_TYPE,
 FZ_PALT_CBAK_SYST_FSET_VERSION,
 FZ_PALT_CBAK_SYST_FSET_NAME,
 FZPL_TYPE_STRING(fz_palt_cbak_syst_fset),
 sizeof (fz_palt_cbak_syst_fset),
 my_palt_cbak_syst_fill_fset, FALSE);
 }

/* add a project palette callback function set */
 if (err == FZRT_NOERR)
 {
 err = fzpl_glue->fzpl_plugin_add_fset(

my_plugin_runtime_id,
 FZ_PALT_CBAK_PROJ_FSET_TYPE,
 FZ_PALT_CBAK_PROJ_FSET_VERSION,
 FZ_PALT_CBAK_PROJ_FSET_NAME,
 FZPL_TYPE_STRING(fz_palt_cbak_proj_fset),
 sizeof (fz_palt_cbak_proj_fset),
 my_palt_cbak_proj_fill_fset, FALSE);
 }

}
 return (err);
}

2.8.5.1 System Palette

System palette plugins are implemented by the plugin by providing the call back function set
fz_palt_cbak_syst_fset. There are seven functions in this function set. The following
example shows the assignment of the plugins defined functions into the function set. This function
is provided to the fzpl_plugin_add_fset function call shown above. Note that some of these
functions are optional hence a plugin would rarely implement all functions.

fzrt_error_td my_palt_cbak_syst_fill_fset (
 const fzpl_fset_def_ptr fset_def,
 fzpl_fset_td * const fset)
{
 fzrt_error_td err = FZRT_NOERR;
 fz_palt_cbak_syst_fset *palt_syst;

 /* check that the provided function set is of the expected version */
 err = fzpl_glue->fzpl_fset_def_check (fset_def,
 FZ_PALT_CBAK_SYST_FSET_VERSION,
 FZPL_TYPE_STRING(fz_palt_cbak_syst_fset),
 sizeof (fz_palt_cbak_syst_fset),
 FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 /* fill function set structure with local plugins functions */

2.8.5 Palette Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 254

 palt_syst = (fz_palt_cbak_syst_fset *)fset;

 palt_syst->fz_palt_cbak_syst_init = my_palt_syst_init;
 palt_syst->fz_palt_cbak_syst_finit = my_palt_syst_finit;
 palt_syst->fz_palt_cbak_syst_name = my_palt_syst_name;

palt_syst->fz_palt_cbak_syst_uuid = my_palt_syst_uuid;
 palt_syst->fz_palt_cbak_syst_help = my_palt_syst_help;
 palt_syst->fz_palt_cbak_syst_iface_tmpl = my_palt_syst_iface_tmpl;
 palt_syst->fz_palt_cbak_syst_pref_io = my_palt_syst_pref_io;
 }

 return err;
}

The initialization function (optional)

fzrt_error_td fz_palt_cbak_syst_init (
 void
);

This function is called by form•Z once when the plugin is successfully loaded and registered. The
initialization function is where the plugin should initialize any data that may be needed by the
other functions in the function set.

fzrt_error_td my_palt_syst_init(

void
)
{
 fzrt_error_td err = FZRT_NOERR;

/** Do initialization here **/

return(err);

}

The finalization function (optional)

fzrt_error_td fz_palt_cbak_syst_finit(
 void
);

This function is called by form•Z once when the plugin is unloaded when form•Z is quitting. This
is the complementary function to the initialization function. This function should be used to free
and memory allocated in the initialization function or during the life of the palette.

fzrt_error_td my_palt_syst_finit(
 void
)
{
 fzrt_error_td err = FZRT_NOERR;

/** Free any initalized data here **/

 return(err);
}

The name function (recommended)

fzrt_error_td fz_palt_cbak_syst_name (
 char *name,

2.8.5 Palette Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 255

 long max_len
);

This function is called by form•Z at various times to get the name of the palette. It is
recommended that the name is stored in a .fzr file so that it is localizable. The name is the name
that is added to the palette menu and is used as the tittle for the palette.

fzrt_error_td my_palt_syst_name(
 char *name,
 long max_len

)
{
 fzrt_error_td err = FZRT_NOERR;
 char my_str[256];

 /* Get the title string “My Palette” from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 1, my_str)) ==
FZRT_NOERR)

{
 /* copy the string to the name parameter */

 strncpy(name, my_str, max_len);
 }
 return(err);
}

The uuid function (recommended)

fzrt_error_td fz_palt_cbak_syst_uuid
 fzrt_UUID_td uuid
);

This function is called by form•Z at various times to get the uuid of the palette. This unique id is
used by form•Z to distinguish the palette from other palettes.

#define MY_PALT_UUID
"\xc1\x29\xc9\x71\x87\x16\x43\x19\xb9\xa5\x96\xe4\x1d\xe1\x7e\xb9"

fzrt_error_td my_palt_syst_uuid (
 fzrt_UUID_td uuid
)
{
 fzrt_error_td err = FZRT_NOERR;

/* copy constant UUID to into the uuid parameter */
 fzrt_UUID_copy(MY_PALT_UUID, uuid);

 return(err);
}

The help function (recommended)

fzrt_error_td fz_palt_cbak_syst_help (
 char *help,
 long max_len,
);

This function is called by form•Z to display a help string that describes the detail of what the
palette does. This string is shown in the key shortcut manager dialog and the help dialogs. The
help parameter is a pointer to a memory block (string) which can handle up to max_len bytes of
data. It is recommended that the palette name is stored in .fzr file so that it is localizable. The

2.8.5 Palette Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 256

display area for help is limited so form•Z currently will ask for no more than 512 bytes
(characters).

fzrt_error_td my_palt_syst_help(
 char *help,
 long max_len
)
{
 fzrt_error_td err = FZRT_NOERR;
 char my_str[512];

 /* Get the help string from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, my_str)) ==
FZRT_NOERR)

{
 /* copy the string to the help parameter */

 strncpy(help, my_str, max_len);
 }
 return(err);
}

The interface template function (required)

fzrt_error_td fz_palt_cbak_syst_iface_tmpl (
 fz_fuim_tmpl_ptr tmpl_ptr,
 fzrt_ptr tmpl_data
)

This function is called by form•Z when the interface for the palette is needed. The form•Z
interface template functions should be called to construct the interface of the palette in this
function. Please see section 2.6 for more details on the fuim template functions. The full fuim
template documentation can be found in the API reference.

The following sample is a template for 3 buttons grouped inside a border with a title.

#define MY_STRINGS 1

enum
{ MY_STRING_NAME = 1,
 MY_STRING_TYPE,
 MY_STRING_1,
 MY_STRING_2,
 MY_STRING_3
};

enum
{ MY_BUTTON1=1,
 MY_BUTTON2,
 MY_BUTTON3
};

fzrt_error_td my_palt_syst_iface_tmpl (
 fz_fuim_tmpl_ptr tmpl_ptr,
 fzrt_ptr tmpl_data
)
{
 fzrt_error_td err;
 short gindx;
 char str[256];

 /* get the options title from plugin’s resource file */

fzrt_fzr_get_string(my_rfzr_refid, MY_STRINGS, MY_STRING_NAME, str);

2.8.5 Palette Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 257

 if((err = fz_fuim_tmpl_init(tmpl_ptr, str,
FZ_FUIM_NONE, MY_PALT_OPTS_UUID, 0)) == FZRT_NOERR)

 {
 /* create a static text item */
 fzrt_fzr_get_string(my_rfzr_refid, MY_STRINGS, MY_STRING_TYPE,

 str);
 gindx = fz_fuim_new_text_static(tmpl_ptr, -1, FZ_FUIM_NONE,

FZ_FUIM_FLAG_BRDR | FZ_FUIM_FLAG_EQSZ, str, NULL,
NULL);

 /* create a button */
 fzrt_fzr_get_string(my_rfzr_refid,

MY_STRINGS, MY_STRING_1, str);
 fz_fuim_new_button(tmpl_ptr, gindx, MY_BUTTON1,

FZ_FUIM_FLAG_NONE, str, my_item_func, NULL);

 /* create a button */
 fzrt_fzr_get_string(my_rfzr_refid,

MY_STRINGS, MY_STRING_2, str);
 fz_fuim_new_button(tmpl_ptr, gindx, MY_BUTTON2,

FZ_FUIM_FLAG_NONE, str, my_item_func, NULL);

 /* create a button */
 fzrt_fzr_get_string(my_rfzr_refid,

MY_STRINGS, MY_STRING_3, str);
 fz_fuim_new_button(tmpl_ptr, gindx, MY_BUTTON3,

FZ_FUIM_FLAG_NONE, str, my_item_func, NULL);
 }

 return (err);
}

The preferences IO function (optional)

fzrt_error_td fz_palt_cbak_syst_pref_io (
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
);

form•Z calls this function to read and write any palette specific data to a form•Z preference file.
This function is called when reading and writing user specified preference files (Save Preferences
button in the Preferences dialog). It is also called by form•Z when reading and writing the session
to session preference file maintained by form•Z. The file IO is performed using the IO streams
(iost) interface. This interface provides functions for reading and writing data from a file (stream)
and handles all cross platform endian issues. The iost parameter is the pointer to the
preference file and should be used in all IO Stream function calls. The IO Stream functions are
fully documented in the form•Z API reference.

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that is written when writing a file. When reading a file, the version parameter contains the
version of the data that was written to the file (and hence being read). The size parameter is
only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the plugin to maintain version changes of the plugin data. In the following
example, in its first release, a palette’s data consisted of four long integer values, a total of 16
bytes. When written, the version reported back to form•Z was 0. In a subsequent release, a fifth

2.8.5 Palette Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 258

long integer is added to increase the size to 20 bytes. When writing this new data, the version
reported to form•Z needs to be increased. When reading a file with the old version of the palette
preference, form•Z will pass in the version number of the attribute when it was written, in this
case 0. This indicates to the plugin, that only four integers, 16 bytes, need to be read and the fifth
integer should be set to a default value.

typedef struct my_palette_td /* my palette’s global pref data */
{
 long value1,value2,value3,value4,value5;
 ...
}my_palette_td;
my_palette_td* my_palette;

fzrt_error_td my_palt_syst_pref_io(
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
)
{
 fzrt_error_td err = FZRT_NOERR;

 if (dir == FZ_IOST_WRITE) *version = 1;

 err = fz_iost_one_long(iost,&my_palette->value1);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_palette->value2);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_palette->value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_palette->value4);

 if(*version >= 1)
 { err = fz_iost_one_long(iost,

&my_palette->value5);
 }
 }
 }
 }

 return(err);
}

2.8.5.2 Project Palette

Project palette plugins are implemented by the call back function set
fz_palt_cbak_proj_fset. There are seven functions in this function set. The following
example shows the assignment of the plugins defined functions into the function set. This function
is provided to the fzpl_plugin_add_fset function call shown above. Note that some of these
functions are optional hence a plugin would never implement all of these functions.

fzrt_error_td my_palt_cbak_proj_fill_fset (
 const fzpl_fset_def_ptr fset_def,
 fzpl_fset_td * const fset)
{
 fzrt_error_td err = FZRT_NOERR;
 fz_palt_cbak_proj_fset *palt_proj;

 /* check that the provided function set is of the expected version */
 err = fzpl_glue->fzpl_fset_def_check (fset_def,

2.8.5 Palette Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 259

 FZ_PALT_CBAK_PROJ_FSET_VERSION,
 FZPL_TYPE_STRING(fz_palt_cbak_proj_fset),
 sizeof (fz_palt_cbak_proj_fset),
 FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 /* fill function set structure with local plugins functions */
 palt_proj = (fz_palt_cbak_proj_fset *)fset;

 palt_proj->fz_palt_cbak_proj_init = my_palt_proj_init;
 palt_proj->fz_palt_cbak_proj_finit = my_palt_proj_finit;
 palt_proj->fz_palt_cbak_proj_info = my_palt_proj_info;
 palt_proj->fz_palt_cbak_proj_name = my_palt_proj_name;

palt_proj->fz_palt_cbak_proj_uuid = my_palt_proj_uuid;
 palt_proj->fz_palt_cbak_proj_help = my_palt_proj_help;
 palt_proj->fz_palt_cbak_proj_iface_tmpl = my_palt_proj_iface_tmpl;
 palt_proj->fz_palt_cbak_proj_pref_io = my_palt_proj_pref_io;
 palt_proj->fz_palt_cbak_proj_data_io = my_palt_proj_data_io;
 palt_proj->fz_palt_cbak_proj_wind_data_io = my_palt_proj_wind_data_io;
 }

 return err;
}

The initialization function (optional)

fzrt_error_td fz_palt_cbak_proj_init (
 void
);

This function is called by form•Z once when the plugin is successfully loaded and registered. The
initialization function is where the plugin should initialize any data that may be needed by the
other functions in the function set.

fzrt_error_td my_palt_proj_init(

void
)
{
 fzrt_error_td err = FZRT_NOERR;

/** Do initialization here **/

return(err);

}

The finalization function (optional)

fzrt_error_td fz_palt_cbak_proj_finit(
 void
);

This function is called by form•Z once when the plugin is unloaded when form•Z is quitting. This
is the complementary function to the initialization function. This function should be used to free
and memory allocated in the initialization function or during the life of the palette.

fzrt_error_td my_palt_proj_finit(
 void
)
{
 fzrt_error_td err = FZRT_NOERR;

2.8.5 Palette Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 260

/** Free any initalized data here **/

 return(err);
}

The information function (required)

fzrt_error_td fz_palt_cbak_proj_info (
 fz_proj_level_enum *level
);

This function is called by form•Z once when the plugin is successfully loaded and registered
immedialty after the initialization function (if provided).

The level parameter indicates the context of the tool. form•Z uses the value in this parameter
to determine when the palette should be shown and when it should be updated. The following are
the available values:

FZ_PROJ_LEVEL_MODEL: Indicates that the tool operates on the projects modeling
content (objects for example).

FZ_PROJ_LEVEL_MODEL_WIND: Indicates that the tool operates on modeling window
specific content (views for example) of modeling windows.

FZ_PROJ_LEVEL_DRAFT: Indicates that the tool operates on the projects drafting
content (elements for example).

FZ_PROJ_LEVEL_DRAFT_WIND: Indicates that the tool operates on drafting window
specific content (views for example) of drafting windows.

fzrt_error_td my_palt_proj_info(
 fz_proj_level_enum *level
)
{
 fzrt_error_td err = FZRT_NOERR;

*level = FZ_PROJ_LEVEL_MODEL;

return(err);

}

The name function (recommended)

fzrt_error_td fz_palt_cbak_proj_name (
 char *name,
 long max_len

);

This function is called by form•Z at various times to get the name of the palette. It is recomended
that the name is stored in a .fzr file so that it is localizable. The name is the name that is added to
the palette menu and is used as the tittle for the palette.

fzrt_error_td my_palt_proj_name(
 char *name,
 long max_len

)
{
 fzrt_error_td err = FZRT_NOERR;
 char my_str[256];

2.8.5 Palette Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 261

 /* Get the title string from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 1, my_str)

) == FZRT_NOERR)
{
 /* copy the string to the name parameter */

 strncpy(name, my_str, max_len);
 }
 return(err);
}

The uuid function (recommended)

fzrt_error_td fz_palt_cbak_proj_uuid
 fzrt_UUID_td uuid
);

This function is called by form•Z at various times to get the uuid of the palette. This unique id is
used by formZ to distinguish the palette from other palettes.

#define MY_PALT_UUID
"\xc1\x29\xc9\x71\x87\x16\x43\x19\xb9\xa5\x96\xe4\x1d\xe1\x7e\xb9"

fzrt_error_td my_palt_proj_uuid (
 fzrt_UUID_td uuid
)
{
 fzrt_error_td err = FZRT_NOERR;

/* copy constant UUID to into the uuid parameter */
 fzrt_UUID_copy(MY_PALT_UUID, uuid);

 return(err);
}

The help function (recommended)

fzrt_error_td fz_palt_cbak_proj_help (
 char *help,
 long max_len
);

This function is called by form•Z to display a help string that describes the detail of what the
palette does. This string is shown in the key shortcut manager dialog and the help dialogs. The
help parameter is a pointer to a memory block (string) which can handle up to max_len bytes of
data. It is recommended that the palette name is stored in a .fzr file so that it is localizable. The
display area for help is limited so form•Z currently will ask for no more than 512 bytes
(characters).

fzrt_error_td my_palt_proj_help(
 char *help,
 long max_len
)

{
 fzrt_error_td err = FZRT_NOERR;
 char my_str[512];

 /* Get the help string from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, my_str)) ==
FZRT_NOERR)

2.8.5 Palette Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 262

{
 /* copy the string to the help parameter */

 strncpy(help, my_str, max_len);
 }
 return(err);
}

The interface template function (required)

fzrt_error_td fz_palt_cbak_proj_iface_tmpl (
 long windex,
 fz_fuim_tmpl_ptr tmpl_ptr,
 fzrt_ptr tmpl_data
)

This function is called by form•Z when the interface for the palette is needed. The form•Z
interface template functions should be called to construct the interface of the palette in this
function. Please see section 2.6 for more details on the fuim template functions. The full fuim
template documentation can be found in the API reference.

The following sample is a template for 3 buttons grouped inside a border with a title.

#define MY_STRINGS 1

enum
{ MY_STRING_NAME = 1,
 MY_STRING_TYPE,
 MY_STRING_1,
 MY_STRING_2,
 MY_STRING_3
};

enum
{ MY_BUTTON1=1,
 MY_BUTTON2,
 MY_BUTTON3
};

fzrt_error_td my_palt_proj_iface_tmpl (
 long windex,

fz_fuim_tmpl_ptr tmpl_ptr,
 fzrt_ptr tmpl_data
)
{
 fzrt_error_td err;
 short gindx;
 char str[256];

 /* get the options title from plugin’s resource file */

fzrt_fzr_get_string(my_rfzr_refid, MY_STRINGS, MY_STRING_NAME, str);
 if((err = fz_fuim_tmpl_init(tmpl_ptr, str,

FZ_FUIM_NONE, MY_PALT_OPTS_UUID, 0)) == FZRT_NOERR)
 {
 /* create a static text item */
 fzrt_fzr_get_string(my_rfzr_refid, MY_STRINGS, MY_STRING_TYPE,
str);
 gindx = fz_fuim_new_text_static(tmpl_ptr, -1, FZ_FUIM_NONE,

FZ_FUIM_FLAG_BRDR | FZ_FUIM_FLAG_EQSZ, str, NULL,
NULL);

 /* create a button */
 fzrt_fzr_get_string(my_rfzr_refid,

MY_STRINGS, MY_STRING_1, str);

2.8.5 Palette Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 263

 fz_fuim_new_button(tmpl_ptr, gindx, MY_BUTTON1,
FZ_FUIM_FLAG_NONE, str, my_item_func, NULL);

 /* create a button */
 fzrt_fzr_get_string(my_rfzr_refid

MY_STRINGS, MY_STRING_2, str);
 fz_fuim_new_button(tmpl_ptr, gindx, MY_BUTTON2,

FZ_FUIM_FLAG_NONE, str, my_item_func, NULL);

 /* create a button */
 fzrt_fzr_get_string(my_rfzr_refid,

MY_STRINGS, MY_STRING_3, str);
 fz_fuim_new_button(tmpl_ptr, gindx, MY_BUTTON3,

FZ_FUIM_FLAG_NONE, str, my_item_func, NULL);
 }

 return (err);
}

The preferences IO function (optional)

fzrt_error_td fz_palt_cbak_proj_pref_io (
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
);

form•Z calls this function to read and write any palette specific data to a form•Z preference file.
This function is called when reading and writing user specified preference files (Save Preferences
button in the Preferences dialog). It is also called by form•Z when reading and writing the session
to session preference file maintained by form•Z. The file IO is performed using the IO streams
(iost) interface. This interface provides functions for reading and writing data from a file (stream)
and handles all cross platform endian issues. The iost parameter is the pointer to the
preference file and should be used in all IO Stream function calls. The IO Stream functions are
fully documented in the form•Z API reference.

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that is written when writing a file. When reading a file, the version parameter contains the
version of the data that was written to the file (and hence being read). The size parameter is
only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the plugin to maintain version changes of the plugin data. In the following
example, in its first release, a palettes data consisted of four long integer values, a total of 16
bytes. When written, the version reported back to form•Z was 0. In a subsequent release, a fifth
long integer is added to increase the size to 20 bytes. When writing this new data, the version
reported to form•Z needs to be increased. When reading a file with the old version of the palette
preference, form•Z will pass in the version number of the attribute when it was written, in this
case 0. This indicates to the plugin, that only four integers, 16 bytes, need to be read and the fifth
integer should be set to a default value..

typedef struct my_palette_td /* my palette’s global pref data */
{
 long value1,value2,value3,value4,value5;

2.8.5 Palette Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 264

 ...
}my_palette_td;
my_palette_td* my_palette;

fzrt_error_td my_palt_proj_pref_io(
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
)
{
 fzrt_error_td err = FZRT_NOERR;

 if (dir == FZ_IOST_WRITE) *version = 1;

 err = fz_iost_one_long(iost,&my_palette->value1);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_palette->value2);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_palette->value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_palette->value4);

 if(*version >= 1)
 { err = fz_iost_one_long(iost,

&my_palette->value5);
 }
 }
 }
 }

 return(err);
}

The project data IO function (optional)

fzrt_error_td fz_palt_cbak_proj_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
);

form•Z calls this function to read and write any palette specific project data to a form•Z project
file. This function is called once when reading and writing form•Z project files. The file IO is
performed using the IO streams (iost) interface. This interface provides functions for reading and
writing data from a file (stream) and handles all cross platform endian issues. The iost
parameter is the pointer to the form•Z project file and should be used in all IO Stream function
calls. The IO Stream functions are fully documented in the form•Z API reference.

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that was is written when writing a file. When reading a file, the version parameter contains the
version of the data that was written to in the file (and hence being read). The size parameter is
only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the plugin to maintain version changes of the plugin data. In the following
example, in its first release, a palettes data consisted of four long integer values, a total of 16

2.8.5 Palette Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 265

bytes. When written, the version reported back to form•Z was 0. In a subsequent release, a fifth
long integer is added to increase the size to 20 bytes. When writing this new data, the version
reported to form•Z needs to be increased. When reading a file with the old version of the palette
preference, form•Z will pass in the version number of the attribute when it was written, in this
case 0. This indicates to the plugin, that only four integers, 16 bytes, need to be read and the fifth
integer should be set to a default value.

fzrt_error_td my_palt_proj_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
)
{
 fzrt_error_td err = FZRT_NOERR;

 if (dir == FZ_IOST_WRITE) *version = 1;

 err = fz_iost_one_long(iost,&my_palette->value1);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_palette->value2);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_palette->value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_palette->value4);

 if(*version >= 1)
 { err = fz_iost_one_long(iost,

&my_palette->value5);
 }
 }
 }
 }

 return(err);
}

The project window data IO function (optional)

fzrt_error_td fz_palt_cbak_proj_wind_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
);

form•Z calls this function to read and write any palette specific project window data to a form•Z
project file. This function is called once for each window in the project when reading and writing
form•Z project files. The file IO is performed using the IO streams (iost) interface. This interface
provides functions for reading and writing data from a file (stream) and handles all cross platform
endian issues. The iost parameter is the pointer to the form•Z Project file and should be used in
all IO Stream function calls. The IO Stream functions are fully documented in the form•Z API
reference.

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that was is written when writing a file. When reading a file, the version parameter contains the
version of the data that was written to in the file (and hence being read). The size parameter is

2.8.5 Palette Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 266

only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the plugin to maintain version changes of the plugin data. In the following
example, in its first release, a palettes data consisted of four long integer values, a total of 16
bytes. When written, the version reported back to form•Z was 0. In a subsequent release, a fifth
long integer is added to increase the size to 20 bytes. When writing this new data, the version
reported to form•Z needs to be increased. When reading a file with the old version of the palette
preference, form•Z will pass in the version number of the attribute when it was written, in this
case 0. This indicates to the plugin, that only four integers, 16 bytes, need to be read and the fifth
integer should be set to a default value.

fzrt_error_td my_palt_proj_wind_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
)
{
 fzrt_error_td err = FZRT_NOERR;

 if (dir == FZ_IOST_WRITE) *version = 1;

 err = fz_iost_one_long(iost,&my_palette->value1);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_palette->value2);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_palette->value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_palette->value4);

 if(*version >= 1)
 { err = fz_iost_one_long(iost,

&my_palette->value5);
 }
 }
 }
 }

 return(err);
}

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 267

2.8.6 Renderer

In form•Z, there are seven default rendering types: Wire Frame, Interactive Shaded, Quick Paint,
Surface Render, Hidden Line, Shaded Render and RenderZone. Additional rendering types may
be added by creating a renderer plugin and registering a callback function set, which provides
functions called by form•Z to render the modeling scene on the screen. Each plugin renderer will
automatically be added to the Display menu, below the standard form•Z renderers. In general, a
plugin renderer will fall into one of three categories: vector line or polygonal drawing, such as
Wire Frame, Hidden Line or Quick Paint, interactive rendering such as Interactive Shaded or
static pixel based rendering, such as Shaded Render or RenderZone. Depending on the
category, different screen drawing methods need to be used. Vector and polygonal renderers
may draw directly to the screen. Interactive renderers usually employ some kind of hardware
assisted display. Static pixel based renderers must use the form•Z supplied image buffer to store
and display the image. A renderer should represent the modeling scene in a faithful manner. That
is, the projections of the objects on the screen should match those of the other rendering types.
form•Z offers utility functions, which facilitate the transformation of a 3d point through the display
pipeline to the screen space. If a renderer provides a shaded display of the scene, surface colors
and lighting should be taken into account. While it is not possible to execute the RenderZone
shaders of a surface style in a plugin, the renderer is free to create its own artistic or realistic
shading of surfaces based on the color of a surface style or based on its own surface style
attribute. Lighting effects can be incorporated in a renderer anywhere from simple to accurate
illumination. All parameters of the lights in a scene can be retrieved by a renderer through form•Z
API functions. It is up to the renderer to use this information to create the illumination of the
shaded surfaces. If a renderer is pixel based, the image is automatically exported to a 2d file
format, when the Export Image command is chosen from the File menu. Vector and polygonal
renderers should implement an export callback function, which writes out the rendered graphics
to a 2d file.

The function set which defines a renderer is fz_rndr_cbak_fset and must be registered with a
plugin of type FZ_RNDR_EXTS_TYPE. The example below shows the definition of a plugin of type
FZ_RNDR_EXTS_TYPE and the registration of a single renderer within that plugin.

fzrt_error_td my_rndr_register_plugin ()
{
 fzrt_error_td err = FZRT_NOERR;

 /* REGISTER THE RENDERER PLUGIN */
 err = fzpl_glue->fzpl_plugin_register(

MY_RNDR_PLUGIN_UUID,
 MY_RNDR_PLUGIN_NAME,

MY_RNDR_PLUGIN_VERSION,
 MY_RNDR_PLUGIN_VENDOR,

MY_RNDR_PLUGIN_URL,
FZ_RNDR_EXTS_TYPE,
FZ_RNDR_EXTS_VERSION,

 NULL,
0,
NULL,

 &my_rndr_plugin_runtime_id);

 if (err == FZRT_NOERR)
 {
 /* REGISTER THE RENDERER CALLBACK FUNCTION SET */
 err = fzpl_glue->fzpl_plugin_add_fset(

my_rndr_plugin_runtime_id,
FZ_RNDR_CBAK_FSET_TYPE,
FZ_RNDR_CBAK_FSET_VERSION,
FZ_RNDR_CBAK_FSET_NAME,

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 268

FZPL_TYPE_STRING(fz_rndr_cbak_fset),
sizeof (fz_rndr_cbak_fset),
my_fill_rndr_cbak_fset,
FALSE);

 }

 return(err);
}

The function set registration passes a function to fzpl_plugin_add_fset, which is executed
by form•Z at startup. In the example above, the registration of the renderer passes the function
my_fill_rndr_cbak_fset. This function must be defined by the plugin developer and must fill
in the renderer function set with the pointers of the callback functions which constitute the
functionality of a custom renderer. An example of this registration process is shown below. It
assigns the callbacks of the sample renderer type to the function set. It is possible to register
more than one renderer function set with a plugin. In this case the fzpl_plugin_add_fset
call needs to be repeated for each function set, using the same plugin id, but a different callback
function set fill function. Given the complexity of a renderer plugin, it is recommended that only
one function set is registered with a renderer plugin.

fzrt_error_td my_rndr_callback_fset (

const fzpl_fset_def_ptr fset_def,
fzpl_fset_td * const fset)

{
 fzrt_error_td err = FZRT_NOERR;
 fz_rndr_cbak_fset *rndr_fset;

 err = fzpl_glue->fzpl_fset_def_check (fset_def,

FZ_RNDR_EXTS_VERSION,
FZPL_TYPE_STRING(fz_rndr_cbak_fset),
sizeof (fz_rndr_cbak_fset),
FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 rndr_fset = (fz_rndr_cbak_fset *)fset;

 /* RENDERER LEVEL */
 rndr_fset->fz_rndr_cbak_init = my_rndr_init;
 rndr_fset->fz_rndr_cbak_info = my_rndr_info;
 rndr_fset->fz_rndr_cbak_finit = my_rndr_finit;
 rndr_fset->fz_rndr_cbak_name = my_rndr_name;
 rndr_fset->fz_rndr_cbak_uuid = my_rndr_uuid;
 rndr_fset->fz_rndr_cbak_attr = my_rndr_attr;
 rndr_fset->fz_rndr_cbak_disp_attr = my_rndr_disp_attr;
 rndr_fset->fz_rndr_cbak_handle_view = my_rndr_view_type;
 rndr_fset->fz_rndr_cbak_activate = my_rndr_activate;
 rndr_fset->fz_rndr_cbak_deactivate = my_rndr_deactivate;

 /* PROJECT LEVEL */
 rndr_fset->fz_rndr_cbak_proj_data_init = my_rndr_proj_init;
 rndr_fset->fz_rndr_cbak_proj_data_finit = my_rndr_proj_finit;
 rndr_fset->fz_rndr_cbak_proj_clear_mem = my_rndr_clear_mem;

 /* WINDOW LEVEL */
 rndr_fset->fz_rndr_cbak_wind_data_init = my_rndr_wind_init;
 rndr_fset->fz_rndr_cbak_wind_data_finit = my_rndr_wind_finit;
 rndr_fset->fz_rndr_cbak_wind_opts_init = my_rndr_wind_opts_init;
 rndr_fset->fz_rndr_cbak_wind_opts_default = my_rndr_wind_opts_defaults;
 rndr_fset->fz_rndr_cbak_wind_opts_io = my_rndr_wind_opts_io;
 rndr_fset->fz_rndr_cbak_wind_opts_copy = my_rndr_wind_opts_copy;
 rndr_fset->fz_rndr_cbak_wind_opts_are_equal= my_rndr_wind_opts_cmp;

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 269

 rndr_fset->fz_rndr_cbak_wind_opts_finit = my_rndr_wind_opts_finit;

 /* IMAGE RELATED */
 rndr_fset->fz_rndr_cbak_image_init = my_rndr_image_prep;
 rndr_fset->fz_rndr_cbak_image_disp = my_rndr_image_disp;
 rndr_fset->fz_rndr_cbak_image_finit = my_rndr_image_finit;
 rndr_fset->fz_rndr_cbak_image_inval = my_rndr_image_inval;
 rndr_fset->fz_rndr_cbak_image_dirty = my_rndr_image_dirty;

 /* VECTOR/POLYGON IMAGE EXPORT */
 rndr_fset->fz_rndr_cbak_expt_vect_out = NULL;
 rndr_fset->fz_rndr_cbak_expt_vect_check_feature = NULL;

 /* INTERFACE RELATED */
 rndr_fset->fz_rndr_cbak_iface_tmpl = my_rndr_iface_tmpl;
 rndr_fset->fz_rndr_cbak_get_parm = my_rndr_get_parm;
 rndr_fset->fz_rndr_cbak_set_parm = my_rndr_set_parm;

 /* DISTRIBUTED RENDERING */
 rndr_fset->fz_rndr_cbak_proj_linked_files = my_rndr_linked_files;

 /* BACKGOUND IMAGE DONE NOTIFIACTION */
 rndr_fset->fz_rndr_cbak_notify_user = my_rndr_notify_user;

 }

 return err;
}

Of all the callback functions of a renderer, only some are required, while others are recommended
and others are purely optional. The callback functions of a renderer are grouped in a number of
categories: Renderer level, project level, window level, image display, image export, interface and
interactive.

Renderer level functions

The init function (optional)

fzrt_error_td fz_rndr_cbak_init (
 void
);

form•Z calls this function once at system startup. It allows a plugin renderer to perform one time
initializations.

fzrt_error_td my_rndr_init (
 void
)
{
 fzrt_error_td rv = FZRT_NOERR;

 /* INIT CODE GOES HERE */
 ...

 return(rv);
}

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 270

The finit function (optional)

fzrt_error_td fz_rndr_cbak_finit (
 void
);

form•Z calls this function once, when the user quits form•Z. It allows a plugin renderer to perform
final cleanup.

fzrt_error_td my_rndr_finit (
 void
)
{
 fzrt_error_td rv = FZRT_NOERR;

 /* FINIT CODE GOES HERE */
 ...

 return(rv);
}

The info function (required)

fzrt_error_td fz_rndr_cbak_info (
 fz_rndr_type_enum *type,
 fz_rndr_behave_enum *behave,
 long *proj_data_size,
 long *wind_data_size,
 long *wind_opts_size
);

This function is called by form•Z to retrieve basic information about the renderer. The first
function argument sets the type of renderer. Three choices are available: pixel, vector or
polygonal. A pixel renderer is expected to create a pixel based image, using techniques such as
scanline z-buffering or raytracing. The Shaded Render and RenderZone display modes are
examples of a pixel renderer. A vector renderer is expected to draw lines to the screen. The basic
vector renderer provided by form•Z is Wire Frame. A vector renderer is also expected to provide
a callback function which exports the lines to a 2d vector format. This callback function is
described in more detail below. A polygonal renderer draws the faces of objects as closed and
color filled polygons on the screen. The faces are usually sorted in the viewing direction, to
provide proper depth display. It is also expected to provide the 2d export callback function. The
Quick Paint and Surface Render display modes are examples of a polygonal renderer.

The behave argument tells form•Z, whether the render is fast enough to be executed as an
interactive renderer or not. This will allow a user to create and edit objects and manipulate views
in real time. Two return values are possible: FZ_RNDR_BEHAVE_INTERACT and
FZ_RNDR_BEHAVE_STATIC. If the renderer is interactive, additional callback functions must be
supplied, which is described in more detail further below.

Depending on the combination of type and behavior, different drawing methods need to be used.
If a renderer is static and the type is pixel, it must store one horizontal scanline of the rendered
image at a time in an image buffer, which is provided by form•Z. This is done with the API call
fz_rndr_ibuf_add_scanline. If a renderer is interactive, it may use simple screen drawing
commands, such as the form•Z API functions fzrt_move_to and fzrt_line_to, but must
do so fast enough to be reasonably interactive. The form•Z Wire Frame drawing mode, for
example, uses this technique. An interactive renderer may also use hardware assisted drawing,

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 271

such as OpenGL. This is done in the Interactive Shaded display mode. Static vector and
polygonal renderers may use any drawing method to put the image on the screen.

form•Z manages the storage of the options, window level and project level data for a plugin
renderer. To allocate the proper amount of memory, the plugin renderer needs to tell form•Z how
many bytes are needed for each data block. This is done with the last three function arguments.
Typically, a renderer has the options stored in a structure, whose size can be inquired with a
sizeof(structure_type) call. If 0 is returned for any of the sizes, no memory will be
allocated for the respective data block. The options data holds the parameters for a renderer that
can be set by a user. They are also displayed in the corresponding options dialog, which can be
accessed through the Display menu. The project data is information that may be needed by a
renderer on a per project level. For example, the renderer may need to keep a copy of the
geometry to be rendered. This information would be stored in the project data block. Likewise, the
renderer may need to keep information on a per window basis. For example, it may be necessary
to keep track of whether the rendering in a window needs to be regenerated since last rendered,
or whether the previously rendered image can be displayed from a buffer. This information can be
stored in the window data block.

fzrt_error_td my_rndr_info (
 fz_rndr_type_enum *type,
 fz_rndr_behave_enum *behave,
 long *proj_data_size,
 long *wind_data_size,
 long *wind_opts_size
)
{
 fzrt_error_td rv = FZRT_NOERR;

 *type = FZ_RNDR_TYPE_PIXEL;
 *behave = FZ_RNDR_BEHAVE_STATIC;

 *proj_data_size = sizeof(my_rndr_proj_data_td);
 *wind_data_size = sizeof(my_rndr_wind_data_td);
 *wind_opts_size = sizeof(my_rndr_wind_opts_td);

 return(rv);
}

The name function (required)

fzrt_error_td fz_rndr_cbak_name)(
 char *name,
 long max_len);

This function is called by form•Z to get the name of the renderer. This name shows up in the
form•Z interface, whenever the title of the renderer is shown. The name function must assign a
string to the function's name argument. The length of the string assigned cannot exceed
max_len characters. It is recommended that the renderer's name is stored in a .fzr resource file
and retrieved from it, when assigned to the name argument, so that it can be localized for
different languages. In the example below, this step is omitted for the purpose of simplicity.

fzrt_error_td my_rndr_name (
 char *name,
 long max_name

)
{
 strncpy(name,"My renderer",max_name);
 return(FZRT_NOERR);
}

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 272

The uuid function (required)

fzrt_error_td fz_rndr_cbak_uuid (
 fzrt_UUID_td uuid
);

This function is called by form•Z to get the uuid of the renderer. This unique id is used by form•Z
to distinguish the renderer from other renderers. The uuid function needs to assign the unique
identifier to the function's uuid argument. An example is shown below.

#define MY_RNDR_UUID \
"\xec\x4c\x18\x73\xc4\x48\x48\x6a\x99\xa5\x35\xc8\xf9\xc4\x35\xd7"

fzrt_error_td my_rndr_uuid (
 fzrt_UUID_td uuid
)
{
 fzrt_UUID_copy(MY_RNDR_UUID, uuid);
 return(FZRT_NOERR);
}

The options uuid function (required, if the renderer has user options)

fzrt_error_td fz_rndr_cbak_opts_uuid (
 fzrt_UUID_td uuid
);

This function is called by form•Z to get the options uuid of the renderer. This unique id is used by
form•Z to distinguish the renderer's options dialog from that of other renderers. The uuid function
needs to assign the unique identifier to the function's uuid argument. An example is shown below.

#define MY_RNDR_OPTS_UUID \
"\xc3\x63\xd8\xf5\x81\xd2\x4a\x47\x8a\xc2\xd4\xe0\xf8\x63\x56\x70"

fzrt_error_td my_rndr_opts_uuid (
 fzrt_UUID_td uuid
)
{
 fzrt_UUID_copy(MY_RNDR_OPTS_UUID, uuid);
 return(FZRT_NOERR);
}

The options name function (required, if the renderer has user options)

fzrt_error_td fz_rndr_cbak_opts_name (
 char *name,
 long max_len
);

This function is called by form•Z to get the title of the options dialog for a renderer. The options
name function must assign a string to the function's name argument. The length of the string
assigned cannot exceed max_len characters. It is recommended that the options name is stored
in a .fzr resource file and retrieved from it, when assigned to the name argument, so that it can be
localized for different languages. In the example below, this step is omitted for the purpose of
simplicity.

fzrt_error_td my_rndr_opts_name (

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 273

 char *name,
 long max_name

)
{
 strncpy(name,"My Renderer Options",max_name);
 return(FZRT_NOERR);
}

The attribute function (recommended)

fzrt_boolean fz_rndr_cbak_attr (
 long windex,
 fz_rndr_attr_enum rndr_attr
);

The attribute function is intended to tell form•Z more detailed information about the renderer. The
function receives a question in the form of an enum, and the function needs to return TRUE or
FALSE as an answer to that question. Based on the answer, form•Z will take the appropriate
action with that renderer in various settings. For example, form•Z may call this function with the
FZ_RNDR_ATTR_IN_PVIEW enum. If the function returns TRUE, the rendering mode will be
offered in dialogs, which offer object preview renderings, such as the Sweep Edit dialog. If the
answer is FALSE, the rendering in not offered.

The enums that form•Z could pass in the attribute function are:

FZ_RNDR_ATTR_RADIOS

If the renderer is capable to display the illumination of a radiosity solution, it should return TRUE
and FALSE otherwise.

FZ_RNDR_ATTR_RADIOS_PVIEW

If the renderer is capable to display the illumination of a radiosity solution and it is fast enough to
do this while generating the solution, it should return TRUE and FALSE otherwise.

FZ_RNDR_ATTR_ALPHA_CHANNEL

If the renderer is a static pixel renderer and it supports the alpha channel and the current options
have this setting turned on, the function should return TRUE and FALSE otherwise.

FZ_RNDR_ATTR_SUN_ONLY

If the renderer perfroms only simple illumination and only uses one light, the sun light, it should
return TRUE and FALSE otherwise.

FZ_RNDR_ATTR_CAN_SS

If the renderer's image can be supersampled, either by a built in method of by drawing the image
larger, it should return TRUE and FALSE otherwise

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 274

FZ_RNDR_ATTR_IN_PVIEW

If the renderer should be offered in a dialog with an object preview window, such as the Sweep
Edit dialog, the function should return TRUE.

FZ_RNDR_ATTR_STAY_IN_IACT_MODE

If the function returns TRUE to this question, the rendering mode is switched from the current
rendering mode to an interactive rendering mode, after performing an object creation or editing
operation or a view manipulation. TRUE should only be returned if the renderer itself is non
interactive. For example, when creating a new object and the current rendering mode is
RenderZone, form•Z will temporarily switch to Wire Frame of Interactive Shaded while the object
is rubberbanded. After that, the rendering mode returns to RenderZone. This is because, the
RenderZone attribute function return FALSE to the FZ_RNDR_ATTR_STAY_IN_IACT_MODE
question. If it would return TRUE, the objects would still be displayed in Wire Frame or Interactive
Shaded after the creation is finished.

FZ_RNDR_ATTR_USE_PARTIAL_IMAGE

If the renderer returns TRUE to this question, the standard set image size option will automatically
be added at the bottom of the renderers options dialog. TRUE should only be returned for static
pixel renderers.

FZ_RNDR_ATTR_USE_SAVE_IMAGE

If the renderer returns TRUE to this question, the standard save image option will automatically
be added at the bottom of the renderers options dialog. TRUE should only be returned for non
interactive renderers, which provide higher quality images, which may take a longer time to
generate.

FZ_RNDR_ATTR_USE_SHAD_PROJ_OPTS

If the renderer returns TRUE to this question, the standard Smooth Shading options tab in the
Project Rendering Options dialog will be offered. The renderer is expected to use these settings
when creating smooth shaded images in a pixel based rendering. The smooth shading settings of
a project can be acquired with the API call fz_proj_rndr_opts_sshd_get.

FZ_RNDR_ATTR_USE_GEOM_PROJ_OPTS

If the renderer returns TRUE to this question, the standard Geometry options tab in the Project
Rendering Options dialog will be offered. The renderer is expected to use these settings when
rendering parametric and smooth objects using the high level surfaces of the smooth and
parametric objets. FALSE should be returned, if the facets of smooth objects are always used to
render the scene. The geometry settings of a project can be acquired with the API call
fz_proj_rndr_opts_geom_get.

FZ_RNDR_ATTR_USE_TCTL_PROJ_OPTS

If the renderer returns TRUE to this question, the standard Texture Map Control options tab in the
Project Rendering Options dialog will be offered. The renderer is expected to use these settings
when rendering textures. The renderer should use the global texture map copntrol settings for
objects which do not have a texture map control attribute. FALSE should be returned, if the

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 275

renderer does not deal with textures. The texture map control settings of a project can be
acquired with the API call fz_proj_rndr_opts_tctl_get.

FZ_RNDR_ATTR_HANDLE_PIXBUFF

Under certain circumstances, a rendering is not intended to be displayed on the screen but needs
to be stored in a pixel buffer. Form•Z will automatically handle this if the renderer is a static pixel
renderer or uses the fzrt drawing commands. In this case, FALSE should be answered to this
question. However, if the renderer does not use standard drawing command, but uses hardware
assistance, it must fill in the pixel buffer and must answer TRUE to this question. Pixel buffer
related API functions can be found in the fzrt (form•Z runtime) function set.

FZ_RNDR_ATTR_HANDLE_PANORAMIC

This should only be answered TRUE if panoramic views are supported (the
fz_rndr_cbak_handle_view callback must return TRUE for FZ_VIEW_TYPE_PANORAMIC) and
the renderer is a vector or polygon renderer. In this case, drawing of panoramic images is solely
the responsibility of the renderer. If panoramic views are supported, but FALSE is answererd to
this question, form•Z will handle the drawing of the panorama for the renderer. This is also
automatically the case, if the renderer is a static pixel renderer. This is done by asking the
renderer to create a set of narrow perspectives, which are turned 90 degrees. The width of these
strips is the Smoothness parameter of the panoramic view type.

FZ_RNDR_ATTR_IS_BACKGROUND

This should be answered TRUE, if the renderer calculates the image in a separate background
process. See the section titled "Background renderers" at the end of this chapter for more details.

FZ_RNDR_ATTR_USES_TMAPS

This should be answered TRUE, if the renderer is using the texture maps of a surface style. For
example, if a surface style has the Color Image Map shader and the renderer uses this texture
map when rendering a surface, TRUE should be returned. Note, that not all possible texture maps
of a surface style need to be supported (such as bump, ambient, diffuse etc). However, at least
color and transparency maps should when answering TRUE.

fzrt_boolean my_rndr_attr (
 long windex,
 fz_rndr_attr_enum rndr_attr
)
{
 fzrt_boolean rv = FALSE;

 switch (rndr_attr)
 {
 case FZ_RNDR_ATTR_STAY_IN_IACT_MODE :
 case FZ_RNDR_ATTR_USE_PARTIAL_IMAGE :
 case FZ_RNDR_ATTR_USE_SAVE_IMAGE :
 case FZ_RNDR_ATTR_USE_TCTL_PROJ_OPTS :
 rv = TRUE;
 break;
 }

 return(rv);
}

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 276

The display attribute function (optional)

fzrt_boolean fz_rndr_cbak_disp_attr (
 long windex,
 fz_rndr_disp_attr_enum rndr_disp_attr
);

The display attribute function is similar to the attribute callback function.
It is intended to tell form•Z which standard graphics are drawn by the renderer. The function
receives a question in form of an enum, and the function needs to return TRUE or FALSE as an
answer to that question. Based on the answer, form•Z will enable or disable the respective item
in the Windows menu. It is still the responsibility of the renderer to draw the actual graphics, such
as the grid. form•Z provides API functions to perform this task. If this function is not implemented,
the answer is assumed to be FALSE.

FZ_RNDR_DISP_ATTR_GRID

If the renderer chooses to display the grid in the background, it should return TRUE.

FZ_RNDR_DISP_ATTR_AXIS

If the renderer chooses to display the world and reference plane axes in the background, it should
return TRUE.

FZ_RNDR_DISP_ATTR_ULAY

If the renderer chooses to display the underlay image, if it exists, in the background, it should
return TRUE.

FZ_RNDR_DISP_ATTR_LITE

If the renderer chooses to display the Wire Frame graphics of lights it should return TRUE.

FZ_RNDR_DISP_ATTR_MARQUEE

If the renderer chooses to display the axis markers it should return TRUE.

fzrt_boolean my_rndr_disp_attr (
 long windex,
 fz_rndr_disp_attr_enum rndr_disp_attr
)

fzrt_boolean rv = FALSE;

 switch (rndr_disp_attr)
 {
 case FZ_RNDR_DISP_ATTR_GRID :
 case FZ_RNDR_DISP_ATTR_AXIS :
 rv = TRUE;
 break;
 }

 return(rv);
}

The handle view function (required)

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 277

fzrt_boolean fz_rndr_cbak_handle_view (
 long windex,
 fz_view_ptr view
);

This function needs to tell form•Z, whether the renderer can handle a particular view type. The
window for the current rendering and the view are passed in. The function should use the view
API functions to retrieve the necessary parameters of the view to determine, whether is can
faithfully display the geometry in the scene with the view's settings. For example, a renderer may
be able to display in a standard perspective, but when the Keep Vertical Lines Straight option is
selected, the renderer may not be able to handle the view. In this case the function should return
TRUE, if the option is off and FALSE if it is on. Other, more exotic view types such as panoramic,
may not be handled at all, in which case FALSE will be returned for all views of that type. The
sample function below shows how to properly tell form•Z that straight up perspectives and
panoramic views are not handled.

fzrt_boolean my_rndr_handle_view (
 long windex,
 fz_view_ptr view
)
{
 fz_type_td data;
 fz_view_type_enum view_type;
 fzrt_boolean persp_straight, rv = TRUE;

 fz_view_get_parm_data(windex, view, FZ_VIEW_PARM_TYPE,&data);
 fz_type_get_enum(&data,&view_type);
 if (view_type == FZ_VIEW_TYPE_PANORAMIC)
 {
 rv = FALSE;
 }
 else if (view_type == FZ_VIEW_TYPE_PERSPECTIVE)
 {
 fz_view_get_parm_data(windex,view,
 FZ_VIEW_PARM_PERSPECTIVE_STRAIGHT,&data);
 fz_type_get_boolean(&data,&persp_straight);
 if (persp_straight == TRUE) rv = FALSE;
 }
 return(rv);
}

The activate function (optional)

fzrt_error_td fz_rndr_cbak_activate (
 long windex
);

The activate function is called by form•Z, when the rendering mode is switched from another
mode to the rendering mode defined by this plugin. It gives the renderer the opportunity to
perform operations which need to be executed once, when a renderer is selected and before the
rendering is executed.

fzrt_error_td my_rndr_activate (
 long windex
)
{
 fzrt_error_td rv = FZRT_NOERR;

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 278

 /* ACTIVATION CODE GOES HERE */
 ...

 return(rv);
}

The deactivate function (optional)

fzrt_error_td fz_rndr_cbak_deactivate (
 long windex
);

The deactivate function is called by form•Z, when the rendering mode is switched from the
rendering mode defined by this plugin to another mode. It gives the renderer the opportunity to
perform operations which need to be executed once, when a renderer is deselected.

fzrt_error_td my_rndr_deactivate (
 long windex
)
{
 fzrt_error_td rv = FZRT_NOERR;

 /* DEACTIVATION CODE GOES HERE */
 ...

 return(rv);
}

Project level functions

The project data init function (required, if project data exists)

fzrt_error_td fz_rndr_cbak_proj_data_init (
 long windex,
 fzrt_ptr proj_data
);

The project data init function needs to be implemented, if the info function returns a size other
than 0 for the project data size argument (see above). It is called once, when a new project is
created. form•Z will allocate a data block of the given size. The project data init function is then
called with the pointer to the data and is expected to initialize the data. The project data block is
intended to store any runtime data a renderer may need on a per project basis. For example, a
renderer may need to create a copy of the geometry to be rendered. This would be stored in the
project data.

fzrt_error_td my_rndr_proj_data_init(
 long windex,
 fzrt_ptr proj_data
)
{
 my_proj_data_td *my_proj_data;

 my_proj_data = (my_proj_data_td*) proj_data;

 /* PROJECT INIT CODE GOES HERE. FOR EXAMPLE */
 /* A HYPOTHETICAL POLYGON ARRAY */
 my_proj_data->num_polys = 0;
 my_proj_data->polys = NULL;
 ...

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 279

 return (FZRT_NOERR);
}

The project data finit function (recommended, if project data exists)

fzrt_error_td fz_rndr_cbak_proj_data_finit (
 long windex,
 fzrt_ptr proj_data
);

The project data finit function is complementary to the project data init function. If implemented, it
is called when a project is closed. It gives the renderer the opportunity to finit any dynamic data
that was created since the project was opened. If the info function returned 0 for the project data
size, this function does not need to be implemented.

fzrt_error_td my_rndr_proj_data_finit (
 long windex,
 fzrt_ptr proj_data
)
{
 my_proj_data_td *my_proj_data;

 my_proj_data = (my_proj_data_td*) proj_data;

 /* PROJECT FINIT CODE GOES HERE. FOR EXAMPLE */
 /* A HYPOTHETICAL POLYGON ARRAY */
 if (my_proj_data->polys != NULL)
 {

 ...
 }

 return (FZRT_NOERR);
}

The clear memory function (required, if memory is allocated)

fzrt_error_td fz_rndr_cbak_proj_clear_mem (
 long windex
);

This function is called, when the user selects the Clear Rendering Memory item in the Display
menu. It is expected to reset all memory that was allocated for the renderer since the creation of
the project. As renderers tend to allocate and store large amounts of data, the Clear Rendering
Memory command is intended to give memory back to the user for modeling operations. The
clear memory function should leave the dynamic data of a renderer in the same state, as when a
project is first created.

fzrt_error_td my_rndr_proj_clear_mem (
 long windex
)
{
 my_proj_data_td *my_proj_data;

 fz_rndr_proj_data_get(windex,my_rndr_indx,(fzrt_ptr*)&my_proj_data);

 /* CLEAR MEMORY CODE GOES HERE. FOR EXAMPLE */

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 280

 /* A HYPOTHETICAL POLYGON ARRAY */
 if (my_proj_data->polys != NULL)
 {
 .../* deallocate */
 }
 my_proj_data->polys = NULL;

my_proj_data->num_polys = 0;
 ...

 return (FZRT_NOERR);
}

Window level functions

The window data init function (required, if window data exists)

fzrt_error_td fz_rndr_cbak_wind_data_init (
 long windex,
 fzrt_ptr wind_data
);

The window data init function needs to be implemented, if the info function returns a size other
than 0 for the window data size argument (see above). It is called once, when a new window is
created. form•Z will allocate a data block of the given size. The window data init function is then
called with the pointer to the data and is expected to initialize the data. The window data block is
intended to store any runtime data a renderer may need on a per window basis. For example, a
renderer may need to keep track whether the last image rendered is still valid or whether any
changes made by the user in the meantime have made the image out of date. Such a marker
would be stored in the window data.

fzrt_error_td my_rndr_wind_data_init(
 long windex,
 fzrt_ptr wind_data
)
{
 my_wind_data_td *my_wind_data;

 my_wind_data = (my_wind_data_td *) wind_data;

 /* SET THE IMAGE DIRTY MARKER TO TRUE, SINCE */

/* NO IMAGE HAD BEED RENDERED YET */
 my_wind_data->image_dirty = TRUE;

 ...

 return (FZRT_NOERR);
}

The window data finit function (recommended, if window data exists)

fzrt_error_td fz_rndr_cbak_wind_data_finit (
 long windex,
 fzrt_ptr wind_data
);

The window data finit function is complementary to the window data init function. If implemented,
it is called when a window is closed. It gives the renderer the opportunity to finit any dynamic data
that was created since the window was opened. If the info function returned 0 for the window data
size, this function does not need to be implemented.

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 281

fzrt_error_td my_rndr_wind_data_finit (
 long windex,
 fzrt_ptr wind_data
)
{
 my_wind_data_td *my_wind_data;

 my_wind_data = (my_wind_data_td*) wind_data;

 /* WINDOW FINIT CODE GOES HERE. */
 ...

 return (FZRT_NOERR);
}

The window options init function (required, if window options exist)

fzrt_error_td fz_rndr_cbak_wind_opts_init (
 long windex,
 fzrt_ptr wind_opts
);

The window options init function needs to be implemented, if the info function returns a size other
than 0 for the window options size argument. It is called once, when a new window is created.
form•Z will allocate a data block of the given size. The window options init function is then called
with the pointer to the data and is expected to initialize the data. The window options block is
intended to store the options a renderer will expose to the user. For example, a vector renderer
may offer a line width parameter.

fzrt_error_td my_rndr_cbak_wind_init (
 long windex,
 fzrt_ptr wind_opts
)
{
 my_wind_opts_td *my_wind_opts;

 my_wind_opts = (my_wind_opts_td *) wind_opts;

 /* WINDOW OPTIONS INIT CODE GOES HERE. FOR EXAMPLE */
 /* A LINE THICKNESS PARAMETER */
 my_wind_opts->line_width = 1;

 ...

 return(FZRT_NOERR);
}

The window options default function (required, if window options exist)

fzrt_error_td fz_rndr_cbak_wind_opts_default (
 long windex,
 fzrt_ptr wind_opts
);

The window options default function needs to be implemented, if the info function returns a size
other than 0 for the window options size argument. It is invoked, whenever default values need to
be set for the window options of a renderer. The window options defaults function is called with

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 282

the pointer to the window options data and is expected to set the data to default values. This
function may, in essence, be the same as the window options init function. The difference is that
the init function is called only once, when the window is created, whereas the defaults function
may be called multiple times.

The window options io function (required, if window options exist)

fzrt_error_td fz_rndr_cbak_wind_opts_io(
 long windex,

fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 fzrt_ptr data
);

The window options io function needs to be implemented, if the info function returns a size other
than 0 for the window options size argument. It is called, whenever the options are written to or
read from a file. It is expected from the plugin to keep track of version changes. When writing, the
function needs to return a version number back to form•Z. When reading, the version of the
window options data when written will be passed into this function by form•Z. When the options
are changed by a plugin, the version number should be increased. Thus, when reading older
versions, they can be handled accordingly.

fzrt_error_td my_rndr_wind_opts_io(
 long windex,

fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 fzrt_ptr data

)
{
 my_wind_opts_td *my_wind_opts;
 fzrt_error_td rv = FZRT_NOERR;

 my_wind_opts = (my_wind_opts_td *) wind_opts;

if (dir == FZ_IOST_WRITE) *version = 1;

 rv = fz_iost_long(iost,&wind_opts->line_width,1);
 ...

 return(rv);
}

The window options copy function (required, if dynamic data is allocated in the window
options)

fzrt_error_td fz_rndr_cbak_wind_opts_copy(
 long src_windex,
 fzrt_ptr src_opts_data,
 long dst_windex,
 fzrt_ptr dst_opts_data
);

The window options copy function allows a renderer to copy any dynamic data that may be
contained in the window options. If this function is not implemented and the window options are
copied, form•Z performs a byte by byte copy of the data. This will work well, as long as there are
no dynamically allocated arrays in the window options. If this is the case, the copy function must
be implemented and must copy the arrays from the source to the destination storage.

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 283

fzrt_error_td my_rndr_wind_opts_copy(
 long src_windex,
 fzrt_ptr src_opts_data,
 long dst_windex,
 fzrt_ptr dst_opts_data
)
{
 my_wind_opts_td *src_wind_opts,*dst_wind_opts;
 fzrt_error_td rv = FZRT_NOERR;

src_wind_opts = (my_wind_opts_td*) src_opts_data;
dst_wind_opts = (my_wind_opts_td*) dst_opts_data;

 if (src_wind_opts->array != NULL)

{
 if((dst_wind_opts->array = (long*)fzrt_mem_zone_alloc(

plugin_zone_ptr,
sizeof(long) * src_wind_opts->n_array,
FALSE)) != NULL)

 {

 fzrt_block_move(src_wind_opts->array,

 dst_wind_opts->array,
 sizeof(long) * src_wind_opts->n_array);

 }
else
{

 err = fzrt_error_set (
FZ_MALLOC_ERROR,
FZRT_ERROR_SEVERITY_ERROR,
FZRT_ERROR_CONTEXT_APP, 0);

}
 }

else
{
 dst_wind_opts->array = NULL;
}

 dst_wind_opts->n_array = src_wind_opts->n_array;

 /* COPY REMAINING FIELDS */

...

return(err);

}

The window options compare function (required, if dynamic data is allocated in the window
options)

fzrt_boolean fz_rndr_cbak_wind_opts_are_equal(
 fzrt_ptr wind_opts_data1,
 fzrt_ptr wind_opts_data2
);

The window options compare function needs to be implemented if the window options contain
dynamically allocated data. It is expected to tell form•Z, whether two sets of options are the
same. If this function is not implemented, form•Z performs a byte by byte comparison of the
options.

fzrt_boolean my_rndr_wind_opts_are_equal(

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 284

 fzrt_ptr wind_opts_data1,
 fzrt_ptr wind_opts_data2
)
{
 my_rndr_wind_opts_td *my_wind_opts1,*my_wind_opts2;
 fzrt_boolean are_equal;

 are_equal = TRUE;

my_wind_opts1 = (my_rndr_wind_opts_td*) wind_opts_data1;
my_wind_opts2 = (my_rndr_wind_opts_td*) wind_opts_data2;

/* COMPARE ARRAY SIZE */
if (my_wind_opts1->n_array == my_wind_opts2->n_array)
{

/* COMPARE ARRAY CONTENT */
 for(i = 0; i < my_wind_opts1->n_array; i++)
 {
 if (my_wind_opts1[i] != my_wind_opts2->array[i]) break;

}

if (i < my_wind_opts1->n_array)
{

are_equal = FALSE;
}
else
{ /* COMPARE REMAINING FIELDS */
 ...
}

}
else
{ are_equal = FALSE;
}

return(are_equal);

}

The window options finit function (required, if dynamic data is allocated in the window options)

fzrt_error_td fz_rndr_cbak_wind_opts_finit (
 long windex,
 fzrt_ptr wind_opts
);

The window options finit function needs to be implemented, if the info function returns a size other
than 0 for the window options size argument (see above) and if dynamic data exists in the
window options. It is called once, when a window is closed. The window options finit function is
then called with the pointer to the data and is expected to free any dynamic data.

fzrt_error_td my_rndr_cbak_wind_finit (
 long windex,
 fzrt_ptr wind_opts
)
{
 my_wind_opts_td *my_wind_opts;

 my_wind_opts = (my_wind_opts_td *) wind_opts;

 /* WINDOW OPTIONS FINIT CODE GOES HERE. FOR EXAMPLE */
 /* A DYNAMIC ARRAY */
 if (my_wind_opts->array != NULL)
 {

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 285

 fzrt_mem_zone_free(plugin_zone_ptr, &my_wind_opts->array);
 }

 ...

 return(FZRT_NOERR);
}

Image related functions

The image init function (optional)

fzrt_error_td fz_rndr_cbak_image_init (
 long windex
);

This function is called by form•Z right before an image is about to be rendered. It gives the plugin
the opportunity to perform the setup of image related data. For example, if the renderer needs to
make a copy of the geometry to be rendered, it should be done in the image init function. The
image init function is also allowed to bring up a progress bar to, for example, inform the user of
the progress of creating the rendering data. The actual image display function (see below) which
is called right after the image init function, is not allowd to show the progress bar or any dialogs,
which obscure the image, while it is generated. If any errors occurred during the image init phase,
the function should return an error code to form•Z.

fzrt_error_td my_rndr_image_init (
 long windex
)
{
 my_wind_opts_td *my_wind_opts;
 fzrt_error_td err = FZRT_NOERR;

 /* GET THE RENDERER'S WINDOW OPTIONS */
 fz_rndr_wind_opts_get(windex,my_rndr_indx,(fzrt_ptr*)&my_wind_opts);

 /* IMAGE SETUP CODE GOES HERE */
 ...

 return(err);
}

The image display function (required)

fzrt_error_td fz_rndr_cbak_image_disp (
 long windex,
 fzrt_error_td prep_err,
 fzrt_rect *sub_image
);

The image display function is the main function of a renderer. It is called by form•Z anytime the
rendering on the screen needs to be refreshed. It is always called after the image init function
(see above) and before the image finit function (see below). The sub_image argument is only
passed as non NULL for static pixel renderers. If passed as NULL, the renderer is expexted to
render the entire image. If it is non NULL, the sub_image rectangle outlines a rectangular portion
of the image to be rendered. It is the resposibility of the renderer to not pass more than

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 286

(sub_image->bottom - sub_image->top) number of scanlines to
fz_rndr_ibuf_add_scanline and to make sure that each scanline is exactly (sub_image-
>right - sub_image->left) pixels wide. The sub_image rectangle is, for example, passed
in if the Set Image Size option is checked by the user, or if the renderer is used by the network
rendering environment and is asked to render one or more bands of an image.

If the image init function generated an error, it is passed into the display function. This gives the
display function the opportunity to perform any necessary cleanup because of the error. The
display function is expected to NOT render the image, if an error is passed in.

fzrt_error_td my_rndr_image_disp (
 long windex,
 fzrt_error_td prep_err,
 fzrt_rect *sub_image
)
{
 my_wind_data_td *my_wind_data;
 fzrt_error_td err = FZRT_NOERR;

 if (prep_err == FZRT_NOERR)
 {
 /* RENDER THE IMAGE */
 ...
 }
 else
 {
 /* PERFORM ANY CLEANUP DUTIES HERE */
 ...
 }

return(err);
}

Note that the image display function is not allowed to post any dialogs, error message or progress
bars. This should all be done in the image init or in the image finit function.

The image finit function (optional)

fzrt_error_td fz_rndr_cbak_image_finit (
 long windex
);

This function is called by form•Z right after the image display function. If implemented, it should
perform cleanup duties, which need to be done after the image display has been completed.

fzrt_error_td my_rndr_image_finit (
 long windex
)
{
 fzrt_error_td err = FZRT_NOERR;

 /* IMAGE CLEANUP CODE GOES HERE */
 ...

 return(err);
}

The image inval function (optional)

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 287

fzrt_error_td fz_rndr_cbak_image_inval(
 long windex,
 fzrt_rect *rect,
 fzrt_rgn_ptr rgn
);

The inval function is called when an area on the screen becomes invalid (i.e. needs to be redrawn
because the graphics in that area are no longer uptodate). A renderer may need to know when
this happens, in which case this function should be implemented. The invalidated area could
either be a rectangle or an arbitrary shape. If the rect argument is not NULL, the area is a
rectangle. Otherwise the rgn argument will be non NULL and the area is an arbitrary region.

fzrt_error_td fz_rndr_cbak_image_inval(
 long windex,
 fzrt_rect *rect,
 fzrt_rgn_ptr rgn
)
{
 fzrt_error_td rv = FZRT_NOERR;

 /* HANDLE THE INVAL HERE */
 ...

 return(rv);
}

The image dirty function (recommended)

fzrt_boolean fz_rndr_cbak_image_dirty(
 long windex
);

form•Z calls this function to find out, whether any changes made by the user since the image was
rendered last have made the image invalid. This function is especially useful, when the renderer
is a static pixel renderer. As long as the image is valid and the screen needs to be redrawn
form•Z will automatically draw the image buffer, instead of asking the renderer to re-render the
scene. In order to accomplish this, the renderer needs to tell form•Z that nothing has occurred in
the meantime that would invalidate the image. The recommended mechanism for this is for the
renderer to install a notification function set. In this function set, the three callback functions
fz_notf_cbak_proj, fz_notf_cbak_wind and fz_notf_cbak_objt should be defined.
The fz_notf_cbak_wind function, for example, is called each time an aspect of the window in
which a rendering takes place changes. What kind of change occurred is identified by an enum
argument to the function. The renderer's window notification callback should then set a "dirty"
marker in its window data block. When the fz_rndr_cbak_image_dirty function is invoked
by form•Z, the renderer then passes back the value of the dirty marker. An example of a
notification and image dirty mechanism is shown below.

In the plugin's registration function, a notification function set is registered:

err = fzpl_glue->fzpl_plugin_add_fset(
my_rndr_plugin_runtime_id,

 FZ_NOTF_CBAK_FSET_TYPE,
 FZ_NOTF_CBAK_FSET_VERSION,
 FZ_NOTF_CBAK_FSET_NAME,
 FZPL_TYPE_STRING(fz_notf_cbak_fset),
 sizeof(fz_notf_cbak_fset),
 my_rndr_fill_notf_fset,
 FALSE);

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 288

The fill function assigns the three relevant notification callbacks (more may need to be assigned,
depending on the complexity of the renderer).

fzrt_error_td my_rndr_fill_notf_fset(

const fzpl_fset_def_ptr fset_def,
fzpl_fset_td* const fset)

{
 fzrt_error_td err = FZRT_NOERR;
 fz_notf_cbak_fset* notf_fset;

 err = fzpl_glue->fzpl_fset_def_check(

fset_def,
FZ_NOTF_CBAK_FSET_VERSION,

FZPL_TYPE_STRING(fz_notf_cbak_fset),

 sizeof(fz_notf_cbak_fset),
 FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 notf_fset = (fz_notf_cbak_fset*)fset;

 notf_fset->fz_notf_cbak_proj = my_rndr_notf_proj;
 notf_fset->fz_notf_cbak_wind = my_rndr_notf_wind;
 notf_fset->fz_notf_cbak_objt = my_rndr_notf_objt;
 }

 return err;
}

The three notification callbacks are implemented as follows:

fzrt_error_td my_rndr_notf_wind(
 long windex,
 fz_notf_wind_enum wind_notf,
 fz_notf_proj_enum proj_notf
)
{
 my_rndr_wind_data_td_ptr wind_data;

 fz_rndr_wind_data_get(windex, mt_rndr_index,(fzrt_ptr*)&wind_data);

 switch (wind_notf)
 {
 // THESE ACTIONS MAY THE IMAGE DIRTY
 case FZ_NOTF_WIND_DIRTY:

case FZ_NOTF_WIND_RESIZE:
case FZ_NOTF_WIND_ISPEC:

 case FZ_NOTF_WIND_VIEW:
 case FZ_NOTF_WIND_OPTS:
 wind_data->dirty = TRUE;
 break;

 // WINDOW IS DIRTY BECAUSE THE PROJECT BECAME DIRTY
 case FZ_NOTF_WIND_PROJ:

my_rndr_notf_proj(windex,proj_notf);
break;

 }

 return FZRT_NOERR;
}

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 289

fzrt_error_td my_rndr_notf_proj(
 long windex,
 fz_notf_proj_enum proj_notf
)
{
 my_rndr_wind_data_td_ptr wind_data;

 fz_rndr_wind_data_get(windex,my_rndr_index,(fzrt_ptr*)&wind_data);

 switch(proj_notf)
 {
 case FZ_NOTF_PROJ_DIRTY:
 case FZ_NOTF_PROJ_LIGHTS:
 case FZ_NOTF_PROJ_CAMERA:
 case FZ_NOTF_PROJ_COLORS:
 case FZ_NOTF_PROJ_SURF:
 default:
 wind_data->dirty = TRUE;
 break;
 }

 return FZRT_NOERR;
}

fzrt_error_td my_rndr_notf_objt(
 long windex,
 fz_notf_objt_enum objt_notf,
 fz_objt_ptr objt
)
{
 my_rndr_wind_data_td_ptr wind_data;

 fz_rndr_wind_data_get(windex,my_rndr_index,(fzrt_ptr*)&wind_data);

 if (objt_notf != FZ_NOTF_OBJT_NONE)
 {
 wind_data->dirty = TRUE;
 }

 return FZRT_NOERR;
}

And finally, the image dirty callback function simply returns the dirty marker. Note that the image
display function, after sucessfully rendering the scene, needs to set the dirty marker to FALSE.

fzrt_boolean my_rndr_image_dirty(long windex)
{
 my_rndr_wind_data_td_ptr wind_data;

 fz_rndr_wind_data_get(windex,my_rndr_index,(fzrt_ptr*)&wind_data);

 return (wind_data->dirty);
}

fzrt_error_td my_rndr_image_disp (
 long windex,
 fzrt_error_td prep_err,
 fzrt_rect *sub_image
)
{
 my_wind_data_td *wind_data;
 fzrt_error_td err = FZRT_NOERR;

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 290

 fz_rndr_wind_data_get(windex,my_rndr_index,(fzrt_ptr*)&wind_data);

if (prep_err == FZRT_NOERR)
 {
 /* RENDER THE IMAGE */
 ...
 if (err == FZRT_NOERR)
 { wind_data->dirty = FALSE;
 }
 }

return(err);
}

The 2d vector/polygon export function (recommended, if the renderer is vector or polygonal.
Not used for pixel based renderers).

fzrt_error_td fz_rndr_cbak_expt_vect_out(
 long windex,
 char *prg_str,
 char *fname,
 fzrt_boolean do_back,
 fz_expt_vect_ptr expt_vect

);

This function is called only for vector and polygon based renderers. It is called when the user
exports the rendered image to a 2d image file that supports vector graphics, such as Adobe
Illustrator or HPGL. The function needs to call the expt_vect API functions, which are equivalent
to drawing the image on the screen. These functions usually take the expt_vect argument passed
into this function as an argument as well. If this function is not implemented, the rendered image
cannot be exported to those image file formats.

fzrt_error_td my_rndr_expt_vect_out(
 long windex,
 char *prg_str,
 char *fname,
 fzrt_boolean do_back,
 fz_expt_vect_ptr expt_vect

)
{
 fzrt_error_td err = FZRT_NOERR;

 /* IMAGE EXPORT CODE GOES HERE */
 ...

 return(err);
}

The 2d export check feature function (recommended, if the renderer is vector or polygonal. Not
used for pixel based renderers).

fzrt_error_td fz_rndr_cbak_expt_vect_check_feature (

long windex,
fz_rndr_expt_vect_feature_enum rndr_expt_vect_feature,
fzrt_boolean *check
);

This function is called only for vector and polygon based renderers. It is called when the user
exports the rendered image to a 2d image file that supports vector graphics, such as Adobe
Illustrator or HPGL. Different file format types support different features of data that can be

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 291

exported, and so this function informs form•Z which features this exporter is exporting. The
different features that form•Z cares about exporting are contained in the enum
fz_rndr_expt_vect_feature_enum.

fzrt_error_td my_expt_check_feature(

long windex,
fz_rndr_expt_vect_feature_enum rndr_expt_vect_feature,
fzrt_boolean *check
)

{
 if(check != NULL)
 {
 switch(rndr_expt_vect_feature)
 {
 case FZ_RNDR_EXPT_VECT_FEATURE_EXPT_LAYER:
 case FZ_RNDR_EXPT_VECT_FEATURE_EXPT_OBJ:
 case FZ_RNDR_EXPT_VECT_FEATURE_EXPT_FACE:
 case FZ_RNDR_EXPT_VECT_FEATURE_EXPT_COLOR:
 *check = TRUE;

 break;

 case FZ_RNDR_EXPT_VECT_FEATURE_EXPT_FILL_POLY:
 *check = FALSE;
 break;
 }
 }
 return(FZRT_NOERR);

}

The dialog template function (recommended, if the renderer has window options).

fzrt_error_td fz_rndr_cbak_iface_tmpl (
 long windex,
 fz_fuim_tmpl_ptr tmpl_mngr,
 fzrt_ptr wind_opts
);

form•Z calls this function to create a dialog template to display the window options of the
renderer. This can be done using the functions in the fz_fuim_fset function set defined in
"fz_fuim_API.h".

fzrt_error_td my_rndr_iface_tmpl (
 long windex,
 fz_fuim_tmpl_ptr tmpl_mngr,
 fzrt_ptr wind_opts
)
{
 fzrt_error_td err = FZRT_NOERR;

 /* TEMPLATE SETUP CODE GOES HERE */

 return(err);
}

The options get parameter function (recommended, if the renderer has window options which
will be accessed via other extensions).

fzrt_error_td fz_rndr_cbak_get_parm (
 long windex,

long parm_indx,
fz_type_td *data

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 292

);

Other extensions call this function to get the parameter options that this renderer chooses to
expose for potential interaction. form•Z does not call this function. A plugin developer would
expose the range of possible indices for the parm_indx parameter, the types they correspond
to, the possible range of values, and the default values of the data they represent. The
fz_type_set_ functions are used to pass the data values from the plugin’s representation to
the generic variable data of type fz_type_td, so that whoever calls this function can retrieve
the value of the parameter index they specify.

fzrt_error_td my_rndr_get_parm (
 long windex,

long parm_indx,
fz_type_td *data

)
{
 fzrt_error_td err = FZRT_NOERR;
 my_opts_td* my_opts;

 err = fz_rndr_wind_opts_get(windex, MY_PLUGIN_UUID, (fzrt_ptr*)&my_opts);

 if (err == FZRT_NOERR &&

data != NULL && parm_indx >= MY_PARM_1 && parm_indx < MY_PARM_MAX)
 {
 switch(parm_indx)
 {
 case MY_PARM_1:
 fz_type_set_boolean(&my_opts->parm1, data);
 break;
 case MY_PARM_2:
 fz_type_set_double(&my_opts->parm2, data);
 break;
 case MY_PARM_3:
 fz_type_set_boolean(&my_opts->parm3, data);
 break;
 ...
 }
 }
 else
 {
 err = _base_funcs.fzrt_error_set(FZRT_BAD_PARAM_ERROR,

 FZRT_ERROR_SEVERITY_ERROR, FZRT_ERROR_CONTEXT_FZRT, 0);
 }
 return err;
}

The options set parameter function (recommended, if the renderer has window options which
will be accessed via other extensions).

fzrt_error_td fz_rndr_cbak_set_parm (
 long windex,

long parm_indx,
fz_type_td *data

);

Other extensions call this function to set the parameter options that this renderer chooses to
expose for potential interaction. form•Z does not call this function. A plugin developer would
expose the range of possible indices for the parm_indx parameter, the types they correspond
to, the possible range of values, and the default values of the data they represent. The
fz_type_get_ functions are used to pass the data values from the generic variable data of

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 293

type fz_type_td to the plugin’s representation, so that whoever calls this function can set the
value of the parameter index they specify. Note that when allowing someone to set a parameter,
it is up to the plugin to enforce any range constraints of the variables (see in the example that
follows).

fzrt_error_td my_rndr_set_parm (
 long windex,

long parm_indx,
fz_type_td *data

)
{
 fzrt_error_td err = FZRT_NOERR;
 my_opts_td* my_opts;
 double tmp_double;

 err = fz_rndr_wind_opts_get(windex, MY_PLUGIN_UUID, (fzrt_ptr*)&my_opts);

 if (err == FZRT_NOERR &&

data != NULL && parm_indx >= MY_PARM_1 && parm_indx < MY_PARM_MAX)
 {
 switch(parm_indx)
 {
 case MY_PARM_1:
 fz_type_get_boolean(data, &my_opts->parm1);
 break;
 case MY_PARM_2:
 fz_type_get_double(data, &tmp_double);
 if (tmp_double >= MY_PARM_2_MIN_VALUE &&
 tmp_double <= MY_PARM_2_MAX_VALUE)

{
my_opts->parm2 = tmp_double;

 }
 else
 .../* set error */
 break;
 case MY_PARM_3:
 fz_type_get_boolean(data, &my_opts->parm3);
 break;
 ...
 }
 }
 else
 {
 err = _base_funcs.fzrt_error_set(FZRT_BAD_PARAM_ERROR,

 FZRT_ERROR_SEVERITY_ERROR, FZRT_ERROR_CONTEXT_FZRT, 0);
 }
 return err;

}

Background renderers

It is possible, that a plugin renderer is set up, so that the actual rendering calculation occurs in a
background process. In that case, a user may select the rendering mode, but can keep on
working on the scene without having to wait until the rendering is completed. For a plugin to
function as a background renderer only two actions need to be taken. First, the
fz_rndr_cbak_attr callback function must return TRUE for the
FZ_RNDR_ATTR_IS_BACKGROUND question. Second, the plugin may optionally implement the
fz_rndr_cbak_notify_user callback (see below). It gives the plugin the chance to notify a
user, that a previously started rendering is now complete. The plugin may post a dialog to let the

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 294

user know, or may even display the image by using the fz_file_display_in_viewer() api
function. It is important, that this callback function does not spend a lot of time determining that a
rendering is complete. It is called quite frequently in the main event loop and would slow form•Z
down significantly if it does not execute fast.

When the user selects a background renderer from the Display menu, first the
fz_rndr_cbak_image_init callback is invoked. The renderer may prepare any data
necessary for the rendering. This should not be done in a background process. Next, the
fz_rndr_cbak_image_disp is invoked. The renderer is expected to fire off the main rendering
in a background process and return back to form•Z immediately. Finally
fz_rndr_cbak_image_finit is invoked to allow the renderer to clean up. Note, that the active
rendering mode does not change to the renderer selected by the user. For example, if wireframe
is active when the user selects the background renderer, wireframe will remain the active
rendering mode.

The user notification function (optional)

void fz_rndr_cbak_notify_user(
 void
);

This function is invoked, if the plugin is a background renderer. It is called at regular intervals and
gives the plugin the chance to let the user know, that an image that was rendered in the
background is now complete. See the section titled "Background renderers" above.

Using form•Z API functions to support a plugin renderer

Surface styles

A vector renderer usually displays an object using the simple color representation of the surface
style assigned to the object. The rgb values of the color can be retrieved with the following API
function calls.

fz_objt_attr_get_objt_rmtl(windex, obj, TRUE,&rmtl_tag);
fz_rmtl_tag_to_ptr(windex,rmtl_tag,&rmtl);
fz_rmtl_get_parm(windex,rmtl,FZ_RMTL_PARM_SIMPLE_COLOR,&data);
fz_type_get_rgb_float(&data, &rgb);

The sample code above first retrieves the tag of the surface style (abbreviated rmtl for "render
material") assigned to the object. Then the tag is converted to a pointer. From the surface style
pointer, the simple color parameter is acquired.

A pixel renderer may need to use more than a simple color to render the object. For example the
rendere may want to use textures and patterns. Currently it is not possible for a plugin renderer to
use the shaders in a Surface Style for that purpose. They are exclusively reserved for the
RenderZone rendering command. A plugin renderer may however, extract generic material
properties from a surface style. For example, the surface style function set allows a plugin
renderer to extract the diffuse factor of a surface style's reflection shader with the API call
fz_rmtl_get_diffuse_factor. A plugin may also extract the color shader from the surface
style and then check whether the color shader uses a texture map. If this is the case, the plugin
renderer may acquire the texture map and use it for its one rendering display. This can be done
with the following API calls:

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 295

fz_rmtl_get_parm(windex,rmtl,FZ_RMTL_PARM_COL_SHADER,&data);
fz_type_get_ptr(&data, &shdr_ptr);
fz_shdr_get_parm_type(windex,shdr_ptr,1,&type);
if (type == FZ_TYPE_PTR)
{

fz_shdr_get_parm(windex,shdr_ptr,1,&data);
fz_type_get_ptr(&data, &tmap_ptr);

}

The call fz_rmtl_get_parm(windex,rmtl,FZ_RMTL_PARM_COL_SHADER,&data);
returns the color shader pointer of the surface style. From the color shader, the type of the
second parameter is retrieved with the API call fz_shdr_get_parm_type. If it is a generic
pointer (FZ_TYPE_PTR), the shader is a texture map based shader. This is a convention for all
shaders in form•Z. The actual texture map pointer is acquired with a call to
shdr_param_get_param. In the same manner, transparency and bump maps may be
retrieved from a surface style.

It is also possible for a plugin renderer to create its own surface style definitions. This must be
done using a second plugin, which creates a custom attribute (see section 2.8.1 for more details
about plugin attributes). The attribute should be setup in such a way that it is tagged as an object
and face level attribute. An additional tool command plugin may be added, which creates a tool
icon. When used, this tool should assign the custom surface style attribute to a selected object or
face. Finally, the custom surface style attributes can be displayed in a palette using a project level
palette plugin. It is up to the plugin developer to coordinate the different plugins to work in a
coherent fashion.

Lights

Information about the lights in the scene can be acquired using the fz_lite_fset function set.
It allows a rendering plugin the loop through all lights and extract the parameter of each lite. Using
these parameters, the plugin renderer can compute surface illumination. Note that shadow
calculation must be performed by the plugin renderer. The shadow type attribute of a light
(Mapped or Raytraced) is currently only applied to the Shaded Render and RenderZone
rendering modes. If possible, a pixel based plugin renderer should implement its own raytraced
and shadow map algorithms.

A sample loop which iterates through all lights in a project and extracts the light type is shown
below:

fz_lite_ptr lite_ptr;
fz_lite_get_next_light(windex,NULL,&lite_ptr);
while (lite_ptr != NULL)
{
 fz_lite_get_parm_common(windex,lite_ptr,FZ_LITE_PARM_TYPE,&data);

fz_type_get_enum(&data, &lite_type);

 ...

fz_lite_get_next_light(windex,lite_ptr,&lite_ptr);
}

Texture map controls and Decals

If a pixel based plugin renderer offers texture mapped surface rendering, the texture map control
attribute of an object should be taken into account. Attribute API functions supplied by form•Z can
be used to extract the parameters of texture map control that may have been assigned to an

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 296

object. The API functions can be found in the function set fz_model_attr_fset. If an object
does not have a texture map control attribute, the plugin renderer should use the global texture
map control, which is stored with the project rendering options. These settings can be retrieved
with the API function call fz_proj_rndr_opts_tctl_get. Likewise, object decals can be
extracted from an object with the respective attribute API call, which are also located in the
fz_model_attr_fset function set.

An example of how to extract the origin of the object level texture group of a texture map control
attribute assigned to an object is shown below.

fz_objt_attr_objt_has_tctl(windex,obj,&has_tcntl);
if (has_tcntl == TRUE)
{
 /* OBJECT HAS A TEXTURE MAP CONTROL ATTRIBUTE */
 fz_objt_attr_get_objt_tctl_parm(windex,obj,0,
 FZ_ATTR_TCTL_PARM_ORIGIN,&data);
 fz_type_get_xyz(&data, &origin);
 ...
}
else
{
 /* OBJECT DOES NOT HAVE A TEXTURE MAP CONTROL ATTRIBUTE */
 /* GET THE ORIGIN FROM THE PROJECT TCNTRL SETTINGS */
 ...
}

Geometry

Vector and polygon based renderers can extract the geometry of an object by traversing the
structure of the object. For example, the end points of the edges of a facetted object can be found
with the following loop:

fz_objt_get_segt_count(windex,obj,FZ_OBJT_MODEL_TYPE_FACT,&nsegt);
for(i = 0; i < nsegt; i++)
{

fz_objt_segt_get_reverse(windex,obj,i,FZ_OBJT_MODEL_TYPE_FACT,&rvrs);
fz_objt_segt_get_next(windex,obj,i,FZ_OBJT_MODEL_TYPE_FACT,&next);
if (i > rvrs && next ! -1)
{
 fz_objt_segt_get_start_pindx(windex,obj,i,FZ_OBJT_MODEL_TYPE_FACT,&pindx1);
 fz_objt_segt_get_end_pindx(windex,obj,i,FZ_OBJT_MODEL_TYPE_FACT,&pindx2);

 fz_objt_point_get_xyz(windex,obj,pindx1,FZ_OBJT_MODEL_TYPE_FACT,&xyz1);
 fz_objt_point_get_xyz(windex,obj,pindx2,FZ_OBJT_MODEL_TYPE_FACT,&xyz2);

 ...
}

}

Recall that in a solid object there are two segments for each edge (reversely coincident). By
getting the reverse segment index with fz_objt_segt_get_reverse, and only using the
segment whose index is larger, one can ensure that each edge is accessed only once. This
algorithm also works for segments that don't have a reverse segment (open edges of surfaces).
In addition, it is necessary to check that a segment is not the dummy end segment of an open
wire. In this case, the segment does not have an end point.

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 297

The sample loop above only accesses the edges of a facetted object. if a vector renderer wants
to draw the edges of smooth objects, a different loop needs to be constructed. The edges of
smooth object may be curved. In this case, sample points along a curved edge may need to be
extracted which represent the smooth edge. These points are already stored with the object and
are also used by the Wire Frame rendering mode. A loop for smooth objects is shown below.

fz_objt_get_segt_count(windex,obj,FZ_OBJT_MODEL_TYPE_SMOD,&nsegt);
for(i = 0; i < nsegt; i++)
{

fz_objt_segt_get_reverse(windex,obj,i,FZ_OBJT_MODEL_TYPE_SMOD,&rvrs);
fz_objt_segt_get_next(windex,obj,i,FZ_OBJT_MODEL_TYPE_SMOD,&next);
if (i > rvrs && next ! -1)
{
 fz_objt_segt_get_num_wire_pnts(windex,obj,i,&npnts);
 for(j = 0; j < npnts; j++)
 {
 fz_objt_segt_get_wire_pnt(windex,obj,i,j,&pt_xyz);
 ...
 }
}

}

The code above only works though if the object is a smooth object. It is up to the plugin to check
for the correct object model type.

A vector renderer may also draw iso lines across the faces of smooth objects, as it is done by the
Wire Frame rendering mode. Sample code which extracts the points of iso line edges of smooth
objects is shown below.

fz_objt_get_face_count(windex,obj,FZ_OBJT_MODEL_TYPE_SMOD,&nface);
for(i = 0; i < nface; i++)
{
 model_face_get_num_iso_lines(windex,obj,i,&niso);
 for(j = 0; j < niso; j++)
 {
 model_face_get_iso_pnt(windex,obj,i,j,&pt_xyz);
 ...
 }
}

Finally, a vector renderer may display the facetted faces of smooth objects different than the
faces of facetted objects. In this case, the renderer needs to loop through the smooth faces and
extract the facetted faces that belong to each smooth face. This is shon in the sample code
below:

fz_objt_get_face_count(windex,obj,FZ_OBJT_MODEL_TYPE_SMOD,&nface);

/* LOOP FOR ALL SMOOTH FACES OF AN OBJECT */
for(i = 0; i < nface; i++)
{
 fz_objt_face_smod_get_fact_faces(windex,obj,i,&fstart,&nface);

 for(j = fstart; j <= fstart + nface; j++)
 {
 fz_objt_face_get_cindx(windex,obj,j,FZ_OBJT_MODEL_TYPE_FACT,&cindx);
 chead = cindx;

 /* LOOP FOR ALL CURVES OF A FACE */
 do
 {

2.8.6 Renderer form•Z SDK (v6.0.0.0 rev 05/30/06) 298

 fz_objt_curv_get_sindx(windex,obj,cindx,FZ_OBJT_MODEL_TYPE_FACT,&sindx);
 shead = sindx;

 /* LOOP FOR ALL SEGMENTS OF A CURVE */
 do
 {
 /* COLLECT THE START POINTS OF THE SEGMENTS */
 fz_objt_segt_get_start_pindx(windex,obj,i,
 FZ_OBJT_MODEL_TYPE_FACT,&pindx1);

 fz_objt_point_get_xyz(windex,obj,pindx1,
 FZ_OBJT_MODEL_TYPE_FACT,&xyz1);

 ...

 fz_objt_segt_get_next(windex,obj,sindx,FZ_OBJT_MODEL_TYPE_FACT,&sindx);
 } while (sindx != shead && sindx != -1);

 fz_objt_curv_get_next(windex,obj,cindx,FZ_OBJT_MODEL_TYPE_FACT,&cindx);
 } while (cindx != chead);
 }
}

Pixel based renderers often need to decompose the faces of an object into a set of triangles. This
can be done with the API call:

fz_type_list_init(FZ_TYPE_LONG,&pindx_list);
fz_type_list_init(FZ_TYPE_LONG,&findx_list);

fz_objt_decompose_simple(windex,obj,FZ_DECOMP_SIMPLE_ALL_TRIA,
 num_triang,pindx_list,findx_list);

for(i = 0, j = 0; i < num_triang; i++, j+= 4)
{
 for(k = 1; k < 4; k++)
 {
 fz_type_list_get_item(pindx_list,j+k,&data);
 fz_type_get_long(&data,&pindx);

 fz_objt_point_get_xyz(windex,obj,pindx,FZ_OBJT_MODEL_TYPE_FACT,&pts[k]);
 ...
 }

 fz_type_list_get_item(findx_list,i,&data);
 fz_type_get_long(&data,&findx);

 /* pts NOW CONTAINS THE THREE POINTS OF THE TRIANGLE */
 /* findx IS THE INDEX OF THE ORIGINAL FACETTED FACE */
 ...
}

fz_type_list_finit(&pindx_list);
fz_type_list_finit(&findx_list);

The data returned is a list of point indices, which, three at a time, define a triangle. The point
indices refer to the coordinate point of the facetted representation of the original object. In
addition, this function also returns which original face a triangle belongs to. The indices of the
original facetted faces are stored in the face index list. This list contains as many entries, as there
are triangles.

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 299

2.8.7 RenderZone Shaders

The shader pipeline

When a pixel in an image is rendered, the shaders needed to compute the final pixel color are
executed in a specific order. This order is referred to as the shader pipeline. The sequence of the
shader pipeline for each pixel is as follows:
1. The color shader of the material assigned to the surface on which the pixel lies is executed.
This defines the unshaded pixel color.
2. The bump shader of the material assigned to the surface on which the pixel lies is executed.
This defines a new normal direction at the pixel, which is important for the reflection calculation
which comes next.
3. The reflection shader of the material assigned to the surface on which the pixel lies is
executed. The unshaded pixel color, generated by the color shader is augmented with shading
information from all lights in the scene. If a bump shader other than None was used, the altered
surface normal direction will be used to create bump patterns from the shading calculation. The
shaded color is returned by the reflection shader.
4. The transparency shader of the material assigned to the surface on which the pixel lies is
executed. The transparency of the pixel is returned by the shader and retained by form•Z.
5. If the transparency value from step 4 is more than 0.0 (i.e. there is some level of transparency)
the background shader is executed. The color from the background shader and the shaded color
from step 3 are mixed using the transparency value and returned by the shader.
6. The depth effect shader is executed. It uses the color from step 5. A new color is calculated
using the depth information of the current pixel. This color is returned and becomes the final pixel
color in the image.

Any of the six shaders contained in the shader pipeline can be extended through a plugin. Color,
reflection, transparency and bump extension shaders are added to the respective menus in the
Surface Style Parameters dialog. Background and Depth Effect plugin shaders are added in the
RenderZone Options dialog. A Background plugin shader also becomes available as an
Environment shader.

Shader plugin type and registration

An shader plugin is identified with the plugin type FZ_SHDR_EXTS_TYPE and must implement
one of the 6 shader call back function sets, fz_shdr_cbak_colr_fset,
fz_shdr_cbak_refl_fset, fz_shdr_cbak_trns_fset, fz_shdr_cbak_bump_fset,
fz_shdr_cbak_bgnd_fset, or fz_shdr_cbak_fgnd_fset. Multiple shader function sets
may be registered with the plugin. This allows for the creation of a whole suite of shaders in a
single plugin. For example a developer may create a family of wall-paper shaders and offer those
as a single plugin to form•Z users. Most of the color shaders already available in a form•Z
surface style also have transparency and bump shader equivalents. When creating a new color
shader, offering the transparency and bump shader twins may be another method to register
multiple shaders with the same plugin. The example below show the definition of a plugin of type
FZ_SHDR_EXTS_TYPE and the registration of a color, transparency and bump shader with that
plugin. This is done from the plugin file's entry function while handling the
FZPL_PLUGIN_INITIALIZE message as described in section 2.3.

fzrt_error_td sinewave_register_plugins()
{
 fzrt_error_td err = FZRT_NOERR;

 /* REGISTER THE PLUGIN */

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 300

 err = fzpl_glue->fzpl_plugin_register(
 SINEWAVE_PLUGIN_UUID,

SINEWAVE_PLUGIN_NAME,
 SINEWAVE_PLUGIN_VERSION,

SINEWAVE_PLUGIN_VENDOR,
 SINEWAVE_PLUGIN_URL,

FZ_SHDR_EXTS_TYPE,
FZ_SHDR_EXTS_VERSION,

 NULL /*error string function*/,
0,
NULL,

 &sinewave_plugin_runtime_id);

 if (err == FZRT_NOERR)
 {
 /* REGISTER THREE SHADER CALLBACK FUNCTION SETS */
 err = fzpl_glue->fzpl_plugin_add_fset(

sinewave_plugin_runtime_id,
FZ_SHDR_CBAK_COLR_FSET_TYPE,
FZ_SHDR_CBAK_COLR_FSET_VERSION,
FZ_SHDR_CBAK_COLR_FSET_NAME,
FZPL_TYPE_STRING(fz_shdr_cbak_colr_fset),
sizeof (fz_shdr_cbak_colr_fset),
colr_sinewave_cbak_fill_fset, FALSE);

 if (err == FZRT_NOERR)
 {
 err = fzpl_glue->fzpl_plugin_add_fset(

sinewave_plugin_runtime_id,
FZ_SHDR_CBAK_TRNS_FSET_TYPE,
FZ_SHDR_CBAK_TRNS_FSET_VERSION,
FZ_SHDR_CBAK_TRNS_FSET_NAME,
FZPL_TYPE_STRING(fz_shdr_cbak_trns_fset),
sizeof (fz_shdr_cbak_trns_fset),
trns_sinewave_cbak_fill_fset, FALSE);

 }

 if (err == FZRT_NOERR)
 {
 err = fzpl_glue->fzpl_plugin_add_fset(

sinewave_plugin_runtime_id,
FZ_SHDR_CBAK_BUMP_FSET_TYPE,
FZ_SHDR_CBAK_BUMP_FSET_VERSION,
FZ_SHDR_CBAK_BUMP_FSET_NAME,
FZPL_TYPE_STRING(fz_shdr_cbak_bump_fset),
sizeof (fz_shdr_cbak_bump_fset),
bump_sinewave_cbak_fill_fset, FALSE);

 }
}

 return (err);
}

Shader call back function sets

Shader plugins are implemented by defining one of the shader call back function sets. The
plugin developer must pass a fill function to fzpl_plugin_add_fset which assigns the
pointers of the functions which define the plugins functionality to an instance of the shader

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 301

callback function set. An example of the fill function for the color shader "Sine Wave" is shown
below. The function sets for the other shader types are very similar to the color shader.

fzrt_error_td colr_sinewave_cbak_fill_fset (

const fzpl_fset_def_ptr fset_def,
fzpl_fset_td * const fset)

{
 fzrt_error_td err = FZRT_NOERR;
 fz_shdr_cbak_bump_fset * colr_fset;

 err = fzpl_glue->fzpl_fset_def_check (fset_def,

FZ_SHDR_CBAK_COLR_FSET_VERSION,
FZPL_TYPE_STRING(fz_shdr_cbak_bump_fset),
sizeof (fz_shdr_cbak_bump_fset),
FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {

colr_fset = (fz_rzne_colr_shdr_cb_fset *)fset;

 colr_fset->fz_shdr_cbak_colr_uuid = colr_sinewave_uuid;
 colr_fset->fz_shdr_cbak_colr_name = colr_sinewave_name;
 colr_fset->fz_shdr_cbak_colr_version = colr_sinewave_get_version;
 colr_fset->fz_shdr_cbak_colr_set_parameters =

colr_sinewave_set_parameters;
 colr_fset->fz_shdr_cbak_colr_pre_render = colr_sinewave_pre_render;
 colr_fset->fz_shdr_cbak_colr_post_render = colr_sinewave_post_render;
 colr_fset->fz_shdr_cbak_colr_pixel = colr_sinewave_colr_shade_pixel;
 colr_fset->fz_shdr_cbak_colr_avg = colr_sinewave_avg_color;
 }

 return err;
}

Of the eight callback functions of a color shader, only some are required, while others are
optional. When an optional callback is not assigned to the function set, the respective functionality
of the shader is disabled. For example, if the fz_shdr_cbak_colr_avg callback function is not
provided, form•Z will substitute a 50% gray for the color, whenever a single solid color is used,
such as in wireframe drawing. The required callback functions for a color shader are:

fz_shdr_cbak_colr_name
fz_shdr_cbak_colr_pixel

Optional functions are:

fz_shdr_cbak_colr_set_parameters
fz_shdr_cbak_colr_pre_render
fz_shdr_cbak_colr_post_render
fz_shdr_cbak_colr_get_avg

The functions shown below are taken from the Sine Wave color shader, which is available as
sample source code with form•Z. It is recommended to build this shader with the respective
development environment on Mac or Windows and trace the execution of the function with the
debugging environments of the compiler.

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 302

The following section gives a detailed description of each of the shader functions and what task
each function is expected to perform. The functions are explained in detail for the color shader.
Any differences for the equivalent function of the other shaders are noted where necessary.

The uuid function (recommended)

fzrt_error_td fz_shdr_cbak_colr_uuid(
 fzrt_UUID_td uuid
);

This function defines a unique identifier. form•Z uses the UUID to distinguish this shader from
other shaders.

fzrt_error_td sinewave_colr_uuid(fzrt_UUID_td uuid)
{
 fzrt_UUID_copy(SINEWAVE_COLR_PLUGIN_UUID, uuid);
 return FZRT_NOERR;
}

The version function (recommended)

fzrt_error_td fz_shdr_cbak_colr_version(
 fzpl_vers_td *version
);

If this function is implemented, it needs to return the version of the shader. It is up to the
developer to assign a version number to the shader. When a form•Z project file is saved with a
plugin shader, the version of the shader is saved as well. If the project is opened later and a
newer version of the shader exists at that time, form•Z will reset the parameters of the shader to
default values. A shader developer must increase the version number when, during ongoing
development of the shader, the parameters of the older shader do not match the parameters of
the newer shader. If the shader is changed, so that saved shader parameters are still meaningful
and are aligned with the current shader parameters, the version does not need to be changed.
Assume, for example, that a shader is originally defined with 2 color and 2 integer parameters.
The version assigned to the shader initially was 0. In the second release of the shader, the
developer adds a 5th parameter. This requires, that the version is increased to 1. In a third release
of the shader, the first integer parameter, which originally could take on values between 0 and 10,
can now take on values from 0 to 20. This does not require a version change.

fzrt_error_td sinewave_version(fzpl_vers_td* version)
{
 *version = 0;
 return FZRT_NOERR;
}

The name function (required)

fzrt_error_td fz_shdr_cbak_colr_name(

char *name,
long max_len
);

The name function must assign a string to the name argument. The length of the string assigned
cannot exceed max_len characters. This string appears as the shader's name in the respective
menu. It is recommended, that the name is stored in a .fzr resource file and retrieved from it,

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 303

when assigned to the name argument, so that it can be localized for different languages. In the
example below, this step is omitted for the purpose of simplicity. A plugin name function would
look like this:

fzrt_error_td sinewave_get_name(char *name, long max_len)
{
 strncpy(name,"Sine Wave",max_len);
 return(FZRT_NOERR);
}

The set parameters function (optional)

fzrt_error_td fz_shdr_cbak_colr_set_parameters(

void
);

The set parameters function is called once at startup. It needs to establish the number and types
of parameters for the shader. Based on the parameters set up in this function, form•Z
automatically builds the content of the shader's option dialog, which can be invoked by clicking on
the Options... botton next to the shader menu, as usual. The content of a shader option dialog
can also be created by implementing the optional dialog callback function. If provided, form•Z will
not automatically create the content of the dialog, but the callback function is invoked and
expected to create the template interface items to correctly display the shader parameters. This is
explained in more detail in a following section.
 Setting the shader's parameters is accomplished with a number of form•Z API function calls.
There are standard parameters which can be set up automatically, such as scale or noise.
Custom parameters can be created individually, such as colors, floating point values with sliders
or check boxes. If the shader is a color, transparency or bump shader, fhe first form•Z API call in
the set parameters function should identify the shader as a 2d (wrapped) or 3d (solid) shader.
This is done with the API call:
 fz_shdr_set_wrapped(TRUE);
if the shader is 2d, and
 fz_shdr_set_solid(TRUE);
if the shader is 3d. Note, not calling these functions is equivalent to calling either function with the
argument set to FALSE. It is also possible to call both function with TRUE, in which case the
shader would be labeled as a 2d and 3d shader. While this is rarely the case, it is conceivable,
that a shader creates a pattern based on 2d and 3d texture space mapping. Mirror, background
and depth effect shaders do not need to call this API function.

Shaders which create a pattern should present the standard scale parameter to a user. This
parameter is set up with the API call:
 fz_shdr_set_scale_parm (1.0);
The function argument 1.0 sets the default value of the scale parameter to 100%. This function
call will automatically add the Scale field in the shader options dialog. form•Z will apply the
current scale factor to the 2d or 3d texture space coordinate, which is used in the pixel function to
calculate the shader's pattern.

If a shader uses any of the noise functions, which create random patterns, the standard noise
parameters can be added ot the shader with the API call:
 fz_shdr_set_noise_parm(1,3);
This will add the Noise menu and # of Impulses field to the shader option dialog. The current
setting of these parameters may be retrieved in the pre_render function and used in a call to any
of the noise functions in the shader's pixel function.

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 304

Most procedural shaders, which create some kind of pattern suffer from strong moire artifacts,
when the pattern becomes very small. With an area sampling technique, these artifacts can be
avoided. Automatic area sampling can be added to a color, transparency or bump shader by
adding the standard shader parameter with the API function call:

fz_shdr_set_area_sample_parm(FALSE);
The argument in the API function call sets the default value of area sampling to TRUE or FALSE
(FALSE should be the default). The standard "Area Sampling" check box will be added by form•Z
in the shader dialog. If this API call is not made in the set parameters callback, the shader will not
have area sampling. Note, that his call only applies in the set parameters function of color,
transparency and bump shaders. For all other shader types, this API call is ignored.

If the shader is a reflection shader, additional standard parameters can be set up. They define the
six shading parameters: ambient, diffuse, specular, mirror, transmission and glow:
 fz_shdr_set_ambient_parm (1.0);
 fz_shdr_set_diffuse_parm (0.75);
 fz_shdr_set_specular_parm (0.5,0.1);
 fz_shdr_set_specular_color_parm (col);
 fz_shdr_set_mirror_parm (0.5);
 fz_shdr_set_transmission_parm (0.5,1.0);
 fz_shdr_set_glow_parm (0.0);
When the respective setup call is made, the shader options dialog will add the Factor field, Map
menu and map Options button. Not all six reflection parameters need to be offered. Any
combination of the six can be selected and mixed with custom parameters.

Custom parameters are created with the API calls:

fz_shdr_set_pct_parm("Value 1", 0.5, 1, 1, SHDR_VAL1_ID);
fz_shdr_set_col_parm("Color 1", col, SHDR_COL_ID);
fz_shdr_set_sld_flt_parm("Value 2", 0.5,1,1, SHDR_VAL2_ID);
fz_shdr_set_sld_int_parm("Value 3", 5,1,10,1,1, SHDR_VAL3_ID);
fz_shdr_set_flt_parm("Value 4", 0.5, 0.0, 1.0, 1, 1, SHDR_VAL4_ID);

fz_shdr_set_int_parm("Value 5", 5, 1, 10, 1, 1, SHDR_VAL5_ID);
fz_shdr_set_bool_parm("Boolean", TRUE, SHDR_BOOL_ID);

Each of these calls creates a shader parameter of the respective type, with the given title, default
values, allowable range and range checking. The last parameter to each function is an integer id,
which must be unique. This id is used when retrieving the current value of a parameter in the pre
render function. It is possible to pass a value of -1 for the id argument. In this case form•Z will
generate a unique id and pass it back through the function's return value. For example:

id = fz_shdr_set_col_parm("Color 1", col, -1);
Since the form•Z generated id must be used to retrieve the parameter value in the pre render
function, it must be a global variable.

A user may edit the preset and custom values in the options dialog. In the pre render function the
current values of the custom parameters should be retrieved and passed on to the pixel function,
where they are used to compute the shader pattern.

The set parameters function for the Sine Wave color shader in a plugin is:

enum
{
 PARAM_ID_COLOR1 = 0,
 PARAM_ID_COLOR2,
 PARAM_ID_HEIGHT,
 PARAM_ID_FUZZ

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 305

};

fzrt_error_td sinewave_colr_set_parameters(void)
{
 fz_rgb_float_td def_col1;
 fz_rgb_float_td def_col2;

 def_col1.red = 0.0;
 def_col1.green = 0.0;
 def_col1.blue = 0.0;
 def_col2.red = 1.0;
 def_col2.green = 1.0;
 def_col2.blue = 1.0;
 fz_shdr_set_wrapped(TRUE);
 fz_shdr_set_scale_parm(1.0);
 fz_shdr_set_area_sample_parm(TRUE);

 fz_shdr_set_col_parm("Color 1",&def_col1, PARAM_ID_COLOR1);
 fz_shdr_set_col_parm("Color 2",&def_col2, PARAM_ID_COLOR2);
 fz_shdr_set_sld_flt_parm("Wave Height",0.5,1,1, PARAM_ID_HEIGHT);
 fz_shdr_set_sld_flt_parm("Fuzz",0.1,1,1, PARAM_ID_FUZZ);

 return(FZRT_NOERR);
}

The dialog resulting from these shader parameters is shown below:

There is one important detail to the use of the custom parameters API functions, such as
fz_shdr_set_sld_flt_parm. The first parameter to this API is the name of the parameter as it will
appear in the shader dialog. A transparency shader is also used to define an equivalent shader in the
reflection map menus of a reflection shader, which uses any of the six standard reflection parameters.
When the dialog for this shader (if used as a diffuse map for eample) is invoked, the parameter, which
would be called, for example, "Background Transparency" in the transparency shader options dialog, is
called "Background Diffuse" in the diffuse map options dialog. This automatic adjustment of the parameter
name can be achieved by substituting %s in the name parameter of the API, for those calls of the API
which would use the word "Transparency" in the dialog. The same mechanism also works for color and

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 306

bump shaders, although they are not used in any other context. For example the API call to define a color
in the set parameters function of a color shader can be written in two different ways:

 fz_shdr_set_col_parm("Color 1",&def_col1, PARAM_ID_COLOR1);
or
 fz_shdr_set_col_parm("%s 1",&def_col1, PARAM_ID_COLOR1);

While it is not necessary to substitute the %s in color and bump shaders, it is necessary to do so
in transparency shaders, in order to get the correct parameter title, when the transparency shader
is also used in the context of a reflection map shader.

The dialog function (optional)

fzrt_error_td fz_shdr_colr_cbak_iface_tmpl(

long windex,
fz_fuim_tmpl_ptr fuim_tmpl,
fzrt_shdr_ptr shdr_ptr

 long parent_group
);

If this function is supplied, form•Z will not automatically build the content of the shader options
dialog, as described in the "The set parameters function" section. If this function is implemented
and the Options… button next to the shader menu is pressed, form•Z will invoke this callback
function. It is expected to create the dialog items, with which the shader parameters are
displayed. This is achieved by using the template interface api function supplied by form•Z. This
gives the developer the flexibility to create interface items, that are not created by form•Z through
the automatic method. For example, the interface callback function may create groups with
borders or tabs to allow for a complete customized interface. Note, that the preview window,
common to all shaders does not need to be created by the dialog callback function, as form•Z
provides it automatically. The function argument parent_group, which is supplied by form•Z
when the dialog callback is invoked, should be used as the parent group for all dialog items
created. This ensures, that the dialog items and the preview window are properly aligned. In order
to facilitate the creation of the dialog, form•Z also supplies a few utility functions, that create the
standard shader dialog interface items. They are :

fz_shdr_fuim_create_scale_items : This api function creates the standard Scale items
with a percent text edit field. It may be called for any of the shader types. Note, that in the set
parameters callback function, the api call fz_shdr_set_scale_parm should be made to establish,
that the shader uses the Scale parameter.

fz_shdr_fuim_create_noise_items : This api function creates the standard Noise items
with a pop up menu for the noise type and a text edit field for the number of impulses. It may be
called for any of the shader types. Note, that in the set parameters callback function, the api call
fz_shdr_set_noise_parm should be made to establish, that the shader uses the Noise
parameter.

fz_shdr_fuim_create_area_sample_items : This api function creates the standard Area
Sample check box. It may be called for any of the shader type, except for reflection shaders.
Note, that in the set parameters callback function, the api call
fz_shdr_set_area_sample_parm should be made to establish, that the shader uses the Area
Sample parameter.

fz_shdr_fuim_create_ambient_items
fz_shdr_fuim_create_diffuse_items

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 307

fz_shdr_fuim_create_specular_items
fz_shdr_fuim_create_mirror_items
fz_shdr_fuim_create_transmission_items
fz_shdr_fuim_create_glow_items : These api functions create the standard reflection
items with a slider and percent text edit field, the Map menu and an Options… button. They can
only be called for reflections shaders. Note, that is is necessary to declare in the set parameters
callback function, that a particular reflection parameter is used. For example, in order to create
the diffuse reflection items in the dialog callback function via
fz_shdr_fuim_create_diffuse_items, it is necessary to establish that the shader uses
diffuse reflection in the fz_shdr_cbak_refl_set_parameters callback function through the
api call fz_shdr_set_diffuse_parm.

fz_shdr_fuim_create_specular_roughness_items : This api function creates the
standard specular Roughness items with a slider and percent text edit field. It can only be called
for reflections shaders. Note, that in the set parameters callback function, the api call
fz_shdr_set_specular_parm should be made to establish, that the shader uses the Specular
Reflection parameter.

fz_shdr_fuim_create_trans_refraction_items: This api function creates the standard
Refraction text edit field and pop up menu for shader that use the transmission parameter . It can
only be called for reflections shaders. Note, that in the set parameters callback function, the api
call fz_shdr_set_transmission_parm should be made to establish, that the shader uses the
Transmission Reflection parameter.

In order to link a particular shader parameter to a form•Z interface item, such as a text edit field, it
is necessary to extract a pointer to the shader parameter. This is accomplished with the api call
fz_shdr_get_parm_ptr. As input, this function receives the shader, which is supplied to the
callback function by form•Z, and an id, which is the same id established for a specific parameter
in the set parameters callback function. If the dialog of the sine wave sample shader would be
created with the optional dialog callback function it would look as in the following code example.
For completeness, the set parameters callback is repeated to show the connection between the
declaration of a parameters and its creation in the interface.

enum
{

PARAM_ID_COLOR1 = 0,
PARAM_ID_COLOR2,
PARAM_ID_HEIGHT,
PARAM_ID_FUZZ

};

fzrt_error_td sinewave_colr_set_parameters(void)
{

fz_rgb_float_td def_col1;
fz_rgb_float_td def_col2;

def_col1.green = 0.0;
def_col1.blue = 0.0;
def_col2.red = 1.0;
def_col2.green = 1.0;
def_col2.blue = 1.0;
fz_shdr_set_wrapped(TRUE);
fz_shdr_set_scale_parm(1.0);
fz_shdr_set_area_sample_parm(TRUE);
fz_shdr_set_col_parm("Color 1",&def_col1, PARAM_ID_COLOR1);
fz_shdr_set_col_parm("Color 2",&def_col2, PARAM_ID_COLOR2);
fz_shdr_set_sld_flt_parm("Wave Height",0.5,1,1, PARAM_ID_HEIGHT);
fz_shdr_set_sld_flt_parm("Fuzz",0.1,1,1, PARAM_ID_FUZZ);

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 308

return(FZRT_NOERR);
}

fzrt_error_td sinewave_colr_iface_tmpl(

long windex,
fz_fuim_tmpl_ptr fuim_tmpl,
fz_shdr_ptr shdr_ptr,
long parent_group
)

{
 short g1;

fzrt_ptr parm_ptr;

/* STANDARD SCALE*/
fz_shdr_fuim_create_scale_items(fuim_tmpl,shdr_ptr,parent_group,NULL,NULL

);

/* COLOR 1 */
fz_shdr_get_parm_ptr(shdr_ptr,PARAM_ID_COLOR1,&parm_ptr);
g1 = fz_fuim_new_text_static(fuim_tmpl,parent_group, FZ_FUIM_NONE,
FZ_FUIM_FLAG_HORZ | FZ_FUIM_FLAG_GFLT , "Color 1", NULL,NULL);
fz_fuim_new_color_box(fuim_tmpl, g1, FZ_FUIM_NONE, FZ_FUIM_FLAG_NONE,

NULL, (float *)parm_ptr);

/* COLOR 2 */
fz_shdr_get_parm_ptr(shdr_ptr,PARAM_ID_COLOR2,&parm_ptr);
g1 = fz_fuim_new_text_static(fuim_tmpl,parent_group, FZ_FUIM_NONE,
FZ_FUIM_FLAG_HORZ | FZ_FUIM_FLAG_GFLT , "Color 2", NULL,NULL);
fz_fuim_new_color_box(fuim_tmpl, g1, FZ_FUIM_NONE, FZ_FUIM_FLAG_NONE,

NULL, (float *)parm_ptr);

/* HEIGHT */
fz_shdr_get_parm_ptr(shdr_ptr,PARAM_ID_HEIGHT,&parm_ptr);
fz_fuim_new_slid_edit_pcent_float(fuim_tmpl,parent_group,"Height",FZ_FUIM

_NONE,
FZ_FUIM_NONE,0.0,1.0,0.0,100.0,FZ_FUIM_RANGE_NONE, NULL,
(float*) parm_ptr,NULL, NULL);

/* FUZZ */
fz_shdr_get_parm_ptr(shdr_ptr,PARAM_ID_FUZZ,&parm_ptr);
fz_fuim_new_slid_edit_pcent_float(fuim_tmpl,parent_group,"Fuzz",FZ_FUIM_N

ONE,
FZ_FUIM_NONE,0.0,1.0,0.0,100.0,
FZ_FUIM_RANGE_MIN | FZ_FUIM_RANGE_MIN_INCL |
FZ_FUIM_RANGE_MAX | FZ_FUIM_RANGE_MAX_INCL, NULL,
(float*) parm_ptr,NULL, NULL);

/*STANDARD AREA SAMPLE */
fz_shdr_fuim_create_asample_items(fuim_tmpl,shdr_ptr,parent_group,NULL);

 return(FZRT_NOERR);
}

The pre render function (recommended)

fzrt_error_td fz_shdr_cbak_colr_pre_render(

void **shdr_data
);

This function is called once before the start of each rendering. It is expected to precompute
information that will be used by the pixel function. Using the pre render function can significantly

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 309

speed up the execution of a shader. Certain information, that is needed during the calculation of
the shader pattern does not change during the rendering. For example, a shader may use a
floating point value from a shader parameter, but really needs the inverse (1.0 / value) during the
pixel calculation. Instead of computing 1.0 / value each time during the execution of the pixel
function, the value can be computed once in the pre render function and then be reused in the
pixel function. Any of the shader parameters defined in the set parameters function can be
retrieved in the pre render function. For the standard parameter function, there are the equivalent
function which get the current value of a standard parameter. They are :

fz_shdr_get_noise_type
fz_shdr_get_noise_impulses

Note, that there is no function to get the scale parameter. form•Z automatically applies the scale
factor, if it exists, to the texture space or 3D coordinate before it is used by the pixel function.
For custom parameters, a single API call retrieves the value of a given parameter:

fz_shdr_get_parm(PARAM_ID,&data);

The parameter is identified by the first argument to the function, which is the id used when the
parameter was defined, or the id generated by form•Z, if -1 was passed for the id. The standard
reflection parameters for ambient, diffuse, specular, mirror, transmission and glow should not be
retrieved in the pre render function but in the pixel function. This is described in more detail later
in this section.

The pre render function typically will allocate a data structure, fill it with precomputed information
and pass the pointer of the structure back to form•Z via the function argument. This pointer will
be passed back into the pixel function and also the post_render function, which should de-
allocate the structure. The pre_render function for the Sine Wave color shader is shown below.

fzrt_error_td sinewave_colr_pre_render(void **shdr_data)
{
 sinewave_data_td* sinewave;
 fz_type_td data;
 fzrt_error_td rv = FZRT_NOERR;
 double fuzz;

 *shdr_data = NULL;

if((*shdr_data = fz_mem_zone_alloc(
NULL,
sizeof(sinewave_data_td),FALSE)) == NULL)

{ rv = fzrt_error_set (
FZ_MALLOC_ERROR,
FZRT_ERROR_SEVERITY_ERROR,
FZRT_ERROR_CONTEXT_APP, 0);

}
 else
 { sinewave = (sinewave_data_td*) *shdr_data;
 fz_shdr_get_parm(PARAM_ID_COLOR1,&data);
 fz_type_get_rgb_float(&data, &sinewave->col1);
 fz_shdr_get_parm(PARAM_ID_COLOR2,&data);
 fz_type_get_rgb_float(&data, &sinewave->col2);
 fz_shdr_get_parm(PARAM_ID_HEIGHT,&data);
 fz_type_get_double(&data, &sinewave->ampl);
 fz_shdr_get_parm(PARAM_ID_FUZZ,&data);
 fz_type_get_double(&data, &fuzz);

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 310

 sinewave->ampl *= 0.25;
 if (sinewave->ampl < 0.0) sinewave->ampl = 0.0;

 fuzz *= 0.25;

 if (fuzz < 0.0) fuzz = 0.0;
 if (fuzz > 0.25) fuzz = 0.25;

 sinewave->min_left = 0.25 - fuzz;
 sinewave->min_right = 0.25 + fuzz;
 sinewave->max_left = 0.75 - fuzz;
 sinewave->max_right = 0.75 + fuzz;
 }
 return(rv);
}

The pixel function (required)

The pixel function is called during a rendering once of more for each pixel. Depending on which kind of
shader is written, the pixel function needs to compute different types of information. The pixel function has
a single argument, shdr_data. It is the pointer which was returned to form•Z by the pre render function.
As described above, it is usually a pointer to a data structure which contains precomputed information.

The color pixel function

fz_rgb_float_td fz_shdr_cbak_colr_pixel (

void *shdr_data
);

For a color shader, the pixel function needs to compute and return the rgb color of the surface pixel,
based on the 2d or 3d texture coordinate. This coordinate is retrieved via a form•Z API call:
 fz_shdr_get_tspace_st(&st);
for 2d shaders or
 fz_shdr_get_tspace_pnt(&pnt);
for 3d shaders. Note, that the scale factor, set up in the set parameters function does not need to be
applied to the 2d or 3d texture space coordinate, as form•Z already has performed this step. Together
with the shader parameters, the point's coordinates can be transformed into a color pattern. A number of
form•Z API function are offered to facilitate the computation of regular and random patterns. This is
described in further detail in later in this section. The pixel function of the Sine Wave color shader is
shown below:

fz_rgb_float_td sinewave_colr_shade_pixel(void *shdr_data)
{
 fz_xy_td st;
 sinewave_data_td* sinewave;
 double ss,tt;
 fz_rgb_float_td col;

 sinewave = (sinewave_data_td*) shdr_data;

 shdr_get_tspace_st(&st);

 ss = fz_shdr_saw_tooth(st.x,1.0);
 tt = fz_shdr_saw_tooth(st.y,1.0) +

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 311

sin(ss * _2PI)*sinewave->ampl;
 tt = fz_shdr_saw_tooth(tt,1.0);

 tt = fz_shdr_smooth_step(

sinewave->min_left, sinewave->min_right, tt) *
(1.0 - _smooth_step(

sinewave->max_left, sinewave->max_right, tt));

 col.red = sinewave->col1.red * tt + (1.0 - tt) * sinewave->col2.red;
 col.green = sinewave->col1.green * tt + (1.0 - tt) * sinewave->col2.green;
 col.blue = sinewave->col1.blue * tt + (1.0 - tt) * sinewave->col2.blue;

 return(col);
}

The reflection pixel function

fz_rgb_float_td fz_shdr_cbak_refl_pixel(

void *shdr_data
);

For a reflection shader, the pixel function is expected to take the pixel color, computed by the color shader
and apply shading to it, based on the lighting conditions in the scene. The unshaded pixel color can be
retrieved with the API call:
 fz_shdr_get_col(&color);
If the reflection shader uses any of the standard reflection parameter setup function in the set parameters
function, the current value of each parameter needs to the retrieved in the pixel function. Since any of the
standard reflection parameters may be altered by a reflection map, the value of a reflection parameter
may vary on a surface. Therefore, it cannot be retrieved in the pre render function, stored and passed on
to the pixel function via the shdr_data parameter. For example, consider the set parameters function of
a reflection shader to define the standard diffuse reflection shader:

fzrt_error_td fz_shdr_cbak_refl_set_parameters(void **shdr_data)
{
 ...
 fz_shdr_set_diffuse_parm(0.75);
 ...
}

The pixel function of the same reflection shader would retrieve the current value of the diffuse parameter:

fz_rgb_float_tdfz_shdr_cbak_refl_pixel(void *shdr_data)
{
 ...
 fz_shdr_get_diffuse_param(&df);
 ...
}

df will then contain the diffuse factor at the current pixel, taking into account the value of the diffuse factor
entered by the user and a possible diffuse map, which will alter the user's value based on the diffuse
map's pattern. In addition to obtaining the diffuse factor for a pixel, it is also necessary to perform the
actual diffuse illumination. form•Z offers API function which perform this task, as well as illumination for
ambient, specular, mirror and transmission. Of course, it is up to the plugin developer to implement a
custom illumination algorithm, if desired. The illumination function offered by form•Z are the same used
by the RenderZone display mode. To calculate the diffuse illumination of a pixel the form•Z API

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 312

 fz_shdr_get_diffuse_term(&dcol);

can be called. The color returned is the illumination from all lights, including shadows. Typically, this color
is multiplied (filtered) with the unshaded pixel color, created by the color shader of a surface style to
create the final diffuse shaded pixel. The classic shading algorithm computes the final pixel shading using
ambient, diffuse and specular illumination with the following algorithm:

 col_out = col_in * (af * acol + df * dcol) + sf * scol;

Where col_in is the unshaded pixel color, af is the ambient factor, acol is the ambient color (the result of
fz_shdr_get_ambient_term), df is the diffuse factor, dcol is the diffuse color (the result of
fz_shdr_get_diffuse_term), sf is the specular factor and scol is the specular color (the result of
fz_shdr_get_specular_term). The full pixel function for such a standard reflection shader would look
like this:

fz_rgb_float_td fz_shdr_cbak_refl_pixel(void *shdr_data)
{
 double af,df,sf;
 fz_rgb_float_td col,acol,dcol,scol;
 refl_data_td *refl_data;

 refl_data = (refl_data_td*) shdr_data;

 fz_shdr_get_ambient_factor(&af);
 fz_shdr_get_diffuse_factor(&df);
 fz_shdr_get_specular_factor(&sf);

fz_shdr_get_ambient_term(&acol);
 fz_shdr_get_diffuse_term(&dcol);
 fz_shdr_get_specular_term(refl_data->inv_roughness,&scol);

 fz_shdr_get_col(&col);
 col.red = col.red * (af*acol.red + df*dcol.red) + sf*scol.red;
 col.green = col.green * (af*acol.green + df*dcol.green) + sf*scol.green;
 col.blue = col.blue * (af*acol.blue + df*dcol.blue) + sf*scol.blue;

 return(col);
}

Note, that the original color is filtered (multiplied) by the ambient and diffuse shading component and the
specular color is added on top of it.

Adding raytraced effects.

In addition to the simple shading calculations shown above, it is possible to add reflection effects through
raytracing. In the standard reflection shaders offered by form•Z, these effects create mirrored and
transmission reflections. To add mirrored reflections, a form•Z API function can be called:
 fz_shdr_raytrace_reflected(&world_pt,&mirr_vec,mf,&mirr_col);

This function takes the following arguments: world_pt is the point where the reflected ray starts on the
rendered surface. This point can be retrieved with the API call:
 fz_shdr_get_world_pnt(&world_pt);
which is the point on the surface where the current pixel is rendered. mirr_vec is the direction of the
reflected ray as it bounces off the surface. For a true mirror surface, this direction is the direction of the
view vector, reflected about the normal direction of the surface. The following API functions can be used
to calculate this mirror direction:

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 313

fz_shdr_get_world_shading_normal(&norm);
fz_shdr_get_view_dir(&view_vec);
fz_shdr_ray_reflect(&view_vec,&norm,&mirr_vec);

The mirror factor argument mf tells the fz_shdr_raytrace_reflected API function how much of the
calculated mirror color will be added to the final shaded color. If the mirror factor is small, the raytracing
can stop earlier, because the added mirror color only makes up a small component of the final pixel color,
and it would not make any visible difference to let the raytraced ray bounce longer between other
mirroring surfaces. However, if the mirror factor is large, such as in a perfect mirror, the reflected ray
needs to bounce longer between other mirroring surfaces to compute accurate reflections. Recall, that the
termination of raytraced rays is determined through the options set in the Raytrace Options dialog, which
is invoked from the RenderZone Options dialog.

To create transmission effects, which simulate glasslike materials, a similar API function can be called:
 fz_shdr_raytrace_refracted(&world_pt,&mirr_vec,&tf,&mirr_col);
The arguments are the same as to fz_shdr_raytrace_reflected. The transmission factor
argument tf, acts in the same manner as the mirror factor argument. It determines how long refracted
rays are allowed to bounce between transmissive and reflective surfaces. In order to calculate the vector
with which a refracted ray enters a glass like material, the API function fz_shdr_ray_refract can be
called. It bends an incoming ray, usually the view direction vector, about the surface normal, using the
index of refraction of a material. Thus a complete calculation of a transmission effect can be written like
this:

 if (tf > 0.0)
 { fz_shdr_get_world_pnt(&world_pt);
 fz_shdr_get_world_shading_normal(&norm);
 fz_shdr_get_view_dir(&view_vec);

 if(fz_shdr_ray_refract(&view_vec,&norm,refl_data->eta,&mirr_vec) == TRUE)
 { fz_shdr_raytrace_refracted(&world_pt,&mirr_vec,tf,&mirr_col);
 col.red += mcol.red * mf;
 col.green += mcol.green * mf;
 col.blue += mcol.blue * mf;

 if (fz_shdr_ray_inside_solid() == TRUE) mf = 0.0;
 }
 }

Note, that the API fz_shdr_ray_refract returns a boolean value, which is TRUE, if the incoming ray
is bent so that it enters the surface. When the incoming ray is angled in such a way, that with the given
index of refraction, it would bounce off the surface rather than enter it, the API return FALSE. In this case
no transmission needs to be calculated. Raytracing usually causes a recursive call to the shading
pipeline. For example, a ray which is spawned through the call fz_shdr_ray_reflect as shown
above, may hit another surface. The color of that point on the surface needs to be calculated through the
same shader calls as the original surface pixel on the screen. As a result, the same pixel function may be
invoked again in a nested fashion. Consider two parallel opposing mirrors. A ray bouncing off one mirror
in an exact perpendicular direction would bounce between the two mirror infinitely. form•Z will pre-empt
this process at a given time, when a satisfactory accuracy of the color to be calculated is achived. It is
quite possible, that there may be as many as 10 or more rays, before this occurs. In this case, the pixel
function of the mirror reflection shader would be called in a stack of 10 nestings. The same may be the
case with fz_shdr_ray_refract. A typical glass like material is both refractive and reflective. This
means that both raytrace APIs are called. If the ray from a refraction calculation is currently bouncing
inside a solid material, such as the wall of a glass bottle, it is only necessary to spawn off another
refracted ray when the ray exists the material on the other side. Only when the ray enters the material is it

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 314

necessary to compute refraction and reflection. In the code example above, the API
fz_shdr_ray_inside_solid() is called to determine, whether the current ray is inside or outside a
solid material. If it is inside, the mirror factor for the subsequent reflection calculation is set to 0.0,
effectively disabling mirroring for this ray. Putting all shading components together, a complete reflection
shader can be written as shown below. This is actually the code which is used to implement the Generic
reflection shader offered by form•Z.

fz_rgb_float_td fz_shdr_cbak_refl_pixel(void *shdr_data)
{
 double af,df,sf,mf,tf,gf;
 fz_rgb_float_td col,acol,dcol,scol,mcol,gcol;
 refl_data_td *refl_data;
 fz_xyz_td world_pt,norm,view_vec,mirr_vec;

 refl_data = (refl_data_td*) shdr_data;

 fz_shdr_get_col(&col);
 gcol = col; /* SAVE UNSHADED SURFACE COLOR FOR GLOW LATER */

 /* GET REFLECTION FACTORS */
 fz_shdr_get_ambient_factor(&af);
 fz_shdr_get_diffuse_factor(&df);
 fz_shdr_get_specular_factor(&sf);
 fz_shdr_get_mirror_factor(&mf);
 fz_shdr_get_transmission_factor(&tf);
 fz_shdr_get_glow_factor(&gf);

 /* CALCULATE BASIC SHADING */
 fz_shdr_get_ambient_term(&acol);
 fz_shdr_get_diffuse_term(&dcol);
 fz_shdr_get_specular_term(refl_data->inv_roughness,&scol);

col.red = col.red * (af*acol.red + df*dcol.red) + sf*scol.red;
 col.green = col.green * (af*acol.green + df*dcol.green) + sf*scol.green;
 col.blue = col.blue * (af*acol.blue + df*dcol.blue) + sf*scol.blue;

 /* CALCULATE RAYTRACE EFFECTS */
 if (mf > 0.0 || tf > 0.0)
 { fz_shdr_get_world_pnt(&world_pt);
 fz_shdr_get_world_shading_normal(&norm);
 fz_shdr_get_view_dir(&view_vec);

 /* CALCULATE REFRACTED RAYS */
 if(tf > 0.0 &&
 fz_shdr_ray_refract(&view_vec,&norm,refl_data->eta,&mirr_vec) == TRUE)
 {
 fz_shdr_raytrace_refracted(&world_pt,&mirr_vec,tf,& mcol);
 col.red += mcol.red * tf;
 col.green += mcol.green * tf;
 col.blue += mcol.blue * tf;

 if (fz_shdr_ray_inside_solid() == TRUE) mf = 0.0;
 }

 /* CALCULATE REFLECTED RAYS */
 if (mf > 0.0)
 { fz_shdr_ray_reflect(&view_vec,&norm,&mirr_vec);
 fz_shdr_raytrace_reflected(&world_pt,&mirr_vec,mf,& mcol);
 col.red += mcol.red * mf;
 col.green += mcol.green * mf;
 col.blue += mcol.blue * mf;
 }

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 315

 }

 /* NOW ADD GLOW, IF ANY */
 if (gf > 0.0)
 {
 col.red += gcol.red * gf;
 col.green += gcol.green * gf;
 col.blue += gcol.blue * gf;
 }

 return(col);
}

The transparency pixel function

double fz_shdr_cbak_trns_pixel(

void* shdr_data
);

The pixel function of a transparency shader is expected to return the level of transparency of the current
pixel towards the background. If a value of 0.0 is returned, the pixel is considered completely opaque. If
1.0 is returned, the pixel is considered completely transparent. Values less than 0.0 and larger than 1.0
are not accepted and are clamped to the respective limit. As with a color shader, the transparency shader
can compute the pixel transparency based on a pattern. All utility function that can be used by a color
shader also apply to a transparency shader. In addition, a transparency shader may compute
transparency based on surface geometry. The Neon shader offered by form•Z is such a shader. It uses
the angle between the surface normal and the view direction to compute the transparency. As such, it is
not tagged as a 2d or 3d shader and therefore shows up in the correct section in the Transparency menu
in the Surface Style Parameters dialog. The sine wave transparency shader pixel function is shown
below:

double sinewave_trns_shade_pixel(void *shdr_data)
{
 fz_xy_td st;
 sinewave_data_td* sinewave;
 double ss,tt;
 double trn;

 sinewave = (sinewave_data_td*) shdr_data;

 shdr_get_tspace_st(&st);

 ss = fz_shdr_saw_tooth(st.x,1.0);
 tt = fz_shdr_saw_tooth(st.y,1.0) + sin(ss * _2PI)*sinewave->ampl;
 tt = fz_shdr_saw_tooth(tt,1.0);

 tt = fz_shdr_smooth_step(

sinewave->min_left, sinewave->min_right, tt) *
 (1.0 - fz_shdr_smooth_step(

sinewave->max_left, sinewave->max_right, tt));

 trn = sinewave->val1 * tt + (1.0 - tt) * sinewave->val2;

 return(trn);
}

The bump pixel function

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 316

double fz_shdr_cbak_bump_pixel(
void *shdr_data
);

The pixel function of a bump shader is expected to return the bump amplitude (height) of the current pixel.
Values should be in the range of 0.0 to 1.0, but may be smaller and larger. The pixel function of a bump
shader is actually called more than once per pixel. A number of calls to this function determine how the
surface bends around the area of the pixel. This information is then used to alter the normal direction
used for the shading calculation during the pixel function of the reflection shader or a surface style. Bump
shaders are usually either 2d or 3d and should therefore be tagged as such in the set parameters
function. Special care should be taken when writing a bump shader that is based on a pattern. The
transition of high and low areas in the pattern should be gradual and smooth for best bump results. For
example, the sine wave shader shown below creates a "fuzzy" zone between the wave and background
part of the pattern. This is achieved via the fuzz parameter using the fz_shdr_smooth_step utility API,
which is described in further detail later in this section. If the transition between the wave and the
background area would be sharp, the bumps would not be as pronounced, even with a large amplitude
parameter. The sine wave bump shader pixel function is shown below:

double sinewave_bump_shade_pixel(void *shdr_data)
{
 fz_xy_td st;
 sinewave_data_td* sinewave;
 double ss,tt;
 double ampl;

 sinewave = (sinewave_data_td*) shdr_data;

 shdr_get_tspace_st(&st);

 ss = fz_shdr_saw_tooth(st.x,1.0);
 tt = fz_shdr_saw_tooth(st.y,1.0) + sin(ss * _2PI)*sinewave->ampl;
 tt = fz_shdr_saw_tooth(tt,1.0);

 tt = fz_shdr_smooth_step(

sinewave->min_left, sinewave->min_right, tt) *
 (1.0 - fz_shdr_smooth_step(

sinewave->max_left, sinewave->max_right, tt));

 ampl = sinewave->val1 * tt + (1.0 - tt) * sinewave->val2;

 return(ampl);
}

Note, that the sine wave transparency and bump shader pixel function are actually identical. If a plugin
would register both shaders, just one, generic function could be written and assigned to both callback
function sets.

The background pixel function

fz_rgb_float_td fz_shdr_cbak_bgnd_pixel(

void *shdr_data
);

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 317

The pixel function of a background shader is expected to calculate the color of a pixel in the background
of the scene. A background pixel is a part of the image, which is not covered by a surface, or which may
be visible through a transparent surface. No tagging as 2d or 3d is necessary for this shader in the set
parameters function. The coordinate of the current background pixel can be retrieved with the API call:
 fz_shdr_get_ispace_xy(&bg_pixel);
The coordinate for the upper left corner of the pixel would be x = 0.0, y = 0.0, the lower right corner is x =
1.0, y = 1.0 regardless of the image pixel resolution. The sine wave background shader pixel function is
shown below:

fz_rgb_float_td sinewave_bgnd_shade_pixel(void *shdr_data)
{
 fz_xy_td st;
 sinewave_data_td* sinewave;
 double ss,tt;
 fz_rgb_float_td col;

 sinewave = (sinewave_data_td*) shdr_data;

 fz_shdr_get_ispace_xy(&st);

 ss = fz_shdr_saw_tooth(st.x,1.0);
 tt = fz_shdr_saw_tooth(st.y,1.0) + sin(ss * _2PI)*sinewave->ampl;
 tt = fz_shdr_saw_tooth(tt,1.0);

 tt = fz_shdr_smooth_step(

sinewave->min_left, sinewave->min_right, tt) *
 (1.0 - fz_shdr_smooth_step(

sinewave->max_left, sinewave->max_right, tt));

 col.red = sinewave->col1.red * tt + (1.0 - tt) * sinewave->col2.red;
 col.green = sinewave->col1.green * tt + (1.0 - tt) * sinewave->col2.green;
 col.blue = sinewave->col1.blue * tt + (1.0 - tt) * sinewave->col2.blue;

 return(col);
}

Note, that this function is the same as the pixel function of the sine wave color shader, with the exception of the
API call to get the pixel coordinate. The color pixel function uses fz_shdr_get_tspace_xy(&st); to get the
texture space coordinate, whereas the background pixel function uses fz_shdr_get_ispace_xy(&st); to
get the image space coordinate. Similar to the color shader pixel function, the standard scale factor is already
contained in the image space coordinate.

The depth effect (foreground) pixel function

fz_rgb_float_td fz_shdr_cbak_fgnd_pixel(

void *shdr_data
);

The pixel function of a depth effect shader is expected to change the color of a pixel based on the depth
of the surface pixel in the scene. The depth effect shader is the last shader invoked in the shader pipeline.
The API function fz_shdr_get_dist_eye_world_pnt can be called to get the distance of the pixel's
world coordinate point to the eye point. If the current pixel is a background pixel, the API function will
return FALSE. In this case, there is no surface to be rendered at that pixel. An example of a simple depth
effect shader, that adds a constant color to a pixel based on its distance between the eye point and the
yon view clipping plane is shown below:

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 318

fz_rgb_float_td sample_fgnd_shade_pixel(void *shdr_data)
{
 sample_data_td* sample_data;
 fz_rgb_float_td col;
 double dist,ratio,inv_ratio;

 sample_data = (sample_data_td *) shdr_data;

 fz_shdr_get_col(&col);
 if(fz_shdr_get_dist_eye_world_pnt(&dist) == TRUE)
 {

 ratio = dist / sample_data->yon;
 if (ratio > 1.0) ratio = 1.0;

 inv_ratio = 1.0 - ratio;

 col.red = col.red * inv_ratio + sample_data->col.red * ratio;
 col.green = col.green * inv_ratio + sample_data->col.green * ratio;
 col.blue = col.blue * inv_ratio + sample_data->col.blue * ratio;
 }

 return(col);
}

The post render function (recommended)

fzrt_error_td fz_shdr_cbak_colr_post_render(

void *shdr_data
);

This function is called once at the end of each rendering. It is expected to perform any tasks necessary
when the shader is done rendering the image. Usually this means, that the data allocated in the pre
render function is deallocated in the post_render function. The sine wave shader post render function is
shown below:

fzrt_error_td sinewave_post_render(void *shdr_data)
{
 if (shdr_data)
 { fz_mem_zone_free(NULL,(fzrt_ptr*)&shdr_data);
 }
 return(FZRT_NOERR);
}

Shader utiltity functions

There are a number of additional API function in the function set fz_shdr_fset, which are intended to
facilitate the implementation of a shader plugin. The most important of these APIs are described in more
detail below.

Repeating patterns

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 319

If a pattern is regular and repeats in a tile like fashion, such as bricks or checkers, the values of the
texture coordinate need to be modulated. This can be done with the API call:
 s = fz_shdr_saw_tooth(st.x,1.0);
 t = fz_shdr_saw_tooth(st.t,1.0);
This guarantees, that the incoming values st.x and st.y, for example, oscillate between 0.0 and 1.0. The
pattern algorithm then only needs to consider values in that range. In the Sine Wave shader, for example,
the y component of the 2d texture coordinate is modified with fz_shdr_saw_tooth. This will yield one
sine curve for each texture tile, instead of just one sine curve in the whole texture space. The saw tooth
function can also be described through this simple algorithem:

 if (val_in < 0.0) val_out = -fmod(val_in,module);
 else val_out = fmod(val_in,module);

Random Patterns

form•Z offers a number of utility functions, which compute a random pattern based on a single value, a 2d
coordinate or a 3d coordinate. They are

 fz_shdr_turbulance_1d
 fz_shdr_turbulance_2d
 fz_shdr_turbulance_3d
 fz_shdr_noise_1d
 fz_shdr_noise_2d
 fz_shdr_noise_3d

The turbulance and noise functions are very similar. The turbulance functions take an additional integer
parameter, which creates more detail if passed in with a higher value. The input to the noise and
turbulance functions is usually a value of the texture space coordinate of the pixel to be rendered. The
function returns a pseudo random number between 0.0 and 1.0. This number can be used to design a
pattern. For example, the code below creates a random pattern of black dots on a white background:

fz_shdr_get_tspace_st(&st);

val = fz_shdr_noise_2d(&st,FZ_SHDR_TURB_TYPE_BETTER,0);

if (val < 0.5) col = black_color;
else col = white_color;

It is up to the creativity of the shader developer to use noise and turbulance functions to break up regular
patterns and to create unique pattern designs. In form•Z these functions are used in a number of
shaders. For example, the Textured Brick shader uses noise functions to mix two brick colors and also to
break up the straight line of the mortar edges. The Textured Marble color shader uses turbulance
functions to mix the marble colors.

Smooth transitions

It is often desirable to create a soft transition between two colors in a pattern. In form•Z shaders, this
softening of contrast is called fuzz and offered in many shaders. Not only can it be used to create different
variations of the shader pattern, but it also help to avoid aliasing artifacts. A API utility function is availabe
to compute smooth transitions:

val_out = fz_shdr_smooth_step(min,max,val_in);

If the val parameter is less than min fz_shdr_smooth_step will return 0.0. If the val parameter is greater
than max fz_shdr_smooth_step will return 1.0. If the val parameter is between min and max,

2.8.7 RenderZone Shader form•Z SDK (v6.0.0.0 rev 05/30/06) 320

fz_shdr_smooth_step will return a value between 0.0 and 1.0. However, the value is not a linear
interpolation, When plotted as a function graph, the curve resembles a leaning S, connecting y = 0.0 and
y = 1.0 in a smooth fashion. This function can be used to create fuzz along edges of sharp contrast in a
pattern.

For example consider a simple pattern of horizontal stripes:

 fz_shdr_get_tspace_st(&st);
 st.y = fz_shdr_saw_tooth(st.y,1.0);
 if (st.y < 0.5) col = black;
 else col = white;

This will create a crips border between the black and white color. To create a fuzzy border,
fz_shdr_smooth_step can be used:

 fz_shdr_get_tspace_st(&st);
 st.y = fz_shdr_saw_tooth(st.y,1.0);
 val = fz_shdr_smooth_step(0.4,0.6,st.y);
 col = val * white + (1.0 - val) * black;

If st.y is less than 0.4 fz_shdr_smooth_step returns 0.0 and the color computation yields :

col = 0.0 * white + (1.0 - 0.0) * black;

which is all black. If st.y is greater than 0.6 fz_shdr_smooth_step returns 1.0 and the color
computation yields :

 col = 1.0 * white + (1.0 - 1.0) * black;

which is all white. In the zone where st.y is between 0.4 and 0.6 black and white are mixed. More
black is used as st.y approaces 0.4 and more white is used as it approaches 0.6.This creates a
smooth color transition from black to white.

Natrually, the smooth step function is not limited to the context of blending colors. It is just as
useful to create smooth transitions between opaque and transparent areas in a transparency
shader and between high and low areas in a bump shader.

Another method to create smooth transitions is the API

fz_shdr_spline_color(val,ncolors,colors,&color_out);

It computes a smoothly blended color from a list of individual colors. The first argument is a
parametric value that must be in the range of 0.0 to 1.0. For example, if there are four colors, and
the val argument is below 0.25, the first color is returned. If val is around 0.25, a mixture between
the first and second color is returned. If it is between 0.25 and 0.5 the second color is returned,
etc. This function can be combined with a turbulence function to create a pattern of random
colored spots.

fz_shdr_get_tspace_st(&st);
val = fz_shdr_turbulance_2d(&st,3,FZ_SHDR_TURB_TYPE_BETTER,0);
fz_shdr_spline_color(val,5,colors_in,&color_out);

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 321

2.8.8 Tool Plugins

Tool plugins are extensions that complement the form•Z tool set and behave consistent with the
form•Z tools. They appear in the form•Z interface in the icon tool palettes just like a form•Z tool.
Tools can either be operators or modifiers. An operator creates or edits the form•Z project data
(objects, lights, etc.) though graphic manipulation in the form•Z Project window. A modifier is a
tool that controls a setting that affects a group of operators. For example, the self/copy modifier
tools affect how the transformation operator tools function. Modifiers are never implemented as a
single tool but rather a set of tools that have a number of modifiers representing different options
and a set of operators that are sensitive to the selected modifier.

The user selects a tool from a tool icon menu or via a key shortcut to make it the active tool. A
click (or multiple clicks) in the project window or input in the prompt palette is used to execute the
tool. Tools are dependent on a project window and are expected to function on the provided
project window. Tools are unavailable when there is no open project window.

Tools my have user controlled options associated with them. These options appear in the tool
options palette when the tool is active. The options can also be accessed in a dialog that is
invoked by double clicking on the tool’s icon or by right-clicking on the tool’s icon. The dialog can
also be invoked by pressing option (Macintosh) or ctrl+shift (Windows) while clicking on the
tool’s icon.

Tools are very flexible and can do a variety of things. Object creation, editing and derivation
operations are common uses of tools. In an object creation tool, input from the user in the form of
clicks and/or prompt entry is used to construct an object. To create an interactive tool, a base
object should be constructed as early in the tool as possible and then refined as additional input
is acquired.

An editing operation modifies existing objects. A derivative operation uses existing objects as a
starting point to create new objects. Both of these operations need to execute pick operations to
select the objects (or other topological levels) to operate on. The tools should support the prepick
and postpick model that is standard in form•Z.

The graphic image of the icon is supplied by the plugin via one of the standard form•Z bitmap
image formats (TIFF, Targa, PNG, BMP, JPEG). If one is not provided, a default plugin icon is
supplied by form•Z. The plugin can also specify where in the tool palette the icon for the tool is
positioned. If a position is not provided, then the tool is placed at the bottom of the tool palette.
The icons for tool plugins appear at the bottom of the Tool Set in the Icons Customization
dialog. It can be customized as with any form•Z tool. All tools appear in the Key Shortcuts

Manager dialog so that they may have key shortcuts assigned for them.

The Samples directory in the form•Z SDK folder contains a folder named Tools that contains a
number of examples of tool plugins. These can be very valuable as both starting points for
development as well as examples of how the functions work. The samples include the following
plugins:

Triangle: Creates a tool in the tool palette to interactively draw a triangle.
Star: Creates a control object definition for a star object and a tool in the tool palette to
interactively draw a star.
Frame: Creates a control object definition for a derivative frame object (tube derived from
an existing object) and a tool in the tool palette to execute the operation.

Tool plugin type and registration.

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 322

Tool plugins are identified with the plugin type of FZ_TOOL_EXTS_TYPE and must implement the
fz_tool_cbak_fset call back function set. The following shows the registration of a tool and a
call back implementation. This is done from the plugin file’s entry function while handling the
FZPL_PLUGIN_INITIALIZE message as described in section 2.3. Tool plugins may provide the
fz_notf_cbak_fset function set to be notified when changes occur within form•Z.

fzrt_error_td my_tool_register_plugins()
{
 fzrt_error_td err = FZRT_NOERR;
 char my_name[256];

 /* Get the title string “My Tool” from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 1, my_name)) ==
FZRT_NOERR)
 {
 /* register the plugin “My Tool” */
 err = fzpl_glue->fzpl_plugin_register(

MY_PLUGIN_UUID,
my_name,
MY_PLUGIN_VERSION,
MY_PLUGIN_VENDOR,

 MY_PLUGIN_URL,
 FZ_TOOL_EXTS_TYPE,

FZ_TOOL_EXTS_VERSION,
 my_plugin_error_string_func,

0,
NULL,
&my_plugin_runtime_ID);

 if (err == FZRT_NOERR)
 {
 /* add the function set for the tool */
 err = fzpl_glue->fzpl_plugin_add_fset(

my_plugin_runtime_id,
 FZ_TOOL_CBAK_FSET_TYPE,
 FZ_TOOL_CBAK_FSET_VERSION,
 FZ_TOOL_CBAK_FSET_NAME,
 FZPL_TYPE_STRING(fz_tool_cbak_fset),
 sizeof (fz_tool_cbak_fset),
 my_tool_cbak_fill_fset,

FALSE);
 }

}
 return (err);
}

Tool call back function set.

Tool plugins are implemented by the call back function set fz_tool_cbak_fset. There are
twenty-four functions in this function set. The following example shows the assignment of the
plugins defined functions into the function set. This function is provided to the
fzpl_plugin_add_fset function call shown above. Note that some of these functions are
optional and some are mutually exclusive hence a plugin would never implement all of these
functions. Each of these functions is described in the following sections.

fzrt_error_td my_tool_cbak_fill_fset (
 const fzpl_fset_def_ptr fset_def,
 fzpl_fset_td * const fset)
{
 fzrt_error_td err = FZRT_NOERR;

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 323

 fz_tool_cbak_fset *tool_fset

 /* check that the provided function set is of the expected version */
 err = fsf->fzpl_fset_def_check (fset_def,
 FZ_TOOL_CBAK_FSET_VERSION,
 FZPL_TYPE_STRING(fz_tool_cbak_fset),
 sizeof (fz_tool_cbak_fset),
 FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 /* fill function set structure with local plugins functions */
 tool_fset = (fz_tool_cbak_fset *)fset;

 tool_fset->fz_tool_cbak_init = my_tool_init;
 tool_fset->fz_tool_cbak_finit = my_tool_finit;
 tool_fset->fz_tool_cbak_info = my_tool_info;
 tool_fset->fz_tool_cbak_name = my_tool_name;

tool_fset->fz_tool_cbak_uuid = my_tool_uuid;
 tool_fset->fz_tool_cbak_help = my_tool_help;

tool_fset->fz_tool_cbak_avail = my_tool_avail;
 tool_fset->fz_tool_cbak_active = my_tool_active;
 tool_fset->fz_tool_cbak_select = my_tool_select;

 tool_fset->fz_tool_cbak_click = my_tool_click;

 tool_fset->fz_tool_cbak_track = my_tool_track;
 tool_fset->fz_tool_cbak_prompt = my_tool_prompt;
 tool_fset->fz_tool_cbak_undo = my_tool_undo;
 tool_fset->fz_tool_cbak_redo; = my_tool_redo;
 tool_fset->fz_tool_cbak_cancel = my_tool_cancel;
 tool_fset->fz_tool_cbak_icon_menu = my_tool_icon_menu;
 tool_fset->fz_tool_cbak_icon_menu_adjacent = my_tool_icon_menu_adjacent;
 tool_fset->fz_tool_cbak_icon_rsrc = my_tool_icon_rsrc;
 tool_fset->fz_tool_cbak_icon_file = my_tool_icon_file;

 tool_fset->fz_tool_cbak_pref_io = my_tool_pref_io;

 tool_fset->fz_tool_cbak_opts_name = my_tool_opts_name;
 tool_fset->fz_tool_cbak_opts_uuid = my_tool_opts_uuid;
 tool_fset->fz_tool_cbak_opts_help = my_tool_opts_help;
 tool_fset->fz_tool_cbak_opts_iface_tmpl = my_tool_opts_iface_tmpl;
 }

 return err;
}

The tool initialization function (optional)

fzrt_error_td fz_tool_cbak_init(
 void
);

This function is called by form•Z once when the plugin is successfully loaded and registered. The
initialization function is where the plugin should initialize any data that may be needed by the
other functions in the function set. If the tool is an editing operation which creates new objects
from selected objects, the status of objects options for the tool needs to be initialized by calling
fz_sys_cmnd_set_status_of_objt in the tool’s initialization funtion.

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 324

fzrt_error_td my_tool_init(
void

);
{
 fzrt_error_td err = FZRT_NOERR;

/** Do initialization here **/

return(err);

}

The tool finalization function (optional)

fzrt_error_td fz_tool_cbak_finit(
 void
);

This function is called by form•Z once when the plugin is unloaded when form•Z is quitting. This
is the complementary function to the initialization function. This function should be used to free
any memory that was allocated in the initialization function or during the life of the tool.

fzrt_error_td my_tool_finit(
 void
);
{
 fzrt_error_td err = FZRT_NOERR;

/** Free any initialized data here **/

 return(err);
}

The tool info function (required)

fzrt_error_td fz_tool_cbak_info(
 fz_tool_kind_enum *kind
 fz_proj_level_enum *level
);

This function is called by form•Z once when the plugin is successfully loaded to determine the
kind and level of the tool that is implemented by the function set. The kind parameter indicates if
the tool is an operator (FZ_TOOL_KIND_OPERATOR) or a modifier (FZ_TOOL_KIND_MODIFIER).
form•Z uses the value in this parameter to determine how the icons are handled when they are
selected by the user.

The level parameter indicates the context of the tool. form•Z uses the value in this parameter
to determine which tool palette to add the icon for the tool plugin. The following are the available
values:

FZ_PROJ_LEVEL_MODEL: Indicates that the tool operates on the projects modeling
content (objects for example).

FZ_PROJ_LEVEL_MODEL_WIND: Indicates that the tool operates on modeling window
specific content (views for example) of modeling windows.

FZ_PROJ_LEVEL_DRAFT: Indicates that the tool operates on the projects drafting
content (elements for example).

FZ_PROJ_LEVEL_DRAFT_WIND: Indicates that the tool operates on drafting window
specific content (views for example) of drafting windows.

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 325

.

fzrt_error_td my_tool_cbak_info(
 fz_tool_kind_enum *kind
 fz_proj_level_enum *level
);
{
 fzrt_error_td err = FZRT_NOERR;

/* set kind and level for the tool */
*kind = FZ_TOOL_KIND_OPERATOR;
*level = FZ_PROJ_LEVL_MODEL;

return(err);

}

The tool name function (recommended)

fzrt_error_td fz_tool_cbak_name(
 char *name,
 long max_len

);

This function is called by form•Z to get the name of the tool. The name is shown in various places
in the form•Z interface including the key shortcuts manager dialog. It is recommended that the
tool name string is stored in a .fzr file so that it is localizable. This function is recommended for all
tool plugins. If this function is not provided , the name of the plugin provided in the
fzpl_plugin_register function is used.

fzrt_error_td my_tool_name(
 char *name,
 long max_len

)
{
 fzrt_error_td err = FZRT_NOERR;
 char my_str[256];

 /* Get the title string “My Tool” from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 1, my_str)) ==
FZRT_NOERR)

{
 /* copy the string to the name parameter */

 strncpy(name, my_str, max_len);
 }
 return(err);
}

The tool uuid function (recommended)

fzrt_error_td fz_tool_cbak_uuid
 fzrt_UUID_td uuid
);

This function is called by form•Z to get the UUID of the tool. This unique ID is used by form•Z to
distinguish the tool from other tools. This function is recommended for all tool plugins. If a UUID is
not provided, one will be generated internally by form•Z. In this situation the UUID will not be the
same each time form•Z is run and hence persistent information will not be retained. This includes
any preference information provided by a supplied fz_tool_cbak_pref_io function or any
user customization like key shortcuts and tool icon layout.

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 326

#define MY_TOOL_ID
"\xc1\x29\xc9\x71\x87\x16\x43\x19\xb9\xa5\x96\xe4\x1d\xe1\x7e\xb9"

fzrt_error_td my_tool_uuid(
 fzrt_UUID_td uuid
)
{
 fzrt_error_td err = FZRT_NOERR;

/* copy constant UUID to into the uuid parameter */
fzrt_UUID_copy(MY_TOOL_ID, uuid);

 return(err);
}

The tool help function (optional)

fzrt_error_td fz_tool_cbak_help(
 char *help,
 long max_len
);

This function is called by form•Z to display a help string that describes the detail of what the tool
does. This string is shown in the key shortcut manager dialog and the help dialogs. The help
parameter is a pointer to a memory block (string) which can handle up to max_len bytes of data.
It is recommended that the tool name is stored in a .fzr file so that it is localizable. The display
area for help is limited so form•Z currently will ask for no more than 512 bytes (characters).

fzrt_error_td my_tool_help(
 char *help,
 long max_len
)

{
 fzrt_error_td err = FZRT_NOERR;
 char my_str[512];

 /* Get the help string from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, my_str)) ==
FZRT_NOERR)

{
 /* copy the string to the help parameter */

 strncpy(help, my_str, max_len);
 }
 return(err);
}

The tool available function (optional)

fzrt_error_td fz_tool_cbak_avail(
 long windex,
 long *rv
);

This function is called by form•Z at various times to see if the tool is available. This is useful if the
tool is dependent on certain conditions and it is desirable to restrict its use when the conditions
are not currently satisfied. If the tool is not available, then it is shown as inactive (dimmed) in the
form•Z tool palette. Key shortcuts are also disabled for the tool when it is not available. If this
function is not provided then the tool is always available.

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 327

Availability is determined by the value that is returned by the rv parameter. A value of 1 indicates
that the tool is available, a value of 0 indicates that the tool is unavailable.

fzrt_error_td my_tool_avail(
 long windex,
 long *rv
);
{
 fzrt_error_td err = FZRT_NOERR;

/* return 1 for available, 0 for not available */
*rv = 1;

 return(err);
}

The tool active function (required for modifiers, not used for operators)

fzrt_error_td fz_tool_cbak_active(
 long windex,
 long *rv
);

This function is called by form•Z at various times to see if the modifier tool is active. This is used
by form•Z to draw the icon in the selected state. The value that is returned by the rv parameter
determines if the tool is active or not. A value of 1 indicates that the tool is active, a value of 0
indicates that the tool is inactive.

fzrt_error_td my_tool_active(
 long windex,
 long *rv
);
{
 fzrt_error_td err = FZRT_NOERR;

/* return 1 for active, 0 for not active */
if(my_modifier_state ==2)*rv = 1;
else *rv = 0;

 return(err);
}

The tool select function (optional)

fzrt_error_td fz_tool_cbak_select(
 long windex
);

This function is called by form•Z when the tool is selected from the tool icon palette or when a
key shortcut for the tool is invoked.

For operator tools, the select function is where any tool specific preparation occurs for the
execution of the tool (which is triggered by a click in the project window). The select function
should set the prompt string (in the prompts palette) for the tool. The select function is also called
after the execution of the tool to prepare it for the next execution.

The following example shows the select function for an operator tool that draws a line. It starts by
asking for the origin point for an object in the prompts palette. Note the prompt string is shown

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 328

here for readability. It should be stored in a .fzr resource file and loaded with fzrt_get_string
to support localization.

fzrt_error_td my_tool_select(
 long windex
)
{
char prompt_str[256];
short pre_pick;
long i,npick;
fz_model_pick_enum pkind;’
fzrt_error_td err = FZRT_NOERR;

 /* Get the prompt string “First point:” from the plugin’s resource file
*/
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 3, prompt_str)) ==
FZRT_NOERR)

{
 err = fz_fuim_prompt_line(

prompt_str, /* prompt string */
FZ_FUIM_PROMPT_LINE_NEXT, /* place it on the next line */
FZ_FUIM_PROMPT_EDIT_XYZ); /* set the edit mode of prompt */

 }
 return(err);
}

The following example shows the select function for a tool that starts by asking the user to select
an object. Note that the prompt handles prepick and postpick by checking the state of the pick
buffer.

fzrt_error_td my_tool_select(
 long windex
)
{
char prompt_str[256];
short pre_pick;
long i,npick;
fz_model_pick_enum pkind;
fzrt_error_td err = FZRT_NOERR;

 /* Get the number of picked entities */
 fz_model_pick_get_count(windex,&npick);

 /* loop through picked entities */
 for(i = 0; i < npick; i++)
 {
 /* get one picked entity */

fz_model_pick_get_data(windex,i,&pkind,NULL,NULL,NULL);

/* check if it was picked at the object level */
if (pkind == FZ_MODEL_PICK_OBJT)

 { pre_pick = TRUE;
 break;
 }
 }

/* check if it was picked at the object level */
 if(pre_pick)
 { /* Get the string "Click to frame selected objects” */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 4, prompt_str);
 }

else
 { /* Get the string "Select object to frame” */

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 329

 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 5, prompt_str);
 }

 err = fz_fuim_prompt_line(

prompt_str, /* prompt string */
FZ_FUIM_PROMPT_LINE_NEXT, /* place it on the next line */
FZ_FUIM_PROMPT_EDIT_NONE); /* set the edit mode of prompt to

none */

 return(err);
}

For modifier tools, the select function should change the state of the modifier to the desired value
for the selected icon. The modifier is usually a global variable in the plugin that can be accessed
by the tools that use it.

fzrt_error_td my_tool_select(
 long windex
)
{
fzrt_error_td err = FZRT_NOERR;

 /* Set modifier state for the tool */

my_modifier_state = 2;
}

The tool click function (required for operators, not used for modifiers)

fzrt_error_td fz_tool_cbak_click
 long windex,
 fzrt_point *where,
 fz_xyz_td *where_3d,
 fz_map_plane_td *map_plane,
 fz_fuim_click_enum clicks,
 long click_count,
 fzrt_boolean *click_handled,
 fz_fuim_click_wait_enum *click_wait,
 fzrt_boolean *done
);

This function is called by form•Z for operators when the tool is the active tool and a click occurs
in the active project window. This function is called by form•Z for each click in the project window
until TRUE is returned in the done parameter (or from the fz_tool_cbak_prompt function) or
the user cancels the operation.

The windex parameter is the active window. The where parameter indicates in 2 dimensional
screen space where the mouse was clicked. The where_3d parameter indicates the 3
dimensional location in world space where the mouse was clicked. This is a point on the active
reference plane provided in the map_plane parameter. The clicks parameter indicates if the
click is a single, double or triple click. The click_count parameter is the number of clicks since
the start of the tool. This value starts at 1 for the first click and increases with each click of the
mouse.

The click_handled parameter should be set to TRUE if the click function handled the click and
it should be set to FALSE if the function did not handle the click. The default value is TRUE. The
click_wait parameter tells form•Z to wait until a specific type of click happens before calling
the click function again. The default is FZ_FUIM_CLICK_WAIT_NOT. The done parameter

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 330

determines the completion of the tool. A value of TRUE indicates that the tool is done, a value of
FALSE indicates that the tool expects more clicks. The default is FALSE.

The following example shows the click function for a tool that draws a line. The first click creates
a new object with a single segment (edge) with identical start and end points at the click point.
The second click fixes the end point at the click point. This is done in this manner to
accommodate the track function (see following section). If a track function is not provided then the
object does not need to be created until the final click. In this situation, the click points could be
accumulated into a buffer and then used to create the object. Note that this is not an ideal
interface for the user as they will get no interactive feedback during the operation. If performance
is a concern because of the complexity of the operation, then a proxy should be used so that the
user gets some feedback during the tools execution.

typedef struct
{ fz_objt_ptr obj;
 fz_xyz_td points[3];
} line_data_td;

line_data_td line_data;

fzrt_error_td my_tool_click(
 long windex,
 fzrt_point *where,
 fz_xyz_td *where_3d,
 fz_map_plane_td *map_plane,
 fz_fuim_click_enum clicks,
 long click_count,
 fzrt_boolean *click_handled,
 fz_fuim_click_wait_enum *click_wait,
 fzrt_boolean *done
)
{
 fzrt_error_td err;
 char prompt_str[256];
 long pindx[2];

 if(click_count == 1) /* handle first click */
 {
 /* make new object */
 if((err = fz_objt_cnstr_objt_new(windex,&line_data.obj)) ==
FZRT_NOERR)
 {
 /* construct line object */
 line_data.points[0] = *where_3d;
 line_data.points[1] = *where_3d;
 fz_objt_fact_add_pnts(windex,obj,line_data.points,2);

 pindx[0] = 0;
 pindx[1] = 1;
 fz_objt_fact_create_wire_face(

windex, line_data.obj,pindx,2,NULL);

 /* add object to the project */
 err = fz_objt_add_to_project(windex,line_data.obj);

 if (err != FZRT_NOERR)
 { fz_objt_edit_delete_objt(windex,line_data.obj);
 }
 else
 {

/* Get the string "Second point:” */

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 331

 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 6,
prompt_str);

/* set prompt for next point */
fz_fuim_prompt_line(prompt_str,

FZ_FUIM_PROMPT_LINE_NEXT,
FZ_FUIM_PROMPT_EDIT_XYZ);

 }
 }
 }
 else if(click_count == 2) /* handle second click */
 {
 /* reset object and construct with new second point */

fz_objt_fact_reset(windex, line_data.obj);
 line_data.points[1] = *where_3d;
 fz_objt_fact_add_pnts(windex, line_data.obj,line_data.points,2);

 pindx[0] = 0;
 pindx[1] = 1;
 fz_objt_fact_create_wire_face(windex, line_data.obj,pindx,2,NULL);

 done = 1; / tool complete */
 }
}

If the operation requires the picking (selection) of objects (or other topological levels), then this
should be handled following the form•Z prepick and postpick standard. That is for each click the
pick buffer is inspected to see if the requirements have been satisfied for the operation (prepick).
If it is not satisfied, the function fz_model_pick is called to handle the click as a postpick and then
the pick buffer is re-inspected. If the pick requirements have been satisfied with the prepick or
postpick then the operation completes. The prompts palette should also be updated in the click
function to reflect the desired user actions using the fz_fuim_prompt_line function.

fzrt_error_td my_tool_click(
 long windex,
 fzrt_point *where,
 fz_xyz_td *where_3d,
 fz_map_plane_td *map_plane,
 fz_fuim_click_enum clicks,
 long click_count,
 fzrt_boolean *click_handled,
 fz_fuim_click_wait_enum *click_wait,
 fzrt_boolean *done
);
{
 fzrt_error_td err = FZRT_NOERR;

*done = FALSE;

 /* Get the number of picked entities */

fz_model_pick_get_count(windex,&npick);
if(npick < 2)

 {
 /* use the click to pick an object */

fz_model_pick(windex,where,FZ_MODEL_PICK_OBJT);
 fz_model_pick_get_count(windex,&npick);

}

/* check if enough picked to execute operation */
if(npick >= 2)
{
 /* get first two objects from pick buffer */

fz_model_pick_get_data(windex,0,&pkind1,NULL,&pick_obj1,NULL);

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 332

 fz_model_pick_get_data(windex,1,&pkind2,NULL,&pick_obj2,NULL);
 if(pkind1 == FZ_MODEL_PICK_OBJT && pkind2 == FZ_MODEL_PICK_OBJT)
 {
 /** operate on objects here **/

}

*done = TRUE;
}

 return(err);
}

If the tool is an editing operation which creates new objects from selected objects, the status of
objects functionality should be implemented. This can be done easily with two api calls:
fz_objt_edit_handle_status_of_opnd and fz_objt_edit_handle_new_objt_volms. These
two functions correspond directly to the options in the Status Of Objects palette. Note that the
tool also needs to initialize its status of objects option in the fz_tool_cbak_init callback
function by calling fz_syst_cmnd_set_status_of_objt with the appropriate arguments.

The tool prompt function (required for operators, not used for modifiers)

fzrt_error_td tool_cbak_prompt
 long windex,
 fz_xyz_td *prompt_value,
 char *prompt_string,
 fz_map_plane_td *map_plane,
 long click_count,
 fzrt_boolean *prompt_handled,
 fz_fuim_click_wait_enum *click_wait,
 fzrt_boolean *done
);

This function is called by form•Z when the tool is the active tool and the user makes input in an
editable prompt string in the prompts palette. This function is very similar to the click function and
each input of data in the prompts palette is treated by form•Z the same as a click. This function is
called by form•Z each time the user enters data in the prompts palette and then presses the
enter or return keys. Like the click function, this function is called until TRUE is returned in the
done parameter (or TRUE is returned in the done parameter from the click function) or the user
cancels the operation.

The windex parameter is the active window. The prompt_value and prompt_string
parameters are the users input from the prompts palette. An editable prompt is created by calls to
the fz_fuim_prompt_line function in the select function, click function, undo function, redo
function or previous click handling in the prompt function. Editable input is specified by the last
parameter to the fz_fuim_prompt_line function. This parameter instructs the prompts palette
as to what type of input is desired (if any). The following table shows the available options.

Name Description
FZ_FUIM_PROMPT_EDIT_NONE No editable text in prompt string
FZ_FUIM_PROMPT_EDIT_XY Standard 2D dimensional world Cartesian

coordinate
FZ_FUIM_PROMPT_EDIT_XYZ Standard 3D dimensional world Cartesian

coordinate
FZ_FUIM_PROMPT_EDIT_ANGLE Angular dimension
FZ_FUIM_PROMPT_EDIT_LINEAR_X Liner dimension
FZ_FUIM_PROMPT_EDIT_LINEAR_XY Liner 2D dimension
FZ_FUIM_PROMPT_EDIT_LINEAR_XYZ Liner 3D dimension
FZ_FUIM_PROMPT_EDIT_LINEAR_DECIMAL_X Liner dimension, displayed in decimal format.

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 333

FZ_FUIM_PROMPT_EDIT_LINEAR_DECIMAL_XY Liner 2D dimension, displayed in decimal
format.

FZ_FUIM_PROMPT_EDIT_LINEAR_DECIMAL_XY
Z

Liner 3D dimension, displayed in decimal
format.

FZ_FUIM_PROMPT_EDIT_STRING string

Note that the FZ_FUIM_PROMPT_EDIT_STRING does not return a value for the prompt_value
parameter. Instead the raw string is returned in the prompt_string parameter. The
prompt_value parameter is interpreted based on the type of the prompt edit shown in the
above table. If the prompt edit is FZ_FUIM_PROMPT_EDIT_ANGLE,
FZ_FUIM_PROMPT_EDIT_LINEAR_X, or FZ_FUIM_PROMPT_EDIT_LINEAR_DECIMAL_X,
then the value is found in the first field (x). If the prompt edit is FZ_FUIM_PROMPT_EDIT_XY,
FZ_FUIM_PROMPT_EDIT_LINEAR_XY, or FZ_FUIM_PROMPT_EDIT_LINEAR_DECIMAL_XY,
then the values are found in the first two fields (x and y). If the prompt edit is
FZ_FUIM_PROMPT_EDIT_XYZ, FZ_FUIM_PROMPT_EDIT_LINEAR_XYZ, or
FZ_FUIM_PROMPT_EDIT_LINEAR_DECIMAL_XYZ, then the values are found all three fields (x,
y and z).

The map_plane parameter is the active reference plane. The click_count parameter is the
number of clicks (or prompts) since the start of the tool. This value starts at 1 for the first click (or
prompt) and increases with each click (or prompt).

The prompt_handled parameter should be set to TRUE if the prompt function handled the
prompt and it should be set to FALSE if the function did not handle the prompt. The default value
is TRUE. The click_wait parameter tells form•Z to wait until a specific type of click happens
before calling the next click function. The default is FZ_FUIM_CLICK_WAIT_NOT. The done
parameter determines the completion of the tool. A value of TRUE indicates that the tool is done,
a value of FALSE indicates that the tool expects more clicks. The default is FALSE.

The following example shows the prompt function for a tool that draws a line. The prompt
function is very similar to the click function in the previous line tool example. In the prompt
function the coordinate location comes from the prompt_value parameter rather than the click
point.

typedef struct
{ fz_objt_ptr obj;
 fz_xyz_td points[3];
} line_data_td;

line_data_td line_data;

fzrt_error_td my_tool_prompt (
 long windex,
 fz_xyz_td *prompt_value,
 char *prompt_string,
 fz_map_plane_td *map_plane,
 long click_count,
 fzrt_boolean *prompt_handled,
 fz_fuim_click_wait_enum *click_wait,
 fzrt_boolean *done
)
{
 fzrt_error_td err = FZRT_NOERR;
 char prompt_str[256];
 long pindx[2];
 fz_xyz_td xyz;

 /* Get the prompt data */

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 334

 xyz = *prompt_value;

 if(click_count == 1) /* handle first click */
 {
 /* make new object */
 if((err = fz_objt_cnstr_objt_new(windex,&line_data.obj)) ==
FZRT_NOERR)
 {
 /* construct line object */
 line_data.points[0] = xyz;
 line_data.points[1] = xyz;
 fz_objt_fact_add_pnts(windex,
line_data.obj,line_data.points,2);

 pindx[0] = 0;
 pindx[1] = 1;
 fz_objt_fact_create_wire_face(

windex, line_data.obj,pindx,2,NULL);

 /* add object to the project */
 err = fz_objt_add_to_project(windex,line_data.obj);

 if (err != FZRT_NOERR)
 { fz_objt_edit_delete_objt(windex,line_data.obj);
 }
 else
 {

/* Get the string "Second point:” */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 6,
prompt_str);

/* set prompt for next point */
fz_fuim_prompt_line(prompt_str,

FZ_FUIM_PROMPT_LINE_NEXT,
FZ_FUIM_PROMPT_EDIT_XYZ);

 }
 }
 }
 else if(click_count == 2) /* handle second click */
 {
 /* reset object and construct with new second point */

fz_objt_fact_reset(windex, line_data.obj);
line_data.points[1] = xyz;

 fz_objt_fact_add_pnts(windex, line_data.obj,line_data.points,2);

 pindx[0] = 0;
 pindx[1] = 1;
 fz_objt_fact_create_wire_face(windex,obj,pindx,2,NULL);

 done = 1; / tool complete */
 }
 return(err);
}

The tool track function (optional, not used for modifiers)

fzrt_error_td fz_tool_cbak_track(
 long windex,
 fzrt_point *where,
 fz_xyz_td *where_3d,
 fz_map_plane_td *map_plane,
 long click_count
);

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 335

This function is called by form•Z when the tool is the active tool and the mouse is moved in the
active project window after the first click. This function is used to update any interactive input as
the mouse moves in the window. In general this function performs the same action as the next
click would allowing the input to appear interactive

The windex parameter is the active window. The where parameter indicates in 2 dimensional
screen space where the cursor is located. The where_3d parameter indicates the 3 dimensional
location in world space where the cursor is located. This is a point on the active reference plane
provided in the map_plane parameter. The click_count parameter is the number of clicks
since the start of the tool (first click).

The following example shows the track function for a tool that draws a line. This complements
the previous line tool example for the click and prompt functions. In this function the location of
the second point is updated to the current cursor location.

typedef struct
{ fz_objt_ptr obj;
 fz_xyz_td points[3];
} line_data_td;

line_data_td line_data;

fzrt_error_td my_tool_track(
 long windex,
 fzrt_point *where,
 fz_xyz_td *where_3d,
 fz_map_plane_td *map_plane,
 long click_count
);
{
 fzrt_error_td err = FZRT_NOERR;
 long pindx[2];

 if(click_count == 1)
 {
 /* reset object and construct with new second point */
 fz_objt_fact_reset(windex, line_data.obj);

line_data.points[1] = *where_3d;
 fz_objt_fact_add_pnts(windex, line_data.obj,line_data.points,2);

 pindx[0] = 0;
 pindx[1] = 1;
 fz_objt_fact_create_wire_face(windex, line_data.obj,pindx,2,NULL);
 }
 return(err);
}

The tool cancel function (optional)

fzrt_error_td fz_tool_cbak_cancel (
 long windex,
 long click_count
);

This function is called by form•Z when a tool is interrupted. A tool can be canceled by the user
using the key cancel key shortcut or by form•Z if a form•Z operation ID executed that cancels the
current operation (selecting another tool for example). This function is used to cleanup any data
that was generated during the execution of the tool.

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 336

The windex parameter is the active window. The click_count parameter is the number of
clicks since the start of the tool (first click).

The following example complements the previous line tool example for the click, prompt and
track functions. In this function, the object that was created in the prior functions is deleted.

typedef struct
{ fz_objt_ptr obj;
 fz_xyz_td points[3];
} line_data_td;

fzrt_error_td my_tool_cancel(
 long windex,
 long click_count
)
{
 fzrt_error_td err = FZRT_NOERR;

 /* delete object crated at first click */

if(click_count >= 1)fz_objt_edit_delete_objt(windex,line_data.obj);

 return(err);
}

The tool undo function (optional)

fzrt_error_td fz_tool_cbak_undo (
 long windex,
 long click_count,
 fz_fuim_click_wait_enum *click_wait,
 fzrt_boolean *done
);

This function is called by form•Z when the user selects the undo menu item from the Edit menu
during the execution of the tool. This function is used to back the input up to the state of the
previous click. If this function is not provided, the tool does not perform undos during the tool.

The windex parameter is the active window. The click_count parameter is the number of
clicks which will be one less than the last call to the click or prompt functions. The click_wait
parameter tells form•Z to wait until a specific type of click happens before calling the click
function again.

The done parameter determines the completion of the tool. A value of TRUE indicates that the
tool is done, a value of FALSE indicates that the tool expects more clicks. The default is FALSE.

fzrt_error_td my_tool_undo(
 long windex,
 long click_count,
 fz_fuim_click_wait_enum *click_wait
 fzrt_boolean *done
)
{
 fzrt_error_td err = FZRT_NOERR;

 /** return to previous click state here ***/

 return(err);
}

The tool redo function (optional)

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 337

fzrt_error_td fz_tool_cbak_redo (
 long windex,
 long click_count,
 fz_fuim_click_wait_enum *click_wait
 fzrt_boolean *done
);

This function is called by form•Z when the user selects the redo menu item from the Edit menu
during the execution of the tool. This function is used to move the input up to the state of the
previously undone click. If this function is not provided, the tool does not perform redos during
the tool. This function is only called immediately after a call to the undo function. Once a click or
prompt entry occur, the redo is reset.

The windex parameter is the active window. The click_count parameter is the number of
clicks that will be one more that the last call to the undo function. The click_wait parameter
tells form•Z to wait until a specific type of click happens before calling the click function again.

The done parameter determines the completion of the tool. A value of TRUE indicates that the
tool is done, a value of FALSE indicates that the tool expects more clicks. The default is FALSE.

fzrt_error_td my_tool_redo (
 long windex,
 long click_count,
 fz_fuim_click_wait_enum *click_wait
 fzrt_boolean *done
)
{
 fzrt_error_td err = FZRT_NOERR;

 /** return to previously undone click state here ***/

 return(err);
}

The tool icon menu function (Optional, mutually exclusive with icon menu adjacent function)

fzrt_error_td fz_tool_cbak_icon_menu (
 const fzrt_UUID_td icon_menu_uuid,
 fzrt_UUID_td group_uuid,
 fz_fuim_icon_group_enum *group_pos,
 long *group_row,
 long *group_col
);

This function is called by form•Z to add the tool to the Tool icon menu. The presence of this
function places the tool in the Tool set of tools. If no other parameters are set then the tool will get
added to a group of icons at the bottom (end) of the icon menu. Note that this only adds the
position to the tool menu. The function fz_tool_cbak_icon_rsrc or
fz_tool_cbak_icon_file must be provided to add custom graphics for the icon. If one of
these is not provided, form•Z uses a generic plugin icon graphic.

The group_uuid parameter is assigned to all tools that should be grouped together. That is, all
fz_tool_cbak_icon_menu implemented functions that return the same group_uuid
parameter are placed together in the system icon menu in the same group (pop-out tool menu).
This group is added to the bottom (end) of the menu. The placement of the item in the group is
controlled by the group_pos parameter. A value of FZ_FUIM_ICON_GROUP_START places the
item at the start of the group and a value of FZ_FUIM_ICON_GROUP_END places it at the end of

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 338

the group. Note that these may not always yield constant results because plugin load order can
vary hence multiple uses of FZ_FUIM_ICON_GROUP_END my note build the menu in the
expected order. When FZ_FUIM_ICON_GROUP_CUSTOM is selected, then the group_row and
group_col parameters specify the position of the item in the tool menu group.

#define MY_GRUP_ID
"\x5d\xe6\x85\x41\x6b\xaa\x4f\xb4\xa5\x6a\xf5\x0e\x65\x36\xfb\xd0"

fzrt_error_td my_tool_icon_menu (
 const fzrt_UUID_td icon_menu_uuid,
 fzrt_UUID_td group_uuid,
 fz_fuim_icon_group_enum *group_pos,
 long *group_row,
 long *group_col
)
{
 fzrt_error_td err = FZRT_NOERR;

fzrt_UUID_copy(MY_GRUP_ID, group_uuid);
 *group_pos = FZ_FUIM_ICON_GROUP_CUSTOM;
 *group_row = 1;
 *group_col = 1;

 return(err);

}

The function fz_fuim_exts_icon_group can be called to better control the group containing
the set of tools. This adds the ability to name the group and insert the pop-out menu group in the
existing menu groups. The icon pop-out menu can be created in each
fz_tool_cbak_icon_menu so that if the grouped items are actually in separate plugins, and
the user has disabled one of the plugins, the icon menu will still be formed properly. form•Z
ignores attempts to create a menu when the uuid already exists. That situation would occur if all
the plugins are enabled. The following is an example of a pop-out menu.

fzrt_error_td my_tool_icon_menu (
 const fzrt_UUID_td icon_menu_uuid,
 fzrt_UUID_td group_uuid,
 fz_fuim_icon_group_enum *group_pos,
 long *group_row,
 long *group_col
)
{
 fzrt_error_td err = FZRT_NOERR;

err = fz_fuim_exts_icon_group (
MY_GRUP_ID, "My Group", icon_menu_uuid,
FZRT_UUID_NULL, FZ_FUIM_POS_BEFORE,
FZRT_UUID_NULL, FZ_FUIM_POS_BEFORE);

if(err == FZRT_NOERR)
{ fzrt_UUID_copy(MY_GRUP_ID, group_uuid);

 *group_pos = FZ_FUIM_ICON_GROUP_CUSTOM;
 *group_row = 1;
 *group_col = 1;

 }
 return(err);

}

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 339

The tool icon menu adjacent function (Optional, mutually exclusive with icon menu function)

fzrt_error_td fz_tool_cbak_icon_menu_adjacent(
 const fzrt_UUID_td icon_menu_uuid,
 fzrt_UUID_td adjacent_uuid,
 fz_fuim_icon_adjacent_enum *where
);

This function is called by form•Z to add the tool to the system icon menu. It serves the same
purpose as the fz_cmds_cbak_proj_icon_menu function, however it specifies the location of
the icon item quite differently. The location is identified by referencing another tool in the icon
menu. The adjacent_uuid parameter is the UUID of the tool to which the icon should be added
adjacent. The where parameter specifies to which side of the adjacent icon the icon should be
added. The available options are FZ_FUIM_ICON_ADJACENT_TOP,
FZ_FUIM_ICON_ADJACENT_BOTTOM, FZ_FUIM_ICON_ADJACENT_LEFT,
FZ_FUIM_ICON_ADJACENT_RIGHT. The default action is specified by
FZ_FUIM_ICON_ADJACENT_DEFAULT which currently is the same as
FZ_FUIM_ICON_ADJACENT_RIGHT. New pop-out groups can not be created with this function.
The following example ads the icon to the right of the form•Z primitive spheroid tool.

fzrt_error_td my_tool_icon_menu_adjacent (
 const fzrt_UUID_td icon_menu_uuid,
 fzrt_UUID_td adjacent_uuid,
 fz_fuim_icon_adjacent_enum *where
);
{
 fzrt_error_td err = FZRT_NOERR;

 /* copy UUID of adjacent tool */

fzrt_UUID_copy(FZ_CMND_MODEL_PRIM_SPHERE, adjacent_uuid);
 *where = FZ_FUIM_ICON_ADJACENT_RIGHT;

 return(err);
}

The tool icon file function (Optional, mutually exclusive with icon resource function)

fzrt_error_td fz_tool_cbak_icon_file (
 fz_fuim_icon_enum which,
 fzrt_floc_ptr floc,
 long *hpos,
 long *vpos,
 fzrt_floc_ptr floc_mask,
 long *hpos_mask,
 long *vpos_mask
);

This function is called by form•Z to get an icon for the tool from an image file. The icon image can
be in any of the form•Z supported image file formats or format for which an image file translator
is installed. The TIFF format is the recommended format as the TIFF translator is commonly
available. form•Z will request an icon when the tool is displayed in a tool menu using
fz_tool_cbak_icon_menu or fz_tool_cbak_icon_menu_adjacent.

form•Z supports 3 styles of icon display. Recall that these are selectable by the user from the
Icon Style menu in the Icons Customization dialog. The first two options (White and Gray) are
generated from a black and white source graphic with different treatments at drawing time. The
third option is generated from a color source graphic. The first two options are older icon styles

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 340

that are provided for backward compatibility. The color icons became the default with v 4.0. Note
that if an icon of one type or the other (or both) is not provided, then form•Z uses a generic plugin
icon graphic.

The which parameter indicates the type of source graphic icon that is needed by form•Z. For
each type of icon source (black and white and color), there are two possible sizes. The full size
icon is the size that is used in the main tool palettes and tear off tool palettes. The black and
white source full size is 30 x 30 pixels and indicated by FZ_FUIM_ICON_MONOC. The color
source is 32 x 32 pixels and indicated by FZ_FUIM_ICON_COLOR. The alternate size is the
smaller size used for window icons that are drawn in the lower margin of the window. The
alternate size for both black and white and color sources is 20 x 16 pixels and indicated by
FZ_FUIM_ICON_MONOC_ALT and FZ_FUIM_ICON_COLOR_ALT respectively.

The floc parameter should be filled with the file name and location of the file that contains the
icon graphic. The hpos and vpos parameters should be set to the left and top pixel location of
icon data in the file respectively. It is recommended that the icon file be in the same directory as
the plugin file. This makes it simple to find the file. The location of the plugin file can be retained
during the FZPL_PLUGIN_INITIALIZE stage using the fsf-
>fzpl_plugin_file_get_floc function.

The floc_mask parameter should be filled with the file name and location of the file that
contains the icon mask (this can be the same file as the floc parameter). The icon mask defines
the transparent areas of the icon. The hpos_mask and vpos_mask parameters should be set to
the left and top pixel location of icon mask data in the file respectively. If a mask is not provided
than the entire background of the icon will be drawn.

A single file can be used for multiple icons across a variety of tools by creating a grid of icons in
the file and specifying the location for each icon in the corresponding provided function.

fzrt_error_td my_tool_icon_file (
 fz_fuim_icon_enum which,
 fzrt_floc_ptr floc,
 long *hpos,
 long *vpos,
 fzrt_floc_ptr floc_mask,
 long *hpos_mask,
 long *vpos_mask
)
{

fzrt_error_td err = FZRT_NOERR;

 switch(which)
 {
 case FZ_FUIM_ICON_MONOC:
 err = fzrt_file_floc_copy(my_plugin_ floc,floc);
 if(err == FZRT_NOERR)

{ err = fzrt_file_floc_set_name(floc,"my_icon_bw.tif");
 *hpos = 0;
 *vpos = 0;
 }
 break;
 case FZ_FUIM_ICON_COLOR:
 err = fzrt_file_floc_copy(my_plugin_ floc,floc);
 if(err == FZRT_NOERR)

{ err = fzrt_file_floc_set_name(floc,"
my_icon_col.tif");

 *hpos = 0;
 *vpos = 0;
 }

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 341

 break;
 }
 return(err);
}

The tool icon resource function (optional, mutually exclusive with icon file function)

fzrt_error_td fz_tool_cbak_icon_rsrc (

fz_fuim_icon_enum which,
 fzrt_icon_ptr *icon
);

This function is called by form•Z to load an icon for the tool from a platform’s native (Macintosh or
Windows) resource file format. This function works the same as the above icon file function
except that the icon data is read from the resource file instead of the image file. These two
functions are mutually exclusive (only one should be provided). Although this function and the
method for loading resources is cross platform, the resource formats are not hence the data must
be generated differently for each platform. This function is provided for situations where resources
in these formats are already available. It is recommended that all new artwork use the icon file
method described above as it is cross platform and simpler to create the content.

This function can be used to load the icon from the plugin file's resource data by using the
function fzpl_plugin_get_rlib_idx to obtain the index for the plugins files resource data.
The function fzrt_rlib_load_icon must be called to load the resource from the file. Use
FZRT_LOAD_ICON_BW to indicate black and white icons and indicate color icons using
FZRT_LOAD_ICON_COLOR. On the Macintosh platform, the black and white icons are read from
‘ICON’ resources and color icons from ‘cicn’. On Windows black and white icons must be stored
as a 1 bit depth bitmap resource with the type "FZICON" in the resource file and color icons can
be stored as either a native Windows ICON or as an 8 bit deep bitmap resource. Note that on
Windows, black and white icons and color icons stored as a bitmap resource will not have an icon
mask. form•Z releases the memory for the resource when the plugin is unloaded.

All icons are stored in 32 x 32 pixel resources, however, depending on the type of the icon, only
part of the resource will be used. Only the top left 30 x 30 pixels of the 32 x 32 are used for the
black and white full icon size indicated by FZ_FUIM_ICON_MONOC. The bottom and right two
pixels are NOT used (and will be cropped). The entire 32 x 32 is used for the color full icon size
indicated by FZ_FUIM_ICON_COLOR. For the alternate size icons indicated by
FZ_FUIM_ICON_MONOC_ALT and FZ_FUIM_ICON_COLOR_ALT respectively, form•Z uses the
bottom left 20 x 16 pixels. The top 16 and right 12 pixels are NOT used (and will be cropped).

fzrt_error_td my_tool_icon_rsrc (
 fz_fuim_icon_enum which,
 fzrt_icon_ptr *icon

)
{
 long err = FZRT_NOERR;
 short rlib_index;

err = fzpl_plugin_get_rlib_idx(my_plugin_runtime_ID, &rlib_index);

 if(err == FZRT_NOERR)
 {
 switch(which)
 {
 case FZ_FUIM_ICON_MONOC:

err = fzrt_rlib_load_icon(
rlib_index,FZRT_LOAD_ICON_BW,128,icon);

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 342

 break;
 case FZ_FUIM_ICON_COLOR:

err = fzrt_rlib_load_icon(
rlib_index,FZRT_LOAD_ICON_COLOR,128,icon);

 break;
}

 break;
 }
 return(err);
}

The tool preferences IO function (optional)

fzrt_error_td fz_tool_cbak_pref_io (
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
);

form•Z calls this function to read and write any tool specific data to a form•Z preference file. This
function is called when reading and writing user specified preference files (Save Preferences
button in the Preferences dialog). It is also called by form•Z when reading and writing the session
to session preference file maintained by form•Z. The file IO is performed using the IO streams
(iost) interface. This interface provides functions for reading and writing data from a file (stream)
and handles all cross platform endian issues. The iost parameter is the pointer to the
preference file and should be used in all IO Stream function calls. The IO Stream functions are
fully documented in the form•Z API reference.

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that is written when writing a file. When reading a file, the version parameter contains the
version of the data that was written to the file (and hence being read). The size parameter is
only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the plugin to maintain version changes of the plugin data. In the following
example, in its first release, a tools data consisted of four long integer values, a total of 16 bytes.
When written, the version reported back to form•Z was 0. In a subsequent release, a fifth long
integer is added to increase the size to 20 bytes. When writing this new data, the version reported
to form•Z needs to be increased. When reading a file with the old version of the tool preference,
form•Z will pass in the version number of the attribute when it was written, in this case 0. This
indicates to the plugin, that only four integers, 16 bytes, need to be read and the fifth integer
should be set to a default value.

fzrt_error_td my_tool_iost(
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size
);
{
 fzrt_error_td err = FZRT_NOERR;

 if (dir == FZ_IOST_WRITE) *version = 1;

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 343

 err = fz_iost_one_long(iost,&my_tool->value1)
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_tool->value2);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_tool->value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,&my_tool->value4);

 if(*version >= 1)
 { err = fz_iost_one_long(iost,&my_tool->value5);
 }
 }
 }
 }

 return(err);
}

The tool options name function (Optional)

fzrt_error_td fz_tool_cbak_opts_name(
 char *name,
 long max_len

);

This function is called by form•Z to get the name of the tools options. The name is shown in
various places in the form•Z interface including the key shortcuts manager dialog. It is
recommended that the tool name is stored in a .fzr file so that it is localizable

fzrt_error_td my_tool _opts_name(
 char *name,
 long max_len

)
{
 fzrt_error_td err = FZRT_NOERR;

 /* Get the title string “My Tool Options” from the plugin’s resource file
*/
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 11, my_str)) ==
FZRT_NOERR)

{
 /* copy the string to the name parameter */

 strncpy(name, my_str, max_len);
 }
 return(err);
}

The tool options uuid function (optional)

fzrt_error_td fz_tool_cbak_opts_uuid
 fzrt_UUID_td uuid
);

This function is called by form•Z to get the uuid of the tools options. This unique ID is used by
form•Z to distinguish the tool from other tools. This function is recommended for all tool plugins. If
a UUID is not provided, one will be generated internally by form•Z. in this situation the UUID will
not be the same each time form•Z is run and hence persistent information will not be retained.
This any user customization like key shortcuts.

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 344

#define MY_TOOL_OPTS_ID \
 "\xc1\x29\xc9\x71\x87\x16\x43\x19\xb9\xa5\x96\xe4\x1d\xe1\x7e\xb9"

fzrt_error_td my_tool_opts_uuid(
 fzrt_UUID_td uuid
)
{
 fzrt_error_td err = FZRT_NOERR;

/* copy constant UUID to into the uuid parameter */
fzrt_UUID_copy(MY_TOOL_OPTS_ID, uuid);

 return(err);
}

The tool options help function (optional)

fzrt_error_td fz_tool_cbak_opts_help(
 char *help,
 long max_len
);

This function is called by form•Z to display a help string that describes the detail of what the tool
does. This string is shown in the key shortcut manager dialog and the help dialogs. The help
parameter is a pointer to a memory block (string) which can handle up to max_len bytes of data.
It is recommended that the tool name is stored in a .fzr file so that it is localizable. The display
area for help is limited so form•Z currently will ask for no more than 512 bytes (characters).

fzrt_error_td my_tool_opts_help(
 char *help,
 long max_len
)

{
 fzrt_error_td err = FZRT_NOERR;
 char my_str[512];

 /* Get the help string from the plugin’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, my_str)) ==
FZRT_NOERR)

{
 /* copy the string to the help parameter */

 strncpy(help, my_str, max_len);
 }
 return(err);
}

The tool options interface template function (optional)

fzrt_error_td fz_tool_cbak_opts_iface_tmpl (
 fz_fuim_tmpl_ptr tmpl_ptr,
 fzrt_ptr tmpl_data
)

This function is called by form•Z when the interface for the tool options is needed. This template
is displayed inside the tool options palette when the tool is active and in a dialog when the user
invokes the dialog from the icon. The form•Z interface template functions should be called to
construct the interface of the palette in this function. Please see section 2.6 for more details on
the fuim template functions. The full fuim template documentation can be found in the API
reference.

2.8.8 Tool Plugins form•Z SDK (v6.0.0.0 rev 05/30/06) 345

The following sample is a template for 3 buttons grouped inside a boarder with a title.

#define MY_STRINGS 1

enum
{ MY_STRING_NAME = 1,
 MY_STRING_TYPE,
 MY_STRING_1,
 MY_STRING_2,
 MY_STRING_3
};

enum
{ MY_BUTTON1=1,
 MY_BUTTON2,
 MY_BUTTON3
};

fzrt_error_td my_tool_opts_iface_tmpl (
 fz_fuim_tmpl_ptr tmpl_ptr,
 fzrt_ptr tmpl_data
)
{
 fzrt_error_td err;
 short gindx;
 char str[256];

 /* get the options title from plugin’s resource file */

fzrt_fzr_get_string(fz_rsrc_ref_func, MY_STRINGS, MY_STRING_NAME, str);
 if((err = fz_fuim_tmpl_init(tmpl_ptr, str,

FZ_FUIM_NONE, MY_TOOL_OPTS_ID, 0)) == FZRT_NOERR)
 {
 /* create a static text item */
 fzrt_fzr_get_string(fz_rsrc_ref_func, MY_STRINGS, MY_STRING_TYPE,
str);
 gindx = fz_fuim_new_text_static(tmpl_ptr, -1, FZ_FUIM_NONE,

FZ_FUIM_FLAG_BRDR | FZ_FUIM_FLAG_EQSZ, str, NULL,
NULL);

 /* create a button */
 fzrt_fzr_get_string(fz_rsrc_ref_func,

MY_STRINGS, MY_STRING_1, str);
 fz_fuim_new_button(tmpl_ptr, gindx, MY_BUTTON1,

FZ_FUIM_FLAG_NONE, str, my__item_func, NULL);

 /* create a button */
 fzrt_fzr_get_string(fz_rsrc_ref_func,

MY_STRINGS, MY_STRING_2, str);
 fz_fuim_new_button(tmpl_ptr, gindx, MY_BUTTON2,

FZ_FUIM_FLAG_NONE, str, my_item_func, NULL);

 /* create a button */
 fzrt_fzr_get_string(fz_rsrc_ref_func,

MY_STRINGS, MY_STRING_3, str);
 fz_fuim_new_button(tmpl_ptr, gindx, MY_BUTTON3,

FZ_FUIM_FLAG_NONE, str, my_item_func, NULL);
 }

 return (err);
}

2.8.9 Utilities form•Z SDK (v6.0.0.0 rev 05/30/06) 346

2.8.9 Utility Plugins

Utility plugins are designed to execute a task which is either less frequently used or an item in the
form•Z interface is not desired. Utility plugins are best used on tasks that are linear in nature (like
batch processing). Utility plugins are not loaded by form•Z at startup. This allows form•Z startup
faster and use less memory. Utility plugins are not listed in the Extensions Manager dialog and
they do not need to be located in the Extensions Manager’s search paths.

The user invokes a utility plugin by selecting the Run Utility… item from the Extensions menu.
The user is then prompted with a standard file open dialog to select the plugin file (.fzp) file to run.
If the plugin file contains a single utility plugin, then that utility is immediately executed. If the
plugin file contains multiple plugins, a dialog is presented which lists the names of the plugins in
the plugin file. The user than selects the plugin to run.

When the utility plugin is invoked, form•Z loads the utility plugin, calls the utility main execution
function to execute plugin and then the plugin is unloaded. The plugin can call form•Z API
functions (including interface) in the main execution function to perform its task. While a utility is
executing no other tasks can take place in form•Z (except network rendering communication).
Control remains within the utility until the plugin has completed its task. To provide the best user
experience is recommended that you provide the ability to cancel the operation and provide a
progress bar for time-consuming tasks.

There are two variants to the utility plugins, system and project. System utilities are not
dependent on a project window. Project utilities are dependent on a project window and are
expected to function on the provided project window. A plugin that renders all of the form•Z
projects in a directory is an example of a system utility.

2.8.9.1 System Utility

System utilities are defined using the FZ_UTIL_SYST_EXTS_TYPE and the
fz_util_cbak_syst_fset function set as described in the following sections. The user
invokes a system utility plugin by selecting the Run Utility… item from the Extensions menu. A
system utility can also be invoked from another plugin or script by calling the API functions
fz_syst_plugin_exec_util or fz_syst_script_exec_util. The desired utility is
specified by its location and plugin file name. If the plugin file contains more than one utility, the
UUID of the desired plugin must also be specified.

System utility plugin type and registration.

System utility plugins are identified with the plugin type of FZ_UTIL_SYST_EXTS_TYPE and
must implement the fz_util_cbak_syst_fset call back function set. The following shows the
registration of a System utility and a call back implementation. This is done from the plugin file’s
entry function while handling the FZPL_PLUGIN_INITIALIZE message as described in section
2.3.

fzrt_error_td my_util_syst_register_plugins()
{
 fzrt_error_td err = FZRT_NOERR;

 err = fzpl_glue->fzpl_plugin_register(MY_PLUGIN_UUID,
 MY_PLUGIN_NAME,
 MY_PLUGIN_VERSION,
 MY_PLUGIN_VENDOR,
 MY_PLUGIN_URL,
 FZ_UTIL_SYST_EXTS_TYPE,

2.8.9 Utilities form•Z SDK (v6.0.0.0 rev 05/30/06) 347

 FZ_UTIL_SYST_EXTS_VERSION,
 NULL /*error string function*/,
 0,
 NULL,
 &my_plugin_runtime_id);

 if (err == FZRT_NOERR)
 {
 err = fzpl_glue->fzpl_plugin_add_fset(

my_plugin_runtime_id,
 FZ_UTIL_CBAK_SYST_FSET_TYPE,
 FZ_UTIL_CBAK_SYST_FSET_VERSION,
 FZ_UTIL_CBAK_SYST_FSET_NAME,
 FZPL_TYPE_STRING(fz_util_cbak_syst_fset),
 sizeof (fz_util_cbak_syst_fset),
 my_fill_util_cbak_syst_fset, FALSE);
 }

 return (err);
}

System utility call back function set.

System utility plugins are implemented by the call back function set
fz_util_cbak_syst_fset. There are three functions in this function set. Only the main
execution function is required unless the plugin has multiple fz_util_cbak_syst_fset
function sets. The following shows the fill in of a fz_util_cbak_syst_fset function set. This
function is provided to the fzpl_plugin_add_fset function call shown above.

fzrt_error_td my_fill_util_cbak_syst_fset (
 const fzpl_fset_def_ptr fset_def,
 fzpl_fset_td * const fset)
{
 fzrt_error_td err = FZRT_NOERR;
 fz_util_cbak_syst_fset *util_syst;

 err = fzpl_glue->fzpl_fset_def_check (fset_def,
 FZ_UTIL_CBAK_SYST_FSET_VERSION,
 FZPL_TYPE_STRING(fz_util_cbak_syst_fset),
 sizeof (fz_util_cbak_syst_fset),
 FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 util_syst = (fz_util_cbak_syst_fset *)fset;

 util_syst->fz_util_cbak_syst_main = my_util_syst_main;
 util_syst->fz_util_cbak_syst_name = my_util_syst_name;
 util_syst->fz_util_cbak_syst_uuid = my_util_syst_uuid;
 }

 return err;
}

The main execution function (required)

fzrt_error_td fz_util_cbak_syst_main(
 void

2.8.9 Utilities form•Z SDK (v6.0.0.0 rev 05/30/06) 348

);

This is the main function for a System utility. When the plugin is invoked, this function is called to
perform the work of the plugin. All execution for the plugin is done inside this function (or local
plugin functions called from this function). When execution flow exits this function, the plugin is
unloaded.

fzrt_error_td my_util_syst_main(
 void
)
{
 fzrt_error_td err = FZRT_NOERR;

 /* Do utility work (without windex), call API functions etc. */

 return(err);
}

The name function (optional, required for plugins with multiple function sets)

fzrt_error_td fz_util_cbak_syst_name(
 char *name,
 long max_len

);

This function is called by form•Z to get the name of the utility. It is recommended that the utility
name is stored in .fzr file so that it is localizable. This function is recommended for all utility
plugins, however, it is required if the plugin file contains multiple utility plugins. The name is
presented to the user when the plugin file is selected so that the user can select which plugin
should be executed.

fzrt_error_td my_util_syst_name(
 char *name,
 long max_len

)
{
 fzrt_error_td err = FZRT_NOERR;

 strncpy(name, “My System Utility”, max_len);

 return(err);
}

The uuid function (optional, required for files with multiple function sets)

fzrt_error_td fz_util_cbak_syst_uuid
 fzrt_UUID_td uuid
);

This function is called by form•Z to get the UUID of the utility. This unique id is used by form•Z to
distinguish the utility from other utilities. This function is recommended for all utility plugins,
however, it is required if the plugin file contains multiple utility plugins. The UUID is used to
determine which plugin to execute when the plugin file is invoked.

#define MY_UTIL_SYST_UUID
"\xc1\x29\xc9\x71\x87\x16\x43\x19\xb9\xa5\x96\xe4\x1d\xe1\x7e\xb9"

fzrt_error_td my_util_syst_uuid(

2.8.9 Utilities form•Z SDK (v6.0.0.0 rev 05/30/06) 349

 fzrt_UUID_td uuid
)
{
 fzrt_error_td err = FZRT_NOERR;

 fzrt_UUID_copy(MY_UTIL_SYST_UUID, uuid);

 return(err);
}

2.8.9.2 Project Utility

Project utilities are defined using the FZ_UTIL_PROJ_EXTS_TYPE and the
fz_util_cbak_proj_fset function set as described in the following sections. The user
invokes a system utility plugin by selecting the Run Utility… item from the Extensions menu.
Since project utilities require a project window, they will not execute when there is no open project
windows. A project utility can also be invoked from another plugin or script by calling the API
functions fz_proj_plugin_exec_util or fz_proj_script_exec_util. The desired utility
is specified by its location and plugin file name. If the plugin file contains more than one utility, the
UUID of the desired plugin must also be specified.

Project utility plugin type and registration

Project utility plugins are identified with the plugin type of FZ_UTIL_PROJ_EXTS_TYPE and must
implement the fz_util_cbak_proj_fset call back function set. The following shows the
registration of a Project utility and a call back implementation. This is done from the plugin file’s
entry function while handling the FZPL_PLUGIN_INITIALIZE message as described in section
2.3.

fzrt_error_td my_util_proj_register_plugins()
{
 fzrt_error_td err = FZRT_NOERR;

 err = fzpl_glue->fzpl_plugin_register(
 MY_PLUGIN_UUID,
 MY_PLUGIN_NAME,
 MY_PLUGIN_VENDOR,
 MY_PLUGIN_URL,
 MY_PLUGIN_VERSION,
 FZ_UTIL_PROJ_EXTS_TYPE,
 FZ_UTIL_PROJ_EXTS_VERSION,
 NULL /*error string function*/,
 0,
 NULL,
 &my_plugin_runtime_id);

 if (err == FZRT_NOERR)
 {
 err = fzpl_glue->fzpl_plugin_add_fset(

my_plugin_runtime_id,
 FZ_UTIL_CBAK_PROJ_FSET_TYPE,
 FZ_UTIL_CBAK_PROJ_FSET_VERSION,
 FZ_UTIL_CBAK_PROJ_FSET_NAME,
 FZPL_TYPE_STRING(fz_util_cbak_proj_fset),
 sizeof (fz_util_cbak_proj_fset),
 my_fill_util_cbak_proj_fset,

FALSE);
 }

2.8.9 Utilities form•Z SDK (v6.0.0.0 rev 05/30/06) 350

 return (err);
}

Project utility call back function set

Project utility plugins are implemented by the call back function set fz_util_cbak_proj_fset.
There are three functions in this function set. Only the main execution function is required unless
the plugin has multiple fz_util_cbak_proj_fset function sets. The following shows the fill in
of a fz_util_cbak_proj_fset function set. This function is provided to the
fzpl_plugin_add_fset function call shown above.

fzrt_error_td my_fill_util_cbak_proj_fset (
 const fzpl_fset_def_ptr fset_def,
 fzpl_fset_td * const fset)
{
 fzrt_error_td err = FZRT_NOERR;
 fz_util_cbak_proj_fset *util_proj;

 err = fzpl_glue->fzpl_fset_def_check (fset_def,
 FZ_UTIL_CBAK_PROJ_FSET_VERSION,
 FZPL_TYPE_STRING(fz_util_cbak_proj_fset),
 sizeof (fz_util_cbak_proj_fset),
 FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 util_proj = (fz_util_cbak_proj_fset *)fset;

 util_proj->fz_util_cbak_proj_main = my_util_proj_main;
 util_proj->fz_util_cbak_proj_name = my_util_proj_name;
 util_proj->fz_util_cbak_proj_uuid = my_util_proj_uuid;
 }

 return err;
}

The main execution function (required)

fzrt_error_td fz_util_cbak_proj_main(
 long windex
);

This is the main function for a project utility. When the plugin is invoked, this function is called to
perform the work of the plugin. All execution for the plugin is done inside this function (or local
plugin functions called from this function). When execution flow exits this function, the plugin is
unloaded.

fzrt_error_td my_util_proj_main(
 long windex
)
{
 fzrt_error_td err = FZRT_NOERR;

 /* Do utilty work with windex, call API functions etc. */

2.8.9 Utilities form•Z SDK (v6.0.0.0 rev 05/30/06) 351

 return(err);
}

The name function (optional, required for plugins with multiple function sets)

fzrt_error_td fz_util_cbak_proj_name(
 char *name,
 long max_len

);

This function is called by form•Z to get the name of the utility. It is recommended that the utility
name is stored in .fzr file so that it is localizable. This function is recommended for all utility
plugins, however, it is required if the plugin file contains multiple utility plugins. The name is
presented to the user when the plugin file is selected so that the user can select which plugin
should be executed.

fzrt_error_td my_util_proj_name(
 char *name,
 long max_len

)
{
 fzrt_error_td err = FZRT_NOERR;

 strncpy(name, “My Project Utility”, max_len);

 return(err);
}

The uuid function (optional, required for files with multiple function sets)

fzrt_error_td fz_util_cbak_proj_uuid
 fzrt_UUID_td uuid
);

This function is called by form•Z to get the UUID of the utility. This unique id is used by form•Z to
distinguish the utility from other utilities. This function is recommended for all utility plugins,
however, it is required if the plugin file contains multiple utility plugins. The UUID is used to
determine which plugin to execute when the plugin file is invoked.

#define MY_UTIL_PROJ_UUID
"\xc1\x29\xc9\x71\x87\x16\x43\x19\xb9\xa5\x96\xe4\x1d\xe1\x7e\xb9"

fzrt_error_td my_util_proj_uuid(
 fzrt_UUID_td uuid
)
{
 fzrt_error_td err = FZRT_NOERR;

 fzrt_UUID_copy(MY_UTIL_PROJ_UUID, uuid);

 return(err);
}

2.8.10 Surface Styles form•Z SDK (v6.0.0.0 rev 05/30/06) 352

2.8.10 Surface Style

The surface style plugin class is intended to be used in conjunction with a renderer plugin (see
section 2.8.7). It allows the renderer to define its own surface style extension. A renderer may use
the existing surface style parameters used by RenderZone and the other display modes.
However, if the renderer has a need for specialized parameters not present in the existing
definition of a surface style, it needs to create them. This is achieved by the surface style plugin.
Most notably, such a plugin will create a new tab in the Surface Style Parameters dialog, where
these parameters are displayed to the user. For example, a renderer may choose to use the color
pattern of a surface style, as defined by the Color shader, but may need its own reflection
parameters. In such a case, the renderer would use the existing api functions to extract the color
shader and its parameters from the surface style, but define the reflection parameters by
implementing a surface style plugin. form•Z will handle all maintenance issues of the plugin,
such as initialization, copying, deletion and io. As with other plugins, the surface style extension
plugin needs to provide a set of callback functions, that are automatically invoked when an action
of a certain kind occurs.

Throughout this section, the surface style plugin implemented by the x pixel sample renderer is
used as an example. The original source code can be found in the form•Z SDK Samples
directory. The x pixel sample renderer demonstrates how a renderer uses both, existing surface
style parameters, and its own surface style extension. It can be used as the base for developing a
complete rendering plugin including a surface style extension.

Surface Style plugin type and registration

An surface style plugin is identified with the plugin type FZ_SREP_EXTS_TYPE and version of
FZ_SREP_EXTS_VERSION, and must implement the fz_srep_cbak_fset call back function
set. The following code example shows the registration of a surface style plugin and a surface
style callback function set. This is done from the plugin file's entry function while handling the
FZPL_PLUGIN_INITIALIZE message as described in section 2.3.

fzrt_error_td my_srep_register_plugin ()
{

fzrt_error_td err = FZRT_NOERR;
/* REGISTER THE SURFACE STYLE PLUGIN */
err = fzpl_glue->fzpl_plugin_register(

MY_SREP_PLUGIN_UUID,
MY_SREP_PLUGIN_NAME,
MY_SREP_PLUGIN_VERSION,
MY_SREP_PLUGIN_VENDOR,
MY_SREP_PLUGIN_URL,
FZ_SREP_EXTS_TYPE,
FZ_SREP_EXTS_VERSION,
NULL /*error string function*/, 0, NULL,
&my_plugin_runtime_id);

if (err == FZRT_NOERR)
{

/* REGISTER THE SURFACE STYLE FUNCTION SET */
err = fzpl_glue->fzpl_plugin_add_fset(

my_plugin_runtime_id,
FZ_SREP_CBAK_FSET_TYPE,
FZ_SREP_CBAK_FSET_VERSION,
FZ_SREP_CBAK_FSET_NAME,
FZPL_TYPE_STRING(fz_srep_cbak_fset),
sizeof (fz_srep_cbak_fset),

2.8.10 Surface Styles form•Z SDK (v6.0.0.0 rev 05/30/06) 353

my_fill_srep_cbak_fset,
FALSE);

}
return(err);

}

Since a surface style plugin is usually not done as a separate plugin, but instead in combination
with a renderer plugin, it is not necessary to establish two distinct instances of a plugin, one for
the renderer and one for the surface style. It is better to register one plugin, that contains the
function sets for the renderer and surface style. This is demonstrated in the x pixel render plugin
and is expected to be the preferred implementation of a renderer and a surface style plugin. The
following code example shows the registration of a renderer plugin that contains a renderer and a
surface style callback function set.

/* create the plugin as a renderer plugin */
err = fset_glue->fzpl_plugin_register(X_RNDR_PLUGIN_UUID,
 "X Pixel",
 X_RNDR_PLUGIN_VERSION,
 X_RNDR_PLUGIN_VENDOR,
 X_RNDR_PLUGIN_URL,
 FZ_RNDR_EXTS_TYPE,
 FZ_RNDR_EXTS_VERSION,
 x_rndr_error_str,
 0,
 NULL,
 &_x_rndr_plugin_runtime_id);

if (err == FZRT_NOERR)
{
 /* register a renderer fset for the plugin with matching runtime id. */
 err = fset_glue->fzpl_plugin_add_fset(_x_rndr_plugin_runtime_id,
 FZ_RNDR_CBAK_FSET_TYPE,
 FZ_RNDR_CBAK_FSET_VERSION,
 FZ_RNDR_CBAK_FSET_NAME,
 FZPL_TYPE_STRING(fz_rndr_cbak_fset),
 sizeof(fz_rndr_cbak_fset),
 x_pixel_fill_rndr_fset,
 FALSE);
}

if (err == FZRT_NOERR)
{
 /* register a surface style fset for the plugin with matching runtime id.
*/
 err = fset_glue->fzpl_plugin_add_fset(_x_rndr_plugin_runtime_id,
 FZ_SREP_CBAK_FSET_TYPE,
 FZ_SREP_CBAK_FSET_VERSION,
 FZ_SREP_CBAK_FSET_NAME,
 FZPL_TYPE_STRING(fz_srep_cbak_fset),
 sizeof(fz_srep_cbak_fset),
 x_pixel_fill_srep_fset,
 FALSE);
}

Surface Style call back function set

Surface style plugins are implemented by the call back function set fz_srep_cbak_fset. The
plugin developer must pass a fill function to fzpl_plugin_add_fset which assigns the

2.8.10 Surface Styles form•Z SDK (v6.0.0.0 rev 05/30/06) 354

pointers of the functions which define the plugin’s functionality to an instance of the
fz_srep_cbak_fset callback function set. An example of the fill function for a sample surface
style is shown below.

fzrt_error_td x_pixel_fill_srep_fset (
 const fzpl_fset_def_ptr fset_def,
 fzpl_fset_td* const fset
)
{
 fzrt_error_td err = FZRT_NOERR;
 fz_srep_cbak_fset *srep_fset;

 err = _fset_glue->fzpl_fset_def_check(fset_def,
 FZ_SREP_CBAK_FSET_VERSION,
 FZPL_TYPE_STRING(fz_srep_cbak_fset),
 sizeof(fz_srep_cbak_fset),
 FZPL_VERSION_OP_NEWER);

 if (err == FZRT_NOERR)
 {
 srep_fset = (fz_srep_cbak_fset*)fset;

 srep_fset->fz_srep_cbak_name = x_srep_name;
 srep_fset->fz_srep_cbak_uuid = x_srep_uuid;
 srep_fset->fz_srep_cbak_info = x_srep_info;
 srep_fset->fz_srep_cbak_init = x_srep_init;

 srep_fset->fz_srep_cbak_data_io = x_srep_data_io;
 srep_fset->fz_srep_cbak_data_init = x_srep_data_init;
 srep_fset->fz_srep_cbak_data_finit = NULL;
 srep_fset->fz_srep_cbak_data_copy = NULL;
 srep_fset->fz_srep_cbak_data_are_equal = NULL;
 srep_fset->fz_srep_cbak_data_iface_tmpl = x_srep_data_iface_tmpl;
 srep_fset->fz_srep_cbak_data_iface_pview = x_srep_data_iface_pview;
 }

 return err;
}

Of all the functions in the set, several are required. They are:
fz_srep_cbak_name
fz_srep_cbak_uuid
fz_srep_cbak_info
fz_srep_cbak_data_io
fz_srep_cbak_data_init
fz_srep_cbak_data_iface_tmpl

All others are optional. Note, that there is no callback function to explicitly create an surface style.
form•Z will automatically allocate the space necessary to store the parameters of the plugin when
a new surface style is created. Likewise when a surface style is deleted, form•Z will automatically
free the previously allocated space. The callback functions fall into two categories. Four are called
only once, at startup and define the basic behavior of the surface style. The remaining function
operate on an instance of a surface style and are called when necessary through a runtime
session of formZ. The all contain the expression _data_ in the function name.

The name function (required)

fzrt_error_td fz_srep_cbak_name (

char *name,
long max_len

2.8.10 Surface Styles form•Z SDK (v6.0.0.0 rev 05/30/06) 355

);

This function is called by fform•Z to get the name of the surface style extension. This
name shows up in the
Surface Style Parameters dialog, where a new tab will be created to display the
parameters defined by the plugin. The length of the string assigned cannot exceed
max_len characters. It is recommended that the surface style extension name be stored
in a .fzr resource file and retrieved from it, when assigned to the name argument, so
that it can be localized for different languages. In the example below, this step is omitted
for the purpose of simplicity.

fzrt_error_td x_srep_name (
 char *name,
 long max_name
)
{
 strncpy(name,"X Pixel",max_name);
 return(FZRT_NOERR);
}

The uuid function (required)

fzrt_error_td fz_srep_cbak_uuid (

fzrt_UUID_td uuid
);

This function is called by fform•Z to get the uuid of the surface style extension. This
unique id is used by fform•Z to distinguish this surface style extension from other
surface style extensions. For example, when a fform•Z project file is written to disk,
any surface style parameters of this plugin are saved as well and identified with this
uuid. When the project file is later opened again, fform•Z will connect the loaded
surface style data with the installed surface style plugin. If the plugin that created the
parameter is not installed, the parameters are automatically deleted. The uuid function
needs to assign this unique identifier string to the function's uuid argument. An example
is shown below.

#define X_SREP_UUID
 "\x52\xa1\x05\xa6\xb1\xc1\x4b\x01\x82\x36\xe5\xb9\x92\x70\xde\xb3"
fzrt_error_td x_srep_uuid (
 fzrt_UUID_td uuid
)
{
 fzrt_UUID_copy(X_SREP_UUID,uuid);
 return(FZRT_NOERR);
}

The info function (required)

fzrt_error_td fz_srep_cbak_info (

long *size,
long *flags
);

The info function is called by form•Z to retrieve basic information about the surface style
extension. Two
separate pieces of information must be supplied: size and flags. form•Z manages the storage
of each instance of a surface style extension. In order to do so, form•Z needs to know, what the
data size (in # of bytes) of the surface style extension's content is. The size argument must be set

2.8.10 Surface Styles form•Z SDK (v6.0.0.0 rev 05/30/06) 356

to the number of bytes that the surface style data storage requires. In most cases, a plugin
developer will create a structure with fields which describe the surface style extension's content.
The size returned to form•Z via this callback can be acquired with a
sizeof(structure_type) call.

The flags argument tells form•Z basic information about the surface style extension. This
argument is currently not used and is reserved for the future. It should be assigned the value of 0.
The info function for the x pixel plugin is shown below.

typedef struct
{
 float ambient;
 float diffuse;
 float specular;
 float specular_expo;

} x_srep_td;

fzrt_error_td x_srep_info (
 long *size,
 long *flags
)
{
 *size = sizeof(x_srep_td);
 *flags = 0;
 return(FZRT_NOERR);
}

The init function (optional)

fzrt_error_td fz_srep_cbak_init (

void
);

The init function is called by form•Z once, at startup. It gives the plugin the opportunity to perform
one time initialization procedures. One step that may be taken at that time is to acquire the run
time index of the surface style extension. This run time index can be used in the api call
fz_rmtl_get_srep_data for faster access of the parameters of a surface style. The x pixel init
function is shown below.

long _x_srep_indx;

fzrt_error_td x_srep_init (
 void
)
{
 fz_rmtl_get_srep_index(X_SREP_UUID,&_x_srep_indx);
 return(FZRT_NOERR);
}

The data init function (required)

fzrt_error_td fz_srep_cbak_data_init (
 long windex,
 void *data
);

2.8.10 Surface Styles form•Z SDK (v6.0.0.0 rev 05/30/06) 357

When a new surface style is created by formZ, the default parameters of the surface style
extension need to be set. This task is performed by the data init function. A pointer to the already
allocated data block is passed to the data init function (void *data). It can be cast to the
structure that defines the surface style parameters of the plugin. If the surface style extension
contains any dynamic structures, such as arrays, they need to be allocated by this function.

fzrt_error_td x_srep_data_init (
 long windex,
 void *data
)
{
 x_srep_td *x_srep;

 x_srep = (x_srep_td*) data;

 x_srep->ambient = 1.0;
 x_srep->diffuse = 0.75;
 x_srep->specular = 0.25;
 x_srep->specular_expo = 0.5;

 return(FZRT_NOERR);
}

The data finit function (optional)

fzrt_error_td fz_srep_cbak_data_finit (
 long windex,
 void *data
);

When a surface style is deleted, form•Z will call the data finit function. This function is optional, as
the basic storage for the surface style extension is handled automatically by formZ. However, if
the plugin contains any dynamical structures, that were allocated in the data init function, they
need to be disposed by the plugin. This step should be performed in the data finit function. Since
the x pixel sample plugin does not define any dynamic arrays, a hypothetical data finit function is
shown below.

static fzrt_error_td my_srep_data_finit (
 long windex,
 void *data
)
{
 my_srep_td *my_srep;

 my_srep = (my_srep_td*) data;

 free(my_srep->dynamic_array);

 return(FZRT_NOERR);
}

The data copy function (optional)

fzrt_error_td fz_srep_cbak_data_copy (
 long src_windex,

void *src_data,
long dst_windex,

 void *dst_data
);

2.8.10 Surface Styles form•Z SDK (v6.0.0.0 rev 05/30/06) 358

The data copy function is called anytime a surface style is copied in formZ. If the plugin's surface
style extension does not contain any dynamic structures, the copy function can be omitted. In this
case form•Z will make a byte by byte copy of the surface style parameters. However, if there are
dynamic structures, the copy function must be implemented and it is responsible to copy the
dynamic memory appropriately. Since the x pixel sample plugin does not define any dynamic
arrays, a hypothetical data copy function is shown below. Note, that the byte by byte copy has
already been performed and only the dynamic fields need to be handled.

fzrt_error_td my_srep_cbak_data_copy (
 long src_windex,

void *src_data,
long dst_windex,

 void *dst_data
)
{

my_srep_td *src_srep,*dst_srep;

 src_srep = (my_srep_td*) src_data;
 dst_srep = (my_srep_td*) dst_data;

 dst_srep->dynamic_array = malloc(src_srep->n_array);
 memcpy(dst_srep->dynamic,src_srep->dynamic,src_srep->n_array);

 return(FZRT_NOERR);
}

The data io stream function (required)

fzrt_error_td fz_srep_cbak_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td * const version,
 unsigned long size,
 void *data
)

form•Z calls this function to write a surface style extension to and read it from file. It is expected
from the plugin to keep track of version changes of the surface style extension . For example, in
its first release, an surface style extension may consist of four float values, a total of 16 bytes.
When written, the version reported back to form•Z was 0. In a subsequent release, the plugin
developer adds a fifth float value to increase the size to 20 bytes. When writing this new surface
style extension, the version reported to form•Z needs to be increased. When reading a file with
the old version of the surface style extension , form•Z will pass in the version number of the
surface style extension when it was written, in this case 0. This indicates to the plugin, that only
four floats, 16 bytes, need to be read and the fifth float should be set to a default value. Likewise,
it is possible, that an older version of the plugin will be asked to read a newer version of the
surface style extension. This may be the case when backsaving a form•Z project file to an older
version and then reading that file with an older version of form•Z that contains the older
version of the surface style plugin. In this case, the plugin may choose to read the data, i.e. the
first 16 bytes of version 0. For safety, it may also choose to skip any attribute data that is written
with a version that is newer than the one it is currently set to. An example of the surface style io
steam function is shown below. Note, that form•Z will allocate the basic storage for the surface
style extension when reading. That is, the data pointer passed in is allocated to the size defined
by the surface style extension through the fz_srep_cbak_info callback function.

2.8.10 Surface Styles form•Z SDK (v6.0.0.0 rev 05/30/06) 359

fzrt_error_td x_srep_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 fzpl_vers_td* const version,
 unsigned long size,
 void *data
)
{
 x_srep_td *x_srep;
 fzrt_error_td rv = FZRT_NOERR;

 x_srep = (x_srep_td*) data;

 if (dir == FZ_IOST_WRITE) *version = 0;

 if((rv = fz_iost_float(iost,&x_srep->ambient,1)) == FZRT_NOERR &&
 (rv = fz_iost_float(iost,&x_srep->diffuse,1)) == FZRT_NOERR &&
 (rv = fz_iost_float(iost,&x_srep->specular,1)) == FZRT_NOERR)
 { rv = fz_iost_float(iost,&x_srep->specular_expo,1);
 }

 return(rv);
}

The compare function (optional)

fzrt_error_td fz_srep_cbak_data_are_equal(

void *data1,
void *data2,
fzrt_boolean *are_equal
);

For certain operations in fform•Z, it is necessary to determine, whether two surface
style extensions are equal in their content. The compare callback function is expected
to perform this task. If this function is not implemented by the plugin, fform•Z
automatically determines whether the two surface styles extensions are equal, by
comparing each byte in the data. The number of bytes compared is the same as the # of
bytes returned by the fz_srep_cbak_info function. The compare function should be
implemented when a straight byte comparison will not yield the proper result. This is the
case, for example, when the surface styles extension contains dynamically allocated
arrays. The compare function of a sample surface style extension with a dynamic array
is shown below.

fzrt_error_td my_srep_are_equal (
 void *data1,
 void *data2,
 fzrt_boolean *are_equal
)
{
 my_srep_td *my_srep1,*my_srep2;
 fzrt_error_td err = FZRT_NOERR;
 long i;

 *are_equal = TRUE;
 my_srep1 = (my_srep_td*) data1;
 my_srep2 = (my_srep_td*) data2;

 /* COMPARE ARRAY SIZE */

2.8.10 Surface Styles form•Z SDK (v6.0.0.0 rev 05/30/06) 360

 if (my_srep1->n_array == my_srep2->n_array)
 {

 /* COMPARE ARRAY CONTENT */
 for(i = 0; i < my_srep1->n_array; i++)
 {
 if (my_srep1->array[i] != my_srep2->array[i])
 {
 *are_equal = FALSE;
 break;
 }
 }

 if (*are_equal == TRUE)
 {
 /* COMPARE REMAINING FIELDS */
 if (my_srep1->value1 != my_srep2-> value1 ||
 my_srep1->value2 != my_srep2-> value2)
 {
 *are_equal = FALSE;
 }
 }
 }
 else
 {
 *are_equal = FALSE;
 }

 return(err);
}

The dialog function (required)

fzrt_error_td fz_srep_cbak_data_iface_tmpl (
 long windex,
 fz_fuim_tmpl_ptr fuim_tmpl,
 long tab_id,
 fzrt_ptr fuim_data
);

The dialog template function is expected to create the dialog items, with which the parameters of
the surface style extension are displayed. In the Surface Style Parameters dialog, each surface
style plugin receives its own tab in which the dialog items are organized. The id of the tab group
is passed to the fz_srep_cbak_data_iface_tmpl callback function. It is important that each
new dialog item created by the fz_srep_cbak_data_iface_tmpl callback function is derived
from this group. Recall, that all template item creation functions receive a parent id argument (see
section 2.6.3 for more details). The tab_id argument or id's of children of the tab group must be
used as this parent id argument in the creation functions. The dialog function which creates four
sliders for the parameters of the x pixels renderer is shown below.

fzrt_error_td x_srep_data_iface_tmpl (
 long windex,
 fz_fuim_tmpl_ptr fuim_tmpl,
 long tab_id,
 fzrt_ptr fuim_data
)
{
 short align[4];
 x_srep_td *x_srep;

2.8.10 Surface Styles form•Z SDK (v6.0.0.0 rev 05/30/06) 361

 x_srep = (x_srep_td*) fuim_data;

 fz_fuim_new_slid_edit_pcent_float(
 fuim_tmpl,
 tab_id,
 "Ambient Factor",
 FZ_FUIM_NONE,
 FZ_FUIM_NONE,
 0.0,
 1.0,
 0.0,
 100.0,
 FZ_FUIM_RANGE_MIN | FZ_FUIM_RANGE_MIN_INCL |
 FZ_FUIM_RANGE_MAX | FZ_FUIM_RANGE_MAX_INCL,
 NULL,
 &x_srep->ambient,
 &align[0],
 NULL
);

 fz_fuim_new_slid_edit_pcent_float(
 fuim_tmpl,
 tab_id,
 "Diffuse Factor",
 FZ_FUIM_NONE,
 FZ_FUIM_NONE,
 0.0,
 1.0,
 0.0,
 100.0,
 FZ_FUIM_RANGE_MIN | FZ_FUIM_RANGE_MIN_INCL |
 FZ_FUIM_RANGE_MAX | FZ_FUIM_RANGE_MAX_INCL,
 NULL,
 &x_srep->diffuse,
 &align[1],
 NULL
);

 fz_fuim_new_slid_edit_pcent_float(
 fuim_tmpl,
 tab_id,
 "Specular Factor",
 FZ_FUIM_NONE,
 FZ_FUIM_NONE,
 0.0,
 1.0,
 0.0,
 100.0,
 FZ_FUIM_RANGE_MIN | FZ_FUIM_RANGE_MIN_INCL |
 FZ_FUIM_RANGE_MAX | FZ_FUIM_RANGE_MAX_INCL,
 NULL,
 &x_srep->specular,
 &align[2],
 NULL
);
 fz_fuim_new_slid_edit_pcent_float(
 fuim_tmpl,
 tab_id,
 "Specular Shininess",
 FZ_FUIM_NONE,
 FZ_FUIM_NONE,
 0.0,
 1.0,
 0.0,
 100.0,

2.8.10 Surface Styles form•Z SDK (v6.0.0.0 rev 05/30/06) 362

 FZ_FUIM_RANGE_MIN | FZ_FUIM_RANGE_MIN_INCL |
 FZ_FUIM_RANGE_MAX | FZ_FUIM_RANGE_MAX_INCL,
 NULL,
 &x_srep->specular_expo,
 &align[3],
 NULL
);
 fz_fuim_item_align(fuim_tmpl, FZ_FUIM_ALIGN_VLFT | FZ_FUIM_ALIGN_MAX, 4, align);

 return(FZRT_NOERR);
}

The dialog preview function (optional)

fzrt_error_td fz_srep_cbak_data_iface_pview (
 long windex,
 long pview_windex,
 long action,
 fzrt_boolean dirty,
 fz_fuim_tmpl_ptr fuim_tmpl,
 fzrt_ptr data,
 unsigned char *image_buffer,
 fzrt_boolean *complete
);

This function is called whenever a Surface Style is edited. It is expected to create the preview
rendering that show the surface style rendered on a sample object. The preview scene is defined
as a separate form•Z project, whose index is passed in as the pview_windex parameter. All
project settings are defined in such a way, that the plugin can render the scene using the view,
surface styles, images size ... of that project.

The action argument tells the preview function, when it is called. A value of 0 indicates, that it is
called when the dialog is first opened by the user. It gives the plugin the opportunity to initialize
any data necessary for the preview. It is not expected to generate a rendering at that time. A
value of 1 indicates, that a new preview rendering is needed. It is called as often with that value
as the user makes changes. A value of 2 indicates that the user closed the dialog. The plugin
may now finalize any data. No rendering is expected at that time.

The preview function should call the api fz_rmtl_iface_pview_update as frequently as
possible to allow the user to see the progress of the preview rendering in the dialog. A good
interval would be, for example, once every scanline. The fz_rmtl_iface_pview_update api
expects the preview rendering to be defined as an rgb pixel buffer of FZ_SREP_PVIEW_SIZE *
FZ_SREP_PVIEW_SIZE * 3 bytes. This buffer is allocated by form•Z and passed to the preview
function via the image_buffer argument.

The preview function should also call the api fz_rmtl_iface_pview_interrupt frequently. If
this api returns TRUE, the preview rendering needs to be interrupted and the preview function
must return FALSE for the complete argument. For example, the user may have selected a
dialog item while the rendering is executing. In order to do this, the rendering needs to stop,
controll needs to be returned to the dialog driver, which will handle the user's click. If the user
changed a setting, the preview function will be called again with TRUE for the dirty argument,
meaning that a new image needs to be started. If the user did not make any changes, the preview
function will be called with FALSE for the dirty argument. The preview function may then
continue the rendering, where it was previously interrupted. If a preview rendering is completed,
the complete argument must be returned as TRUE. Again, it is important, that interrupting is

2.8.10 Surface Styles form•Z SDK (v6.0.0.0 rev 05/30/06) 363

handled properly and in a responsive manner to allow the user to interact with the dialog while the
rendering is proceeding.

If this function is not implemented, form•Z will display the default preview rendering, that is also
shown in the Simple or RenderZone tab. The preview function for the x pixel renderer is shown
below.;

static long _last_scanline = 0;

fzrt_error_td x_srep_data_iface_pview (
 long windex,
 long pview_windex,
 long action,
 fzrt_boolean dirty,
 fz_fuim_tmpl_ptr fuim_tmpl,
 fzrt_ptr fuim_data,
 unsigned char *image_buffer,
 fzrt_boolean *complete
)
{
 long first_scanline,scan_line;
 fzrt_boolean cancelled;

 switch(action)
 {
 case 0 : break;

 case 1 :
 cancelled = FALSE;
 /* previously cancelled rendering */

/* starts back at the last scanline rendered */
 if (dirty == 0) first_scanline = _last_scanline+1;
 /* new rendering starts at scanline 0 */
 else first_scanline = 0;

 /* render the scene using the preview windex */
 x_pixel_activate(pview_windex);
 x_pixel_image_prep(pview_windex);

 x_pixel_image_render_core(pview_windex,FZRT_NOERR,NULL,fuim_tmpl,

image_buffer,first_scanline,&cancelled,&scan_line);
 x_pixel_image_finit(pview_windex);
 x_pixel_deactivate(pview_windex);

 /* return cancel status */
 *complete = cancelled ? FALSE : TRUE;

 /* store last rendered scanline */
 if (cancelled) _last_scanline = scan_line;
 else _last_scanline = 0;
 break;

 case 2 : break;

 }

 return(FZRT_NOERR);
}

3.0 Writing form•Z Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 364

3.0 Writing form•Z Scripts

3.1 Introduction

A form•Z script is an extension to form•Z in the form of a file that contains a set of instructions
which execute form•Z functionality. These instructions are stored in binary form, and are
generated from a text based script file with the .fsl file extension. The script is written in the
form•Z Script Language (FSL) and compiled into a binary representation. This binary file is
referred to as the script executable file and must have a .fsb extension to identify it as a form•Z
script.

form•Z automatically recognizes scripts by finding them in designated directories at startup. The
default directory is the “Scripts” folder in the form•Z application folder (and can be customizable
through the Extensions dialog’s search paths). When form•Z finds a file with the .fsb extension it
validates it as a script file. The validation process prevents a non-script file with an .fsb extension
from producing undesirable results.

form•Z validates each script file to be sure that it is in fact a form•Z script and not another file that
has been given the .fsb extension. This prevents form•Z from crashing when attempting to load
an invalid file. The validation is done automatically at startup. Script executable files generated by
form•Z always carry the proper markings, which allow form•Z to identify them as scripts.

The communication between form•Z and a script is done through functions. There are two types
of functions: API and call back functions. API functions are provided by form•Z for the script to
use. They typically execute processes or operations that are available in the main form•Z
program, for example a section operation or an object face building process. Call back functions
are implemented by the script. These functions are called by form•Z as needed to perform the
script tasks. Call back functions must have a specific name, based on the type of script, and a
specific number of arguments.

form•Z uses UUIDs (Universal Unique Identifier) throughout for uniquely identifying entities and
avoiding naming collisions. A UUID is a 16-byte string that is generated using an algorithm that
guarantees a unique sequence of bytes (string) among all such generated strings. Scripts must
use UUIDs in various places to guarantee that they do not collide with other scripts or form•Z. For
example, a script that defines a RenderZone shader must provide a UUID. This distinguishes it
from other scripts and also allows form•Z to retain information about the script (for example, its
user-controlled enable state in the Extensions dialog). form•Z comes with a utility plugin to
automatically generate UUIDs which is of particular use for extension developers. It is not
recommended to create a UUID by “making one up” without a computer.

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 365

3.2 FSL Language Reference

The form•Z Script language (FSL) is a simple C-like programming language, which allows a
form•Z user to extend the functionality of form•Z by writing scripts. A script is a simpler version of
a plugin. It is not compiled by a separate development environment, such as Microsoft Visual
Studio or MetroWerks CodeWarrior. A script is compiled by form•Z and stored in a more compact
binary file, which is ready for efficient execution. form•Z has a simple text editor, where the
source code of a script can be edited and compiled. A typical cycle of working with a script would
look like this:

1. The user opens a new script text edit window or opens an existing script in the form•Z script

editor application.This is an application dedicated entirely to writing and compiling scripts.
2. New source code is developed or changes are made to the source code of an existing script.
3. The script is compiled and stored in a binary version on disk.
4. The next time the regular form•Z application starts up, it searches for scripts. Depending on

the script type, the script appears in different form•Z areas, such as RenderZone shaders or
modeling tools.

5. Executing the script within form•Z will run the compiled binary version of the script (.fsb file).
6. Depending on the outcome of the operation, the user may make further changes to the script

source code and repeat steps 3 to 5.

A more detailed discussion, of which areas of form•Z can be extended by scripts is provided in
section 3.7. The following sections focus on the script language itself, rather than on particular
uses of it. The sample code provided is purposely kept simple and generic so that the reader may
follow the text here, without having to execute the script code in form•Z to see its effects.

The basic syntax and structure of the FSL follows that of the C programming language, but is
simplified to enable novice programmers and users with little programming background to use it
easily. At the end of this chapter the specific differences from the C programming language are
outlined.

3.2.1 Basic language and script structure

A script consists of two parts: a header and a body. The header tells form•Z what type the script
is. The body contains one or more functions. Certain functions are call back functions and are
required by form•Z to be able to connect to and execute the script. In addition to the required
functions, a script developer may also add as many functions as desired to accomplish the tasks
at hand.

A function consists of a header and a body. The function header contains the return type, the
function name, and the function argument list. The return type specifies what type of a value
the function returns, if any. If it returns no value, “void” is used as a return type. The function
name is an FSL name. The argument list, which may or may not exist, is a list of names with a
type specification before each one.

An FSL name is a string of at most 128 characters, which may be lower or upper case letters, the
character _ (underscore), or numbers in any combination, except that the first character can not
be a number.

The function body contains a set of different types of statements. The statement types available
in FSL are:

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 366

Declarations, assignment statements, if statements, switch statements, for loops, while loops,
do while loops, break statements, continue statements, goto statements, function calls, and
return statements.

All types of statements are delineated by a semi-colon (;). More than one statement can be
written on the same line. If a function body contains declarations, they should be at the top of the
body, and if a function returns a value its execution should always end with a return statement
that specifies what value is returned. The different types of FSL statements are discussed in full
detail later in this document.

Within a script file one may also provide documentation, or comments, anywhere to further
describe what the code is doing. Comments are useful for explaining difficult-to-follow code, and
provide for easier maintenance during the life of a script.

There are also different types of scripts and complete details about these types and their
respective script structures are again discussed later in this document. The simplest type is the
utility script, which, once compiled, can be executed through the Run Utility… item in the
Extensions menu. This item invokes a standard Open File dialog from where the script to be
executed can be selected. A simple but fairly complete example of a utility script is presented in
the next section.

3.2.2 Introductory example

The script code in the following example will generate a simple form•Z object, by calling functions
provided by form•Z. form•Z actually offers a large number of functions, called API functions, that
perform a wide range of tasks. For example, they allow a script to create objects, modify existing
objects, perform complex geometry calculations, create and edit lights, surface styles etc. As a
matter of fact, most of the operations, that can be executed in form•Z through the user interface
can also be executed through one or more API function calls.

void create_cube(long windex)
{
 fz_xyz_td wdh,origin;
 fz_objt_ptr obj;

 wdh = {10.0, 10.0, 30.0};
 origin.x = 100.0;
 origin.y = 0.0;

origin.z = 0.0;

 fz_objt_cnstr_cube(windex,wdh,origin,NULL,obj);

 fz_objt_add_objt_to_project(windex,obj);
}

The function create_cube creates a simple form•Z cuboid of a given size and location. While it
creates an object, it returns no value and the function is thus declared as void. It takes one
function argument, windex, which is a long integer. This argument is usually supplied by form•Z
and identifies a project, such as the one belonging to the currently active modeling window. Most
form•Z API functions also take windex as an argument, to identify in which project a particular
operation is executed. The function declares three variables:

 fz_xyz_td wdh,origin;

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 367

 fz_objt_ptr obj;

They are two fz_xyz_td and a pointer to a modeling object fz_objt_ptr. wdh and origin
will be used to define how large the cube is and where it is located. The next four statements
assign values to the two fz_xyz_td variables:

 wdh = {10.0, 10.0, 30.0};
 origin.x = 100.0;
 origin.y = 0.0;

origin.z = 0.0;

In the case of wdh, the assignment is done in one line. A fz_xyz_td type of variable has three
components, named x, y, and z. Individually they are written wdh.x, wdh.y, and wdh.z. They
can all get their values with one assignment, using the notation {10.0, 10.0, 30.0}, as in
the example. Or they can be assigned values individually, as is done for origin. Both
methods are equally valid, and make no difference to the compiler.

After the assignments, the cube is created by calling the form•Z API function:

 fz_objt_cnstr_cube(windex,wdh,origin,NULL,obj);

The windex argument received by the create_cube function is passed on to the API function.
The wdh and origin variables are also passed in. An optional rotation parameter is not
supplied. Instead the NULL argument is passed, meaning that the default rotation of 0° is to be
used. The result of the API call is a new object, obj, which is returned by the API function
through the last argument. Another form•Z API call takes the cube and makes it a permanent part
of the current project:

 fz_objt_add_objt_to_project(windex,obj);

Without this last API call, the cube would remain tagged as a temporary object and would not
show up in the Object palette or on the screen.

The above code is a function generating a cuboid, but it is not a complete script yet. To become
a script we need to add a script header and supply a required call back function required by
form•Z, and call the create_cube function within the call back function. This would be as
follows:

script_type FZ_UTIL_PROJ_EXTS_TYPE

void create_cube(long windex)
{
 fz_xyz_td wdh,origin;
 fz_objt_ptr obj;

 wdh = {10.0, 10.0, 30.0};
 origin.x = 100.0;
 origin.y = 0.0;
 origin.z = 0.0;

 fz_objt_cnstr_cube(windex,wdh,origin,NULL,obj);

 fz_objt_add_objt_to_project(windex,obj);
}

long fz_util_cbak_proj_main(long windex)

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 368

{
 create_cube(windex);

 return(FZRT_NOERR);
}

The above code can now be saved as a script file, using Save As…. Once saved and compiled
it can be executed, using Run Utility….

Concluding the example we should note that the cuboid generated by the above script will always
be of a fixed size, since the assignment of its size is hard coded in the script. Typically the
advantage of creating objects in this manner would be to automatically generate thousands of
objects, perform routine complex operations, and any other procedural task. A more general
cube creating function would probably accept the dimensions, origin, and rotation of the object as
arguments to the function. Through the normal user interface of form•Z, the dimensions of the
cuboid are input by the user through either numeric or graphic input. This too can be
accomplished with a script. In addition, an object generation operation would normally be
executed through a tool with an icon. Needless to say that all these options are possible to be
implemented in a script, but will be discussed later.

3.2.3 Types of variables and constants

In the form•Z script language, values are stored in variables. Since there are different types of
values that can be stored, each variable needs to be declared as a specific data type before it is
used to store a value. A variable, once declared with a type and an FSL name, can then be
accessed by its name to store and retrieve the values in it. Values may also be explicitly defined
as constants, which are also of different types. The types provided in FSL, for both variables and
constants, are as follows:

fzrt_boolean
long
double
fz_string_td
fzrt_UUID_td

fz_xy_td
fz_xyz_td
fz_xy_mm_td
fz_xyz_mm_td
fz_plane_equ_td
fz_rgb_float_td
fzrt_point
fzrt_rect

fz_mat3x3_td
fz_mat4x4_td
fz_map_plane_td

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 369

fz_tag_td
various pointers and
various enums

fzrt_boolean, long, double, fz_string_td, and fzrt_UUID_td are referred to as
simple types. fz_xy_td, fz_xyz_td, fz_xy_mm_td, fz_xyz_mm_td, fz_plane_equ_td,
fz_rgb_float_td, fzrt_point, and fzrt_rect are referred to as structured types, and
fz_mat3x3_td, fz_mat4x4_td, fz_map_plane_td, and fz_tag_td are referred to as
complex types.

A simple type has exactly one numeric (long, double), logical (fzrt_boolean), or text (string) value.
A structure type has two or more fields, each of which has its own numeric value. For example
the fz_xy_td type has an x and a y field, which can be accessed by adding the field name to
the end of the variable name. Assuming a variable named my_xy is declared to be of type
fz_xy_td, the x and y fields of my_xy can be accessed as my_xy.x and my_xy.y. A complex
type is also composed of more than one numeric value but its fields are not known to the script
and cannot be accessed like those of a structure type. Variables of complex types are usually
initialized and set to specific values by a call to a form•Z API function. For example, the form•Z
API function fz_math_mat4x4_set_identity sets a 4 by 4 matrix variable to the identity
matrix. Pointer and enum types are special simple types and are discussed in more detail in
subsequent sections.

A type in a script can manifest itself as a constant value or as a variable. A constant value
explicitly states the value of the type. For example, an integer constant would be written as a
whole number, such as 1 or -33. A variable of a certain type is declared at the beginning of a
function. Different values may be assigned to the variable as the function statements are
executed. Examples of how variables are declared and of how constants are written are included
in the following paragraphs. Note, that only simple and structured types can be used as both
constants and variables. Complex types can only be variables.

The fz_string_td and fzrt_UUID_td types are effectively equivalent and only the
fz_string_td type is described in the remainder of this document. The fzrt_UUID_td type
is used to store characters for a unique identifier string, which is used throughout the script types
to uniquely identify various script components. This is described in more detail in section 1.4.1.

Booleans

Syntax: fzrt_boolean

Variables of this type can only contain the values TRUE or FALSE. TRUE and FALSE are also the
constant values when used in the script code. For example:

fzrt_boolean can_do;

can_do = TRUE;

Integer numbers

Syntax: long

This is an integer (whole) number in the range –231 to 231. The keyword "long" is taken from the C
language where it stands for a long integer (as opposed to a short integer, which can only take on

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 370

values of the range -216 to 216). Constant integer values are written by using whole numbers, with
an optional minus sign before the number.
For example:

long my_int;

my_int = -1000;
my_int = 0;
my_int = 32767 – 1000000 + 1 – 9999999;

Floating point numbers

Syntax: double

This is a double precision floating point (real) number. The maximum range depends on the
hardware and operating system. Constant floating point numbers are written with a whole and a
fractional part, separated by a dot. If a minus sign is written before the number, it becomes
negative. For example:

double my_float;

my_float = -1;
my_float = 1.001;
my_float = -9999.1 + .5;
my_float = 0.;
my_float = 0.0;
my_float = 1000.;

Text strings

Syntax: fz_string_td

The fz_string_td type provides storage for text strings. A constant string contains one or
more characters which must be enclosed by quotes. For example:

fz_string_td my_string;

my_string = “This is a string”;

There is a limit of 255 characters for each fz_string_td.

Universal Unique Identifier (UUID)

Syntax: fzrt_UUID_td

The fzrt_UUID_td provides storage for a 16 byte character string, which serves as a unique
identifier. It is used throughout form•Z, to distinguish one entity from another. For example, a
script may be tagged with a UUID so that form•Z can keep it apart from another script. The
assignment of a UUID is done like a text string, by enclosing 16 character bytes in double quotes.
Typically, a UUID byte is written in hexadecimal notation, and is usually generated by a computer
to guarantee uniqueness. It is not advisable to simply make one up. An assignment of a UUID
constant to a variable would look like this:

fzrt_UUID_td my_uuid

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 371

my_uuid = "\xc1\x29\xc9\x71\x87\x16\x43\x19\xb9\xa5\x96\xe4\x1d\xe1\x7e\xb9";

2D Coordinate

Syntax: fz_xy_td

The fz_xy_td type is a composite type, usually identifying a 2D coordinate value. It consists of
two floating point members, named x and y. When a variable is declared as being of type
fz_xy_td, the content of the variable is accessed by using the variable name and adding .x or
.y to it. For example:

fz_xy_td my_xy;

my_xy.x = 100.0;
my_xy.y = 0.0;

A constant fz_xy_td value is written by enclosing two floating point numbers in braces, and
separating them by a comma. The content of the variable my_xy can be set to the same value as
above using a fz_xy_td constant value:

my_xy = { 100.0, 0.0 };

3D Coordinate

Syntax: fz_xyz_td

The fz_xyz_td type is a composite type, usually identifying a 3D coordinate value. It consists of
three floating point members, named x, y and z. When a variable is declared as being of type
fz_xyz_td, the content of the variable is accessed by using the variable name and adding .x,
.y or .z to it. For example:

fz_xyz_td my_xyz;

my_xyz.x = 100.0;
my_xyz.y = 200.0;
my_xyz.z = 0.0;

A constant fz_xyz_td value is written by enclosing three floating point numbers in braces and
separating them by commas. The content of the variable my_xyz can be set to the same value
as above using a fz_xyz_td constant value:

my_xyz = { 100.0, 200.0, 0.0 };

2D bounding box

Syntax: fz_xy_mm_td

The fz_xy_mm_td type is a composite type, usually identifying a 2D bounding box, that has a
lower and an upper limit in the x and y direction. It consists of four floating point members, named
xmin, ymin, xmax and ymax. When a variable is declared as being of type fz_xy_mm_td,
the content of the variable is accessed by using the variable name and adding .xmin, .ymin,
.xmax or .ymax to it. For example:

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 372

fz_xy_mm_td my_xy_mm;

my_xy_mm.xmin = -100.0;
my_xy_mm.ymin = 0.0;
my_xy_mm.xmax = 100.0;
my_xy_mm.ymax = 200.0;

A constant fz_xy_mm_td value is written by enclosing four floating point numbers in braces, and
separating them by a comma. The content of the variable my_xy_mm can be set to the same
value as above using a fz_xy_mm_td constant value:

my_xy_mm = { -100.0, 0.0, 100.0, 200.0 };

3D bounding box

Syntax: fz_xyz_mm_td

The fz_xyz_mm_td type is a composite type, usually identifying a 3D bounding box, that has a
lower and an upper limit in the x, y and z direction. It consists of siz floating point members,
named xmin, ymin, zmin, xmax, ymax and zmax. When a variable is declared as being of
type fz_xyz_mm_td, the content of the variable is accessed by using the variable name and
adding .xmin, .ymin, .zmin, .xmax, .ymax or .zmax to it. For example:

fz_xyz_mm_td my_xyz_mm;

my_xyz_mm.xmin = -100.0;
my_xyz_mm.ymin = 0.0;
my_xyz_mm.zmin = 0.0;
my_xyz_mm.xmax = 100.0;
my_xyz_mm.ymax = 200.0;
my_xyz_mm.zmax = 50.0;

A constant fz_xyz_mm_td value is written by enclosing six floating point numbers in braces, and
separating them by a comma. The content of the variable my_xyz_mm can be set to the same
value as above using a fz_xyz_mm_td constant value:

my_xyz_mm = { -100.0, 0.0, 0.0, 100.0, 200.0, 50.0 };

Plane equation

Syntax: fz_plane_equ_td

The fz_plane_equ_td type is a composite type, usually identifying a 3D plane equation of the
form ax + by + cz + d = 0. It consists of four floating point members, named a, b, c and d.
When a variable is declared as being of type fz_plane_equ_td, the content of the variable is
accessed by using the variable name and adding .a, .b, .c or .d to it. For example:

fz_plane_equ_td my_plane;

my_plane.a = 1.0;
my_plane.b = 0.0;
my_plane.c = 0.0;
my_plane.d = 100.0;

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 373

A constant fz_plane_equ_td value is written by enclosing four floating point numbers in
braces, and separating them by commas. The content of the variable my_plane can be set to the
same value as above using a fz_plane_equ_td constant value:

my_plane = {1.0, 0.0, 0.0, 100.0};

RGB Color

Syntax: fz_rgb_float_td

The fz_rgb_float_td type is a composite type, usually identifying an rgb color (red, green,
blue). It consists of three floating point members, named r, g and b. When a variable is
declared as being of type fz_rgb_float_td, the content of the variable is accessed by using
the variable name and adding .r, .g, or .b to it. For example:

fz_rgb_float_td my_color;

my_color.r = 1.0;
my_color.g = 1.0;
my_color.b = 0.0;

A constant fz_rgb_float_td value is written by enclosing three floating point numbers in
braces, and separating them by commas. The content of the variable my_color can be set to the
same value as above using a fz_rgb_float_td constant value:

my_color = {1.0, 1.0, 0.0};

Usually colors are represented by values between 0.0 and 1.0. For example, all white would be
{1.0, 1.0, 1.0}, all black would be {0.0, 0.0, 0.0}, and pure red would be {1.0,
0.0, 0.0}.

Screen point

Syntax: fzrt_point

The fzrt_point type is a composite type, usually identifying a point on the screen with the
upper left corner being (0, 0). It consists of two integer members, named h and v, (for horizontal
and vertical position). When a variable is declared as being of type fzrt_point, the content of
the variable is accessed by using the variable name and adding .h or .v to it. For example:

fzrt_point my_point;

my_point.h = 100;
my_point.v = 200;

A constant fzrt_point value is written by enclosing two integer numbers in braces, and
separating them by commas. The content of the variable my_point can be set to the same value
as above using a fzrt_point constant value:

my_point = {100, 200};

Screen rectangle

Syntax: fzrt_rect

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 374

The fzrt_rect type is a composite type, usually identifying a rectangle on the screen. It
consists of four integer members, named left, top, right and bottom. When a variable is
declared as being of type fzrt_rect , the content of the variable is accessed by using the
variable name and adding .left, .top, .right or .bottom to it. For example:

fzrt_rect my_rect;

my_rect.left = 0;
my_rect.top = 0;
my_rect.right = 200;
my_rect.bottom = 100;

A constant fzrt_rect value is written by enclosing two integer numbers in braces, and
separating them by commas. The content of the variable my_rect can be set to the same value
as above using a fzrt_rect constant value:

my_rect = {0, 0, 200, 100};

3 by 3 matrix

Syntax: fz_mat3x3_td

The fz_mat3x3_td type is a complex type. It identifies a 3 by 3 matrix. It does not have any
fields that can be accessed directly, like the fz_xyz_td type. There are a number of math
functions, which set and use 3 by 3 matrices. A simple example is shown below:

fz_mat3x3_td mat;

fz_math_3x3_set_identity(mat);

There is no constant value for a 3 by 3 matrix.

4 by 4 matrix

Syntax: fz_mat4x4_td

The fz_mat4x4_td type is a complex type. It identifies a 4 by 4 matrix. It does not have any
fields that can be accessed directly, like the fz_xyz_td type. There are a number of math
functions, which set and use 4 by 4 matrices. A simple example is shown below:

fz_mat4x4_td mat;

fz_math_4x4_set_identity(mat);

There is no constant value for a 4 by 4 matrix.

Mapping plane

Syntax: fz_map_plane_td

The fz_map_plane_td type is a complex type. It defines a plane, which has an origin and rotation,
in 3d space. It does not have any fields that can be accessed directly, like the fz_xyz_td type.

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 375

There are a number of math functions, which set and use mapping planes. A simple example is
shown below:

fz_map_plane_td my_plane;
fz_xyz_td p1,p2,p3;

p1 = {100.0, 0.0, 0.0};
p2 = {0.0, 0.0, 0.0};
p3 = {0.0, 100.0, 0.0};
fz_math_3d_map_plane_from_pts(p1,p2,p3,my_plane);

Pointers

There are many pointer types supported by FSL with extensions “_ptr”, however, the generic
pointer fzrt_ptr, will be explained first.

Syntax: fzrt_ptr

The fzrt_ptr type identifies a location in memory to which it points. This location in memory
usually contains data that will be operated on. A variable of type fzrt_ptr cannot be set to an
explicit constant value other than NULL, which is the only pointer constant. It means that the
pointer is not pointing to a location in memory, but is unassigned. Usually the fzrt_ptr variable
is set by calling a function, or by assigning another pointer type to it.

There are also quite a few specific pointer types, for example, the pointer type fz_objt_ptr. In
this case, a variable of type fz_objt_ptr points to a form•Z object in memory. form•Z API
functions that operate on specific entities, expect pointers of a given type to be passed in. For
example, an API function that deletes an object requires the argument to be of type
fz_objt_ptr. Whereas the API function which deletes a light requires the argument to be of
type fz_lite_ptr.

fz_objt_ptr objt;

objt = NULL; /* set objt variable to “no memory location” */

fz_objt_cnstr_cube(windex,wdh,origin,NULL,objt); /* create objt,
 now it points to
 memory */
fz_objt_edit_delete_objt(windex, objt); /* delete objt */

Tags

Syntax: fz_tag_td

The fz_tag_td type stores a unique tag for identifying different kinds of data or entities within
form•Z. This tag id is usually provided by form•Z via a function call to ascertain information
about some entity. Later one uses the tag in subsequent function calls to change or retrieve the
information of the entity identified by the tag. For example, one may want to set an existing
surface style to a newly created object. One must get the surface style tag from the surface style
pointer, and pass that tag to the API function which sets the surface style of the newly created
object.

Fz_objt_ptr new_obj;
Fz_rmtl_ptr surf_style;

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 376

Fz_tag_td surf_tag;

... /* create new_obj, get a surf_style */

fz_rmtl_ptr_to_tag(windex, surf_style, surf_tag);
fz_objt_attr_set_objt_rmtl(windex, new_obj, surf_tag);

Enums

There are many enum types, all of which end with the letters “_enum”. An enum is similar to an
integer, except that it can take on only certain values. The values an enum can take on are
predefined as constants. For example, a variable of type fz_objt_model_type_enum can only
take one of the following three values: FZ_OBJT_MODEL_TYPE_UNSPEC,
FZ_OBJT_MODEL_TYPE_FACT, or FZ_OBJT_MODEL_TYPE_SMOD. Note that these three
names, written in upper case characters correspond to preset numeric values and are equivalent
to constants. These constant values are defined by form•Z and can be found in the API
documentation and header files.

fz_objt_model_type_enum my_model_type;

my_model_type = FZ_OBJT_MODEL_TYPE_FACT;

Many form•Z API functions take enums as a function argument. By only allowing certain values
for the enum, it is ensured that only correct values are passed to the function. For example, a
compilation error would occur when trying to assign the constant value FZ_LITE_TYPE_POINT
to a variable of type fz_objt_model_type_enum. The FZ_LITE_TYPE_POINT constant is
reserved for enums of type fz_lite_type_enum.

3.2.4 Functions

A function provides a convenient way to group several statements together, which perform a
specific task. A function has a specific structure. It consists of a header and a body. The function
header contains the return type, the function name and the function arguments. The function body
starts with zero or more variable declarations and is followed by the statements. A formal
syntactic definition of a function is as follows:

Syntax:

return_type function_name(arguments)
{ declarations

statements
}

arguments is: modopt type arg_name or modopt type arg_name, arguments

return_type is: type or void

declarations is: zero or more declaration

statements is: zero or more statement

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 377

A type is one of the types previously explained. A declaration is a type followed by one or
more variable names (separated by commas if more than one), and is explained in more detail
later. A statement will be described later as well.

The function return type

When the script is run and the statements in a function are executed, the function may return a
value after the execution of the last statement. Since all values have a type, the function itself
must have a return type. This may be any of the data types seen so far. For example, a function
may return TRUE if it succeeded to perform its task, or FALSE, if it didn't. In this case, the return
type of the function would be declared as fzrt_boolean. Here is a simple example of a function
that determines whether an integer value is even or odd.

fzrt_boolean is_even(long value)
{
 fzrt_boolean rv;

 if ((value / 2) * 2 == value) rv = TRUE;
 else rv = FALSE;

 return(rv);
}

To understand this function, as a side note one must understand “integer division”. When two
integers are used in division, the script treats this division differently than floating point division.
Integer division drops any remainder. Hence 5 / 2 is 2, whereas if one or more arguments is a
floating point number like 5.0 / 2, the answer would be 2.5. When an odd integer value is divided
by an integer, any fractional remainder is dropped. As a result, dividing an odd integer by 2 and
then multiplying it again by 2 does not yield the original number. However, an even integer does
work. In the example above, the result of integer division by 2, and then multiplication by 2 should
yield either the original number or not, and hence one can determine if a number is even or odd.

The function is declared as being of type fzrt_boolean (its return type). In the function body a
fzrt_boolean variable is set to TRUE or FALSE, based on the outcome of the integer
calculation and comparison with the original value. The return statement, which is the last
statement in the function, returns the content of the rv variable when the is_even function is
called. For example:

 long lval;
 fzrt_boolean bval;

 lval = 15;

 bval = is_even(lval);

Any of the types described in section 3.2.4 can be used as the return type for a function. In
addition, a special type, called void can be used. It indicates, that the function does not return
anything. In this case, using the statement return (rv); would result in a compilation error. If
a function is declared to be of type void, the return statement must be used without any
argments:

void my_void_function(long value)
{

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 378

 …
 return;
}

Note, that the return statement is optional in a void function, but should always be the last
statement for a function of any other type. Multiple return statements within the same function
are supported, but are discouraged, as they may lead to undesirable results (described later).

The function name

Each function in a script must be given a unique FSL name. When a script is executed, form•Z
looks for functions in that script that have a specific name. This is the hook between a script and
form•Z. Therefore, it is necessary that scripts of a certain type have functions with the required
names, the required return type, and the required function arguments. A complete list of the
different script types and the required functions in each script type is given in section 3.6.

The function arguments

After the function name, the function header contains the function arguments enclosed in ().
There can be zero or more arguments, separated by commas. A function argument can be used
to pass data to the function and to return data from a function or both. An argument may only
pass data in or may also return data. In these two cases the variables are declared differently.
Arguments that only pass data in are declared in the following way:

type argument_name

type can be any of the types described in section 3.2.3. The argument name is an FSL name.

If an argument also returns data from a function, it must be declared like this:

mod type argument_name

The mod identifier, means, that the content of the argument can be modified, whereas an
argument declared without mod, cannot be modified. This is illustrated in the example below:

fzrt_boolean get_midpoint(

fz_xyz_td pt1,
fz_xyz_td pt2,
mod fz_xyz_td mid_pt
)

{
 fzrt_boolean rv;

 if (pt1 == pt2) rv = FALSE;
 else
 {
 mid_pt = (pt1 + pt2) / 2.0;
 rv = TRUE;
 }

 return(rv);
}

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 379

The function get_midpoint calculates a 3d coordinate which is exactly halfway between two
given 3d points. As described in section 3.2.5, a function can return a value through its return
type. In this example, the function returns FALSE, if the two given points are identical. It returns
TRUE if the two points are different and a midpoint is calculated. Of course, the function also
needs to return the midpoint itself. Since the return type is already taken to indicate whether the
two input points are identical or not, the midpoint is returned through the modifiable argument.
Since the two input points are not modified by the function, fz_xyz_td pt1 and fz_xyz_td
pt2 are declared without the mod identifier. However, since mid_pt is modified it is declared with
mod. A call to this function would look like this:

fz_xyz_td pt1,pt2,mid_pt;
fzrt_boolean rv;

 pt1 = {100.0, 0.0, 0.0};
 pt2 = {200.0, 0.0, 0.0};

 rv = get_midpoint(pt1,pt2,mid_pt);

In this case, of course, rv will always be TRUE, since we set the two points explicitly to different
values. However in other cases, the points may come from user input and their values may not be
known. It is important to note that arguments, which are not declared with the mod identifier, can
still be changed through the function statements. However, when the function is called, the
variables passed as the function arguments will not change at the point of the function call. This is
illustrated in the example below.

long function1(long my_value)
{
 my_value = my_value * my_value;

return(my_value);
}

long function2(mod long my_value)
{
 my_value = my_value * my_value;

return(my_value);
}

Both functions calculate the square of the function argument my_value. In the header of
function1 the argument is not modifiable. Even though the value of my_value is changed
inside function1, a call to function1 will leave the variable passed as the argument
unchanged where function1 is called:

long value1,value2;

 value1 = 10;
 value2 = function1(value1);

After these statements are executed, value1 will still be 10. This is different for function2. It
declares the argument my_value with mod. Therefore the variable passed for my_value will be
changed in a call to the function:

long value1,value2;

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 380

 value1 = 10;
 value2 = function2(value1);

After these statements are executed, value1 will now be 100.

The function body

The function body is enclosed by braces {}. After the opening brace {, there are zero or more
variable declarations. In order to complete calls to form•Z APIs or to perform a task through the
function statements, variables may be needed to hold values and data. Each variable used in a
function must be declared to be of a certain type. This is described in further detail in section
3.2.6. After the variable declarations follow the function statements. Any number of statements
can be executed by a function. It is good programming practice to keep the size of a function
small enough to not lose sight of the task it is intended to perform. If a function becomes too
large, it is easier to make logical mistakes and most likely the task it should perform could be
broken up into a number of smaller tasks. It would then be better to break the single function up
into a set of functions, corresponding to the smaller tasks. The types of statements that can be
executed in a function are described in more detail in section 3.2.8.

3.2.5 Declarations of variables

At the beginning of a function body variables used by the function statements are declared.
These may be single variables or array variables.

Declaring single variables

A variable declaration takes the form:

type variable_name;

type can be any of the types described in section 3.2.3. The variable name is an FSL name.
Some examples of a simple variable declaration are shown below:

long my_int;
long a;
fz_xyz_td pnt1;
fz_mat4x4_td trl_mat;

It is also possible to declare multiple variables of one type in the same declaration, which is done
as follows:

type variable_name1, variable_name2,…, variable_namen;

For example:

long my_int,val,a,b;
double fval1,fval2,fval3;

Note that variable names must be unique within the body of a function. (Two different functions
may have variables with the same names). Their names cannot collide with each other and the
names of the function arguments. When a variable is declared, its initial value is undefined. For

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 381

example, the declaration long my_int; leaves the value of my_int in an unknown state. Later
on in the function body my_int may receive a value through an assignment statement, such as
my_int = 10;. It is also possible to assign a value to a variable at the time it is declared, which
is called initialization. This is done as follows:

type variable_name = expression;

Expressions are described in further detail in the next section. A few examples of variable
initialization in the declaration statement are shown below:

long my_int1 = 0, my_int2 = 1, my_int3 = -999;
double fval = FZ_PI, fval2 = FZ_PI * 0.5;
fz_xyz_td pnt = {0.0,0.0,0.0};
fzrt_boolean rv = TRUE;

Declaring arrays of variables

A variable declared as discussed above has only space for one value to be stored. In contrast,
arrays are sets of variables that can store sets of values of the same type. These are declared as
follows:

type variable_name[integer literal constant];
or
type variable_name[];

The square brackets after the variable name indicates that the variable is an array. Inside the
brackets, an optional integer number may be included. This integer must be larger than 0. It
indicates the initial size of the array. For example, if it is known that an integer array will be used
in the function to store 5 values, it can be declared and used in the following way:

long my_array[5];

my_array[0] = 0;
my_array[1] = 0;
my_array[2] = 1;
my_array[3] = 1;
my_array[4] = 2;

In the assignment statements after the declaration, each member of the array is accessed by
indexing one of the five positions. This is done by using an integer number in the square brackets
to address one specific array location. It is very important to note that the indexing of an array is
zero based. That is, the first position in the array is accessed through the index 0. Therefore, the
maximum position in an array of size n that can be addressed is index n – 1. It is not necessary to
include the size of the array in the variable declaration. The square brackets may remain empty at
declaration time. When array members are accessed later on through function statements,
form•Z will increase the size of the array automatically to the largest index used by the
statements. For example:

long my_array[];

my_array[0] = 0;
my_array[10] = 2;
my_array[5] = 1;

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 382

In this case, my_array was declared without including a specific size. After the three assignment
statements, my_array will be of size 11, since the largest index used is 10. Likewise, if an array
is declared with a specific size, it is OK to later use an index larger than the declaration size.
form•Z will again increase the array size automatically. The index of an array member does not
have to be a literal integer, as in the array declaration, but can be a variable of even an
expression. For example, all members of an array can easily be initialized in a simple for loop,
as follows:

long i,my_array[5];

for(i = 0; i < 5; i++) my_array[i] = 0;

For those that have experience with C or other programming languages, FSL only has one-
dimensional arrays. If multi-dimensional arrays are required for the implementation of a certain
task, then it will have to be done as a plugin rather than a script.

Global Variables

Variables declared outside of all functions are called global variables. They follow the same
syntax as explained above, and can even be initialized to a value. Note, however, assignment
statements by themselves cannot take place outside of functions. Also, global variables can be
accessed in any function to assign or retrieve their values.

A script writer must take caution in using global variables. One can inadvertently make mistakes
by declaring function-level variables with the same name as a global variable. In the following
example, if one calls the change_my_value function, it does not update the global variable
my_value, but updates the local variable my_value instead, which value is “lost” after the
function finishes, leaving the global variable with its same value.

long my_value;

...

long change_my_value()
{
 long my_value;
 ...

 my_value = my_value + 1;
}

In the context of shader scripts one can run in to potential multi-threaded or multi-processor
system-dependent problems. Global variables should not be used inside the pixel shading
function if one is changing the value in the global variable in that call back function.

3.2.6 Expressions

An expression consists of one or more operands. If there is more than one operand, they are
separated by operators. An expression always evaluates to a single value. Expressions are not
used by themselves, but become part of a statement. As discussed in section 3.2.7, expressions
can be used to compute the index of an array member or to initialize a variable.

Single operand expressions

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 383

A single operand expression can be a variable, a constant value, or a function call. For example:

 my_int
 15.0
 is_even(15)
 {0.0, 1.0}

These are all single operand expressions. The my_int variable evaluates to whatever value the
variable has at the time of its use. 15.0 is already a constant value and therefore evaluates to its
floating point value “15.0”. is_even(15) (the function shown in section 3.2.5) evaluates to the
boolean value of TRUE. {0.0, 1.0} is a constant fz_xy_td value with the x member set to
0.0 and the y member set to 1.0.

A single operand expression can be modified by one of two preceding operators, - and !.

The - operator negates the value of a numeric operand and can only be used with integer and
floating point operands. For example:

-15.0
 -my_int
 -my_xy.x

The ! operator negates a boolean operand. For example:

!TRUE
 !my_bool
 !15

If the ! operator is used with an integer or floating point operand, the operand is first cast to a
fzrt_boolean. In the example above, !15 becomes !TRUE which evaluates to FALSE.

Expressions formed by two or more operands are separated by operators. These can be grouped
in arithmetic, conditional, and assignment operators.

Arithmetic Expressions

An arithmetic expression consists of at least two operands separated by arithmetic operators. For
example:

5 + 3

is an arithmetic expression. The two operands are the integer constants 3 and 5. The operator is
+. The expression evaluates to 8. Each of the two operands can be a single operand expression.
For example:

 my_int – function1(15)

Recall the function function1in example in section 3.2.5, which computes and returns the
square of an integer number. In the expression my_int – function1(15), the left operand is
a variable and the right operand is a function call. The expression evaluates to whatever value the
variable my_int has at the time minus 225.

The arithmetic operators supported by FSL are:
* multiplies the two operands

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 384

/ divides the first operand by the second
% produces the remainder when the first operand is divided by the second
+ adds the two operands
- subtracts the second operand from the first
& applies the bitwise and operation between the two operands
| applies the bitwise or operation between the two operands

The bitwise operators & and | require that the two operands be integers. If they are not, they will
first be cast to integers. For more about casting see the section below. The and operation looks at
the binary representation of the two integers. The evaluated number has a 1 in the binary location
where both operands have a one and a 0 on all other locations. For example 15 & 8 become
the following binary numbers: 0000 0000 0000 1111 & 0000 0000 0000 1000.
This evaluates to 0000 0000 0000 1000 because only in the fourth location both numbers
have a 1.

 0000 0000 0000 1111
 0000 0000 0000 1000

 0000 0000 0000 1000

The result of an or operation has a 1 in the location where either the first or the second operand
have a 1. For example 2 | 3 evaluates to 3 because:

 0000 0000 0000 0010
 0000 0000 0000 0011

 0000 0000 0000 0011

Conditional expressions

A conditional expression consists of at least two operands separated by conditional operators. A
conditional expression always evaluates to a boolean value (TRUE or FALSE). For example:

 my_int == 1

The two operands are the variable my_int and the integer constant 1. The operator is ==, which
stands for “equal”. If my_int has a value of 1, the expression evaluates to TRUE, otherwise it
evaluates to FALSE. As in arithmetic expressions, each of the two operands can be a single
operand expression. For example:

 is_even(15) == is_even(12)

In this expression, the two operands are function calls. Using the is_even sample function from
section 3.2.5, the entire expression evaluates to FALSE. The first function call is_even(15) will
return FALSE, and is_even(12) will return TRUE. Then the expression becomes TRUE ==
FALSE, which evaluates to FALSE.

The conditional operators supported by FSL are:
== evaluates the expression to TRUE, if operand 1 and operand 2 are equal, and to FALSE

otherwise
!= evaluates the expression to TRUE, if operand 1 and operand 2 are not equal, and to

FALSE otherwise
> evaluates the expression to TRUE, if operand 1 is greater than operand 2, and to FALSE

otherwise

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 385

>= evaluates the expression to TRUE, if operand 1 is greater than or equal to operand 2, and
to FALSE otherwise

< evaluates the expression to TRUE, if operand 1 is less than operand 2, and to FALSE
otherwise

<= evaluates the expression to TRUE, if operand 1 is less than or equal to operand 2, and to
FALSE otherwise

|| evaluates the expression to TRUE, if operand 1 is TRUE or operand 2 is TRUE, and to
FALSE otherwise. Both operands are first cast to a boolean value if they are not a
boolean already.

&& evaluates the expression to TRUE, if operand 1 is TRUE and operand 2 is TRUE, and to
FALSE otherwise. Both operands are first cast to a boolean value if they are not a
boolean already.

Assignment expressions

An assignment expression takes the form:

 variable = operand

variable can be a variable of a simple or structure type or a member of an array of a simple or
structure type:

array_variable[integer expression] = operand

The expression inside the square brackets must evaluate to an integer value greater than or
equal to zero. The right hand side can be any expression operand, as long as its value is of the
same type as the variable on the left hand side or the value can be cast to that type. After the
expression on the right hand side has been evaluated, its value is assigned to the variable on the
left hand side. The whole expression evaluates to the value of the variable. The variable on the
left hand side cannot be a complex type, such as a fz_mat4x4_td or fz_mat3x3_td. Some
examples are:
 my_int = 1
 bval = is_even(15)
 my_array[0] = 1
 my_array[my_int * 2] = my_array[0]

Another assignment expression can take the form: variable += operand

This is equivalent to the expression variable = variable + operand

For example my_int += 2

is the same as my_int = my_int + 2

This type of assignment expression also exists for the operators -. *,/, | and &.

A third type of assignment expression is called auto increment. It takes the form:

 variable++ or ++variable

This is equivalent to the expression: variable = variable + 1

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 386

When using variable++, the expression is first evaluated to the value of the variable and then 1
is added to it. Using ++variable adds 1 to the variable's value first and then evaluates it. This
kind of expression is used frequently in the for loop statement, described in further detail in
section 3.2.8:

 for(i = 0; i < 10; i++) my_array[i] = 0;

Likewise a variable can be decremented by 1 using --variable or variable--. The variables
used in the auto increment or decrement expression can only be integer or floating point types.

Special care must be taken when using the assignment expression and the conditional
expression with the == operator. Both look very similar, but have very different effects. Consider
the following example:

 if (my_int == 0)

{
 ...

}

in contrast to:

 if (my_int = 0)
 {
 ...
 }

Both examples are valid and will not cause a compilation error. The first example compares the
value of my_int to 0, and if TRUE, executes the statements inside the if body. This is a very
common piece of code. In the second example, the expression my_int = 0 assigns the value
0 to the variable my_int. The expression is evaluated to the value of the variable, in this case 0.
Therefore, the if clause will never be TRUE and the code in the if body will never be executed.
This is a very common mistake.

Expressions with more than two operands

In the previous examples, the expressions shown were composed on two operands separated by
one operator. Expressions may be constructed with more than two operands, as long as they are
separated by operators. For example:
 15 - 2 + 5 - 8
In this case the expression is evaluated from left to right, yielding a value of 10 . When a part of
an expression is enclosed in parenthesis (), the expression inside is evaluated first:
 15 - (2 + 5) - 8
becomes
 15 - 7 - 8
which yields 0. This grouping of expressions can be nested any number of layers deep. The inner
most expression is evaluated first.
 15 - (2 + (5 - (8 - 3)))
becomes
 15 - (2 + (5 - 5))
becomes
 15 - (2 + 0)

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 387

becomes
 15 – 2

It is of course possible to mix assignment and conditional operators in the same expression. In
addition, operators have a different level of priority if they are not enclosed in parenthesis. Below
is a table, which lists the priority of all the expression operators, with the highest priority operators
listed at the top, performing their operations before the operations listed below them.

()
! ++ --
* / %
+ -
< <= > >=
== !=
&
|
&&
||
= += -= *= /= %=

In the examples below, the expression on the left is shown again on the right with
parenthesis or evaluated operands to illustrate, which part of the expression takes priority.

5 + 2 * 3 5 + (2 * 3)
!5 * ++my_int 0 * (my_int = my_int+1)
a && b || c (a && b) || c
a & b < c a & (b < c)
i += 2 || ++j & 1 && a (i = i + 2) || (((j = j + 1) & 1) && a)

Expressions can become complex and difficult to understand quite easily, as it is the case in the
last of the five examples above. It is better to separate parts of an expression into individual
statements, if possible. The complicated example from above can be untangled in such a way:

i = i + 2;
j = j + 1;
b = (j & 1) && a;
i || b

3.2.7 Assignment statements

Statements make up the second part of the body of a function. They perform the actual tasks. An
expression, such as my_int = 0 or is_even(15) becomes a statement, when it is followed by
a semicolon. For example:

my_int = 0;
 rv = is_even(15);

Statements of various kinds have already been used throughout this document in simple
examples. A complete list of all statement types supported by FSL was included in section 3.2.1.
All types are discussed in detail in the following sections.

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 388

An assignment statement is formed by using an assignment expression and adding a semicolon
at the end:

long i,j;

 i = 0;
 j = i + 10;

Assignment statements may also be formed by assigning the right hand side value to multiple
variables. This takes the form:

 variable1 = variable2 = ... variablen = operand;

All the variables on the left hand side of the operand must be of the same type. For example, this
would assign all the variables to the same value:

long a,b,c,d;

 a = b = c = d = 10;

3.2.8 Function calls

A function call has the syntax:

 function_name(expression1,expression2,...expressionn);

Calling a function that is defined in a script looks exactly like a call to an API function defined by
form•Z. The arguments in the function definition determine what kind of expressions can be used
in the function call. If a function argument of a script function is designated with a mod identifier
(see section 3.2.5), the expression used at the same place in the function call must be a variable
of the same type as the argument in the function definition. If the function is a form•Z API function
and an argument is a pointer to a given type, the same rule applies. If the argument in a script
function definition does not have a mod identifier or the argument in a form•Z API is not a pointer,
any expression may be used in the function call, as long as the expression can be cast to the
argument's type. Lets look at a script function definition and a form•Z API function definition. The
function to construct a cube is called fz_objt_cnstr_cube. Its prototype is in the API html
documentation and in the header file fz_objt_prim_api.h. A function prototype defines the
function return type, the function name and its arguments without showing the function body. All
available API functions have their prototypes defined in the API html documentation. From a
function prototype, script writers can tell how the function must be called. Here is the prototype
for the API function to create a cube:

long fz_objt_cnstr_cube (

long windex,
 mod fz_xyz_td wdh,
 mod fz_xyz_td origin,
 mod fz_xyz_td rotation,
 mod fz_objt_ptr obj
)

A script writer may write a custom script function to use this API function. For example, to create
a cube with equal width, depth, and height, one could do the following:

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 389

void create_square_cube(
long windex,
fz_xyz_td location,
double size,
mod fz_objt_ptr new_obj)

{

 fz_xyz_td scale;

 scale.x = scale.y = scale.z = size;

 fz_objt_cnstr_cube(windex,scale,location,NULL,new_obj);

}

When inspecting prototypes via the .h header files one may notice that many function have a
return type of fzrt_error_td. In a script, this type is equivalent to a long. All form•Z functions
that return a fzrt_error_td are assumed to succeed, if the return value is FZRT_NOERR,
which maps to the long integer value 0. Any other return value means, that some kind of error
occurred.

The fz_objt_cnstr_cube prototype also shows, that there are five function arguments. The
first, long windex, is a simple integer. All the others are modifiable arguments, (denoted by an
asterisk * in the header files). The API html document also contains basic information about the
function, which is not apparent from the prototype. For example, the arguments origin and
rotation are tagged as optional. That means, that the NULL pointer constant may be passed in
a call to this function. form•Z will substitute a meaningful default value for these arguments in that
case. When calling the script function create_square_cube from within the script, a call could
look like this:

fz_objt_ptr new_objt;
 ...
 create_square_cube(windex,{100.0, 0.0, 0.0},50.0,new_obj);

Note, that the expressions used for the location and size arguments are constants. This is
allowed, because these two arguments are not tagged with the mod identifier. Inside
create_square_cube the form•Z API function is called. Since the wdh, location and
rotation arguments are mod arguments, the expressions passed for the argument must be
variables of the same type as the argument. The only exception is the NULL pointer, which can be
substituted for an optional argument.

There is one exception to the matching argument type rule with form•Z API functions. if the
prototype of an API function contains an argument of the fz_type_td type usually denoted by a
type of mod void, the script may call this API function with a variable whose type may vary. Api
functions which use the fz_type_td type are functions which set or get parameters of entities.
For example, the API function fz_objt_edit_cube_parm_set can be called to change the
parameters of an existing cube object. The same function can be called to change the height,
which is a floating point parameter, as well as the origin, which is an fz_xyz_td parameter. The
function definition in fz_objt_prim_api.h looks like this:

typedef fzrt_error_td (FZRT_SPEC *fz_objt_edit_cube_parm_set_func) (
 long windex,
 fz_objt_ptr obj,
 fz_objt_cube_parm_enum which,

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 390

fz_type_td * data
);

And the script prototype in the API html documentation looks like this:

long fz_objt_edit_cube_parm_set(

long windex,
fz_objt_ptr obj,
fz_objt_cube_parm_enum which,
mod void data)

The fz_objt_cube_parm_enum which argument is designed to identify which cube
parameter is to be changed (of varying data types). Depending on which value is used for the
which argument, the appropriate type must be used for the data argument. The definition of the
fz_objt_cube_parm_enum type in the documentation tells which type that is:

FZ_OBJT_CUBE_PARM_WIDTH
 Editing - Cube width.
 Type: double
 Range: 0.0
 FZ_OBJT_CUBE_PARM_DEPTH
 Editing - Cube depth.
 Type: double
 Range: 0.0
 FZ_OBJT_CUBE_PARM_HEIGHT
 Editing - Cube height.
 Type: double
 Range: 0.0
 FZ_OBJT_CUBE_PARM_ORIGIN
 Editing - Cube origin.
 Type: fz_xyz_td
 FZ_OBJT_CUBE_PARM_ROTATION
 Editing - Cube rotation.
 Rotation angles are applied in z y x order to transform
 the cube from alignment with the world axes to it's
 3d orientation
 Type: fz_xyz_td

Calls to this function in a script can look like this:

double height;
fz_xyz_td origin;

 ...

 height = 10.0;
 fz_objt_edit_cube_parm_set(windex,

 obj,
 FZ_OBJT_CUBE_PARM_HEIGHT,
 height);

origin = {0.0, 200.0, 5.0};

 fz_objt_edit_cube_parm_set(windex,
 obj,
 FZ_OBJT_CUBE_PARM_ORIGIN,

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 391

 origin);

3.2.9 The if statement

Syntax:

if (expression)

statement

Or

if (expression)

statement1
else

statement2

The if statement allows the script code to execute a statement based on the value of an
expression. The expression inside the parenthesis after if, is evaluated and cast to a boolean, if
not already a boolean. If the boolean value is TRUE, the statement following the if is executed. If
the boolean value is FALSE, the statement is skipped. Alternatively, the if statement may be
paired with an else clause. In this case, if the boolean value is FALSE, the statement after the
else keyword is executed. Recall, that a statement may be represented by a group of statements
by enclosing them in braces. An example of an if statement is shown below:

if (is_even(my_int)
{
 i = i + 1;
 j = j + 1;
}
else
{
 i = i + 2;
 j = j + 2;
}

The if – else statement may be extended to a series of if – else if – else if –
else statements, which takes the form:

 if (expression1)
 statement1
 else if (expression2)
 statement2
 ...
 else if (expressionn)
 statementn
 else
 statementn+1

This allows for a multiple choice decision. The expressions are evaluated top to bottom. The first
expression which evaluates to TRUE, causes the following statement to be executed, and the rest
skipped. If none of the expressions evaluate to TRUE, the statement after the final else is
executed. The final else is of course optional, in which case none of the statements would be
executed if no expression evaluates to TRUE.

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 392

3.2.10 The switch statement

Syntax:

 switch (expression)
 {
 case integer constant expression1: statement1
 case integer constant expression2: statement2
 ...
 case integer constant expressionn: statementn
 default: statementn+1

}

The switch statement is similar to the multiple group if – else if – else statement. It
allows for a multiple choice decision. The expression after switch is evaluated and cast to an
integer value, if not already an integer. After the switch expression follows a statement group,
enclosed in braces. Although any type of statement may be placed in this group, the case and
default statements matter. Zero or more case statements and the optional default statement may
be placed in the switch statement group. The case keyword is followed by an integer constant.
The integer constants of all case statements in a switch must be different. When the switch
statement is executed, the value of the switch expression causes the execution to jump to the
case statement, whose integer constant is the same as the switch expression value. The
statements after that case will be executed next. Typically a break statement is inserted after the
last statement of a case and before the next case. This will cause an immediate exit of the
execution from the switch. An example:

long my_int;
double fval;
 ...

switch (my_int)
{
 case 0:
 case 1:
 case 2:
 fval = 1.0;
 break;

 case 3:
 fval = 20.0;
 break;

 case 4:
 fval = 30.0;
 break;

 default:
 fval = 0.0;
 break;
}

The sample code above set the value of fval based on the value of my_int. For example, if
my_int is 4, the execution jumps to the statement case 4: and next executes fval = 30.0;.

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 393

The next statement is a break statement, which causes the execution to jump past the rest of
the switch statements. If my_int is not 0,1,2,3 or 4 the statements after the default
statement are executed. If the expression does not match any of the case statements and the
default statement is not present, no statements in the switch are executed. Note, that in the
example above, the case 0: and case 1: statements do not have a break statement. This
allows the switch to jump to the same place, if my_int evaluates to 0, 1 or 2. Omitting the
break statement must be handled with care. It allows, as in the example above, multiple values
to jump to the same location. However, if the break statement would be omitted by error, it
causes statements to be executed that might not be intended. For example, if the break
statement after fval = 20.0; is omitted by accident, the next statement that is executed would
be fval = 30.0; which would overwrite the previous assignment of fval.

3.2.11 Loop statements

Loops are a language construct that allow the same statement to be executed many times, until a
terminating condition is met. For example, one can create 10 cubes either by adding the code to
create the cube 10 times, or the code to create a single cube can be added in a loop structure,
that is executed 10 times. Three different kind of loop statements are provided by FSL: for,
while, and do while. They are illustrated in more detail in the next three sections.

The for loop statement

Syntax:

for (expression1opt; expression2opt; expression3opt)

statement

The for loop statement uses three expressions, separated by semicolons, and the actual
statement that is executed by each iteration of the loop. The first expression is the starting
expression. It is evaluated before the first iteration of the loop. The second expression is the
terminating condition. It is evaluated before each iteration of the loop and cast to a boolean value.
If the expression evaluates to TRUE, the next loop iteration will be executed. If it evaluates to
FALSE, the loop stops. The third expression is evaluated before each loop iteration and before
evaluating the second (terminating) expression. In a practical application, the three expression
are used to initialize a loop counter, check the value of the loop counter against an upper limit and
increment the loop counter. For example:

long i;
fz_xyz_td origin,scale;
fz_objt_ptr new_obj;

 scale = {20, 20, 20};
 for(i = 0; i < 10; i++)
 {
 origin.x = i * 100.0;
 origin.y = 0.0;
 origin.z = 0.0;
 fz_objt_cnstr_cube(windex,

 scale,
 origin,
 NULL,
 new_obj);

 fz_objt_add_objt_to_project(windex,new_obj);

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 394

 }

In this case the for loop is executed 10 times, with i taking on values from 0 to 9. As soon as i
becomes 10, the terminating condition is met and the loop stops. The loop counter i is also used
in the statements to compute a different location of the 10 cubes created. The first cube is placed
at {0.0, 0.0, 0.0} ,the second at {100.0, 0.0, 0.0} etc. It is also common practice to
initialize and increment more than one loop counter. For example, with the additional variable j:

 scale = {20, 20, 20};
 for(i = 0,j = 1; i < 10; i++, j += 2)
 {
 origin.x = j * 100.0;
 origin.y = 0.0;
 origin.z = 0.0;
 fz_objt_cnstr_cube(windex,

 scale,
 origin,
 NULL,
 new_obj);

 fz_objt_add_objt_to_project(windex,new_obj);
 }

Note that for loops support chained expressions, separated by commas, for the initialization and
increment expressions. It is also possible, although less common to omit any of the three
expressions. The example above can be written without any of the expression inside the for
statement:

 i = 0;
 j = 1;
 scale = {20, 20, 20};
 for(; ;)
 {
 origin.x = j * 100.0;
 origin.y = 0.0;
 origin.z = 0.0;
 fz_objt_cnstr_cube(windex,

 scale,
 origin,
 NULL,
 new_obj);

 i++;
 j += 2;
 if (i == 10) break;
 }

Omitting the terminating expression assumes the condition to be permanently TRUE. Therefore
the loop must be stopped by other means, in this case a break statement. Clearly, this is not the
most elegant use of the for loop statement. Special care should be taken that loops don’t turn
into an infinite loop. If the break statement were to be omitted in the example above, the for loop
would iterate forever. This may lead to severe problems. In this case, form•Z would eventually
run out of memory, because too many cubes were created. The user may have to abnormally
terminate the program to get out of this situation, permanently losing all the work unsaved up to
this point.

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 395

The while loop statement

Syntax:

while (expression)

statement

The while loop is very similar to the for loop statement. It executes its statements as long as its
expression evaluates to TRUE. A for loop lends itself to a loop structure, that has an explicit
counter, that is incremented and compared against an upper limit. The while loop tends to be
more appropriate when testing against a terminating condition, such as a function call. For
example:

 fz_lite_ptr lite;

 fz_lite_get_next_light(windex,NULL,lite);

while (lite != NULL)
 {
 ...
 fz_lite_get_next_light(windex,lite,lite);
 }

The example above loops through all the lights defined in a project. The first time form•Z API
function fz_lite_get_next_light is called, the second argument, lite, is set to NULL. This
retrieves the first light in the project in the third function argument. Subsequent calls pass in the
previously retrieved light, which gets the next light in the list. For the last light in the list,
fz_lite_get_next_light returns NULL, in which case the while loop stops.

The do while loop statement

Syntax:

do statement while (expression) ;

The do while loop is different from the for and while loops, in, that it always executes at least
once. The terminating condition is checked after the statements are executed. The example
below shows, how to loop through all segments of a curve of an object:

long cindx,sindx,shead,snext;
fz_objt_ptr obj;

 ...

fz_objt_curv_get_sindx(windex,obj,cindx,
 FZ_OBJT_MODEL_TYPE_FACT,shead);
sindx = shead;
do
{

 ...

 fz_objt_segt_get_next(windex,obj,sindx,

 FZ_OBJT_MODEL_TYPE_FACT,snext);
 sindx = snext;

} while (sindx != shead && sindx != -1);

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 396

The API function call fz_objt_curv_get_sindx retrieves the first segment of a curve, stored
in the variable shead. Inside the loop, the API function fz_objt_segt_get_next gets the
next segment index snext from the current segment index sindx. Then snext is assigned to
sindx. The terminating expression checks whether sindx and shead are the same. If they are,
the loop has gone once around all the segments of a curve. If sindx becomes –1, the curve was
an open curve, and the loop terminates as well.

A more elaborate example of a combination of for and do while loops is shown below. It
traces through the topology of a form•Z object, visiting all the segments of all curves.

long i,nface,cindx,chead,

cnext,sindx,shead,snext;
fz_objt_ptr obj;

 ...

 fz_objt_get_face_count(windex,obj,
 FZ_OBJT_MODEL_TYPE_FACT,nface);

 for(i = 0; i < nface; i++)
 {
 fz_objt_face_get_cindx(windex,obj,i,
 FZ_OBJT_MODEL_TYPE_FACT,cindx);
 chead = cindx;
 do
 {
 fz_objt_curv_get_sindx(windex,obj,cindx,
 FZ_OBJT_MODEL_TYPE_FACT,shead);
 sindx = shead;
 do
 {
 ...

 fz_objt_segt_get_next(windex,obj,sindx,
 FZ_OBJT_MODEL_TYPE_FACT,snext);

 } while ((sindx = snext) != shead && sindx != -1);

 fz_objt_curv_get_next(windex,obj,cindx,
 FZ_OBJT_MODEL_TYPE_FACT,cnext);

 } while ((cindx = cnext) != chead);
 }

3.2.12 Jump statements

There are three jump statements in FSL: break, continue and goto. A jump statement, when
executed, forces a jump to another statement, instead of going to the next statement.

The break statement

Syntax:

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 397

break;

The break statement has already been partially discussed in the context of the switch
statement. It can also be placed inside any of the three loop statements. When executed inside a
loop, it forces the loop to terminate immediately without executing any further statements. For
example:

fz_lite_ptr lite;

 lite = NULL;

while (TRUE)
 {
 fz_lite_get_next_light(windex,lite,lite);
 if (lite == NULL) break;

 ...
 }

The terminating condition of the while loop is the boolean constant TRUE. This will cause the loop
to execute forever. The loop, however, has a way of terminating by comparing the lite pointer
against NULL, in which case if it is NULL, the break statement is executed. This will cause the
execution of the script to jump to the statement following the loop. The example shown here is
equivalent to the previous while loop example. Placing a break statement outside the context
of a loop or a switch statement is not allowed and will cause a compile error.

The continue statement

Syntax:

continue;

The continue statement can only be placed inside the body of a for, while or do while loop. It
causes the statements coming after it in the loop body to be skipped. For example:

 scale = {20, 20, 20};

for(i = 0; i < 10; i++)
{

 if (i == 5) continue;

 origin.x = i * 100.0;
 origin.y = 0.0;
 origin.z = 0.0;
 fz_objt_cnstr_cube(windex,

 scale,
 origin,
 NULL,
 new_obj);

 fz_objt_add_objt_to_project(windex,new_obj);
}

Placing a continue statement inside a do while loop may be dangerous, as the terminating
expression is skipped as well. The example below would result in an infinite loop, as i will never
get larger than 5:

 i = 0;
 do

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 398

 {
 if (i == 5) continue;
 ...
 } while ((i = i + 1) < 10);

The goto statement

Syntax:

goto label;

label:

The goto statement executes a jump of the program to the line that follows the label identified by
the goto statement. The label can be placed anywhere inside a function, after the variable
declarations. There can be any number of labels in a function, but they must all have unique
names, and must be different from the names of any variables declared or passed into the
function. The label name must begin with a lower or upper case letters or the _ character. The
rest of the label name may contain letters, numbers and the _ character in any combination. The
label name cannot be longer than 128 characters. An appropriate use of a goto statement in a
function is shown below:

void create_cubes(long windex)
{
 long i,j,err;
 fz_xyz_td origin,scale;
 fz_objt_ptr new_obj;

 scale = {10.0,10.0,10.0};

for(i = 0; i < 3; i++)
{

 for(j = 0; j < 3; j++)
 {

if (i != 1 && j != 1)
{

origin.x = i * 100.0;
 origin.y = j * 100.0;
 origin.z = 0.0;
 err = fz_objt_cnstr_cube(windex,

 scale,
 origin,
 NULL,
 new_obj);

 fz_objt_add_objt_to_project(windex,new_obj);

 if (err != FZRT_NOERR) goto EXIT;

}
}

}

EXIT:

 return;
}

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 399

It is not necessary for the label to be placed after the goto statement. Placing the label before
the goto causes the statements between the label and goto to be executed repeatedly. This
effectively creates an infinite loop. It is necessary to break this loop through some kind of
terminating condition. For example:

void create_cubes(long windex)
{
 long i,err;
 fz_xyz_td origin,scale;
 fz_objt_ptr new_obj;

 scale = {10.0,10.0,10.0};

 i = 0;

REPEAT:
 origin.x = i * 100.0;
 origin.y = 0.0;
 origin.z = 0.0;
 err = fz_objt_cnstr_cube(windex,

 scale,
 origin,
 NULL,
 new_obj);

 i = i + 1;
 if (i < 10 && err == FZRT_NOERR) goto REPEAT;

}

It is easy to see that a for loop is a much more elegant solution to creating 10 cubes. goto
statements should be used with caution as they can quickly cause a messy function structure,
jumping from statement to statement. In older programming languages, such as FORTRAN, goto
statements were necessary, as control structures, such as loops or switch statements did not
exist. In the C language, upon which FSL is based, goto statements are usually only placed to
jump from deeply nested loops and if statements to the end of a function, to stop the execution of
a function when an error occurred, as shown in the example above. It has also become common
practice to give goto labels all upper case characters to distinguish them from variables and
functions, which usually contain lower case letters.

3.2.13 The return statement

Syntax:

return expressionopt ;

The return statement causes the function in which it is placed to return execution to the calling
script code. It is usually placed as the last statement in a function. The value of the expression
following the statement is returned by the function to the calling script code:

fzrt_boolean is_even(long value)
{
 fzrt_boolean rv;

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 400

 if ((value / 2) * 2 == value) rv = TRUE;
 else rv = FALSE;

 return(rv);
}

Any function which is declared to have a return type other than void will always return a value.
The calling code may or may not use the return value. For example:

 fz_objt_cnstr_cube(windex,

 scale,
 origin,
 NULL,
 new_obj);

 and

 err = fz_objt_cnstr_cube(windex,

 scale,
 origin,
 NULL,
 new_obj);

are both valid function calls. The second captures the return value in the variable err. If a
function does not have a return statement, or the expression of the return statement is
omitted, the return value of the function is arbitrary. It is good practice to always have a return
statement with the proper expression. It is also common practice to not use multiple return
statements in a function. While there is no error in doing so, script code is easier to trace if the
function exits only in one place. For example the function below is written with one return
statement. It creates a sphere and returns any possible errors.

long create_sphere(long windex)
{
 long err;
 fz_xyz_td org,scale;

 fz_objt_sphr_cnstr_opts_ptr sphr_opts;
 fz_objt_ptr obj;
 fzrt_boolean bval;

 org = {0.0,0.0,0.0};
 scale = {1.0, 1.0, 1.0};

fz_objt_cnstr_sphr_opts_init(windex,sphr_opts);

bval = TRUE;
 fz_objt_cnstr_sphr_opts_set(windex,sphr_opts,

FZ_OBJT_SPHR_PARM_PARTIAL,bval);

 if((err = fz_objt_cnstr_sphr(windex,scale,org,
 NULL,sphr_opts,NULL,obj)) == FZRT_NOERR)
 {
 fz_objt_add_objt_to_project(windex,obj);
 }

 fz_objt_cnstr_sphr_opts_finit(windex,sphr_opts);

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 401

 return(err);
}

The same function could also have been written like this:

long create_sphere(long windex)
{
 long err;
 fz_xyz_td org,scale;
 fz_objt_sphr_cnstr_opts_ptr sphr_opts;
 fz_objt_ptr obj;
 fzrt_boolean bval;

 org = {0.0,0.0,0.0};
 scale = {1.0, 1.0, 1.0};

fz_objt_cnstr_sphr_opts_init(windex,sphr_opts);

bval = TRUE;
 fz_objt_cnstr_sphr_opts_set(windex,sphr_opts,

FZ_OBJT_SPHR_PARM_PARTIAL,bval);

 if((err = fz_objt_cnstr_sphr(windex,scale,org,
 NULL,sphr_opts,NULL,obj)) != FZRT_NOERR)
 {

return (err);
 }

 fz_objt_add_objt_to_project(windex,obj);

 fz_objt_cnstr_sphr_opts_finit(windex,sphr_opts);

 return(FZRT_NOERR);
}

The mistake in the function above is that the sphere construction options would not be properly
deleted if an error occurred, because the function fz_objt_cnstr_sphr_opts_finit would
never be executed. In the case of variables that require an init function to be executed, a
corresponding finit function must also be executed. In the first version of the function, this would
not be the case.

3.2.14 Comments

Comments are text that is not part of the executable part of the script. They are usually provided
by script writers to enhance the readability of the code, either for the benefit of the author or for
other programmers working on the same script. It is always a good idea to add comments. They
help identify important parts of a script, even if they may seem trivial at first.

Comments are structured in two ways. First, the text intended to be a comment can be placed
between the start marker characters /* and the end marker characters */. No spaces are allowed
between / and *. The text between the start and end markers is considered comment and is
ignored by the script when it is compiled and executed.

/* THIS IS A COMMENT */

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 402

/* IT MAY
 even wrap
 AROUND MULTIPLE
 l i n e s
*/

The start and end markers cannot be nested. For example the following comment would result in
a compile error:

/* START OF COMMENT
/* ANOTHER COMMENT INSIDE A COMMENT */

END OF COMMENT */

A second way to identify a comment is to place the characters // (double slash) before the
comment text. All text following // until the end of the line is considered a comment. Since there is
no end marker, the comment stops at the end of the line. For example:

// This is a different kind of comment

// If I wrap around the line
 like this it would cause a compile error

// It is quite ok to put /* the other comment marker */ here

Comments may be placed anywhere in the code. For example:

 if (/* is_odd(val) */ is_even(val))
 {
 ...
 }

is a valid use of a comment. In this case it disables unused code. However a comment cannot
split a syntax keyword or variable names.

 if (is/* split */_even(val))
 {
 ...
 }

is not correct. This will cause a compile error.

3.2.15 Mixed expressions and their rules

When evaluating an expression, certain rules apply depending on the type of the operands used.
In general, when evaluating an expression, the type of the resulting value is the same as the
“highest” type of the two operands. The order, low to high, for the FSL types is:

fzrt_boolean
long, enum
double
fz_xy_td, fzrt_point
fz_xyz_td, fz_rgb_float_td, fzrt_rect
fz_plane_equ_td
fz_mat3x3_td

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 403

fz_mat4x4_td
fz_map_plane_td

For example the expression:

15.5 + 5

has a floating point and an integer operand. Since double is higher than long, the expression
evaluates to double, in this case 20.5. Expressions involving integer and floating point
numbers appear intuitive since they very much resemble our school math. FSL however also
allows expressions between higher level operands, which provide a nice shortcut for certain
operations. These special relationships between operands of a certain type and the operators
involved are documented below:

Multiplying two matrices

Multiplying two 3 by 3 matrices evaluates to a 3 by 3 matrix, where the matrices are multiplied in
the same fashion as in the math API function math_3x3_mulitply_mat_mat. Therefore

fz_mat3x3_td mat1,mat2,mat3;
...
mat3 = mat1 * mat2;

is the same as

math_3x3_mulitply_mat_mat(mat,mat2,mat3);

The same is the case for 4 by 4 matrices.

Multiplying matrices and fz_xy_td, fz_xyz_td

Multiplying a 3 by 3 matrix with an fz_xy_td evaluates to a fz_xy_td value, where the matrix
and the fz_xy_td are multiplied in the same fashion as in the math API function
math_3x3_mulitply_mat_xy. Therefore

fz_mat3x3_td mat;
fz_xy_td pt1,pt2;
...
pt2 = pt1 * mat;

is the same as

math_3x3_mulitply_mat_xy(mat,pt1,pt2);

The same is the case for multiplying a 4 by 4 matrix with a fz_xyz_td.

Operating on two structure types

Operating on two operands of a structure type is the same as operating on each of the members
individually. For example:

fz_xy_td p1,p2,p3;
...

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 404

p3 = p2 * p1;

is the same as

p3.x = p1.x * p2.x;
p3.y = p1.y * p2.y;

When mixing structure types in the same expression, the extra fields of the higher type are
defaulted. For example multiplying an fz_xy_td and an fz_xyz_td results in an fz_xyz_td,
where the z value of the result is the same as the z value of the one fz_xyz_td operand. For
example:

fz_xy_td p1 = { 2.0, 2.0 };
fz_xyz_td p2 = { 3.0. 3.0, 3.0 },p3;

p3 = p1 * p2;

results in the value {6.0, 6.0, 3.0} for p3;

Operating on one structure type and one simple type.

When mixing a structure type with a simple type, each field of the structure type operand is
operated on with the simple type operand. For example:

fz_xyz_td p1;
double fval;

p1 *= fval;

is the same as

p1.x *= fval;
p2.x *= fval;

Expressions chains

Several expressions may be chained together by separating them with commas. For example:

a = 15 + 7, my_bool = is_even(a), j++

In an expression chain, the individual expressions are evaluated left to right. The whole
expression chain evaluates to the value of the first expression. For example:

if (is_even(a), j = 0, i = j + 1)
{
 ...
}

The if statement uses an expression to determine whether to execute the statements in its body.
The expression chain in the example has three individual expressions. They will all be evaluated,
but only is_even(a) will be used to determine if the if clause is TRUE. Chaining expressions is
not a very common programming practice and should be avoided for code clarity. The only place
where chained expressions are common is in the for loop structure (see section 3.2.8). For
example:

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 405

for(i = 0, j = 0; i < end; i++, j += 2)
{
 ...
}

3.2.16 Casting values

Casting is a process where a value of one type is forced to become a value of another type.
Casting occurs in a number of different situations. For example, in an assignment expression, the
value of the operand on the right hand side (the “from” type) is cast to the type of the variable on
the left hand side (the “to” type), if the types of the two operands are different. For example:

long my_int;

my_int = 15.5;

When casting from a lower type to a higher type, usually the content of the value is maintained
and missing information is substituted. For example when casting an fz_xy_td to an fz_xyz_td,
the missing z member is defaulted to 0.0:

fz_xy_td pt_xy = {2.0, 2.0};
fz_xyz_td pt_xyz;

 pt_xyz = pt_xy;

After the assignment, pt_xyz has the value {2.0, 2.0, 0.0}. When casting from a higher
type to a lower type, some information loss occurs. For example when casting from a double to
a long, the fractional part of the number is lost:

long my_int;

my_int = 15.5;

After the assignment, my_int has a value of 15. Certain types can be cast to other types, where
others cannot. The tables below illustrate which casts are allowed, how missing information is
substituted and how extra information is lost. If a type does not show up in a table, it is not
possible to cast from the “from” type to the “to” type.

Casting from a fzrt_boolean to:

 Default / Loss
fzrt_boolean
long integer becomes 0 or 1
double double becomes 0.0 or 1.0
fz_xy_td fz_xy_td becomes {0.0, 0.0} or {1.0, 1.0}
fz_xyz_td xyz becomes {0.0, 0.0, 0.0} or {1.0, 1.0, 1.0}
fz_rgb_float_td rgb becomes {0.0, 0.0, 0.0} or {1.0, 1.0, 1.0}
fz_plane_equ_td the equation becomes {0.0, 0.0, 0.0, 0.0} or {1.0, 1.0, 1.0, 1.0}
fz_mat3x3_td the matrix diagonal is set to all 0.0 or 1.0. All other matrix

fields are set to 0.0.
fz_mat4x4_td the matrix diagonal is set to all 0.0 or 1.0. All other matrix

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 406

fields are set to 0.0.
fzrt_ptr the pointer value is set to NULL if the boolean is FALSE, and

is set to 0x00000001 if the boolean is TRUE.

Casting from a long to:

 Default / Loss
fzrt_boolean the boolean becomes FALSE if the long is 0 and TRUE

otherwise
long
double double uses the value of the long
fz_xy_td fz_xy_td uses the value of the long in all its fields
fz_xyz_td fz_xyz_td uses the value of the long in all its fields
fz_rgb_float_td rgb uses the value of the long in all its fields
fz_plane_equ_td the equation uses the value of the long in all its fields
fz_mat3x3_td the matrix diagonal uses the value of the long. All other matrix

fields are set to 0.0.
fz_mat4x4_td the matrix diagonal uses the value of the long. All other matrix

fields are set to 0.0.
fzrt_ptr the pointer value is set to the value of the long

Casting from a double to:

 Default / Loss
fzrt_boolean the boolean becomes FALSE if the double is 0.0 and TRUE

otherwise
long the integer uses the double value with the fractional part

truncated. For example -15.5 become -15, 0.1 becomes 0,
999.999 becomes 999.

double
fz_xy_td fz_xy_td uses the value of the double in all its fields
fz_xyz_td fz_xyz_td uses the value of the in double t in all its fields
fz_rgb_float_td rgb uses the value of the double in all its fields
fz_plane_equ_td the equation uses the value of the double in all its fields
fz_mat3x3_td the matrix diagonal uses the value of the double. All other

matrix fields are set to 0.0.
fz_mat4x4_td the matrix diagonal uses the value of the double. All other

matrix fields are set to 0.0.

Casting from a fz_xy_td to:

 Default / Loss
fzrt_boolean the boolean becomes FALSE if the average of the x and y

members of the fz_xy_td is 0.0 and TRUE otherwise.
long the integer uses the average of the x and y members of the

fz_xy_td with the fractional part truncated. For example {2.0,
5.0} becomes 3.

double the double uses the average of the x and y members of the
fz_xy_td. For example {2.0, 5.0} becomes 3.5.

fz_xy_td
fz_xyz_td fz_xyz_td uses the values of the x and y members if the

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 407

fz_xy_td and sets its z value to 0.0. For example {2.0, 2.0}
becomes {2.0, 2.0, 0.0}

fz_rgb_float_td rgb uses the x, and y members of the fz_xy_td and sets the b
member to 0.0.

fz_plane_equ_td the equation uses the x, and y members of the fz_xy_td for its
a and b members and sets the c and d members to 0.0.

fz_mat3x3_td the matrix diagonal uses the average of the x and y members
of the fz_xy_td. All other matrix fields are set to 0.0.

fz_mat4x4_td the matrix diagonal uses the average of the x and y members
of the fz_xy_td. All other matrix fields are set to 0.0.

Casting from a fz_xyz_td to:

 Default / Loss
fzrt_boolean the boolean becomes FALSE if the average of the x, y and z

members of the fz_xyz_td is 0.0 and TRUE otherwise.
long the integer uses the average of the x, y and z members of the

fz_xyz_td with the fractional part truncated. For example {2.0,
5.0, 4.0} becomes 3.

double the double uses the average of the x, y and z members of the
fz_xyz_td. For example {7.5, 5.0, 4.0} becomes 5.5.

fz_xy_td the fz_xy_td uses the x and y member of the fz_xyz_td. The z
member of the fz_xyz_td is lost.

fz_xyz_td
fz_rgb_float_td rgb uses the x, y and z members of the fz_xyz_td.
fz_plane_equ_td the equation uses the x, y and z members of the fz_xyz_td for

its a, b and c members and sets the d member to 0.0.
fz_mat3x3_td the matrix diagonal uses the average of the x, y and z

members of the fz_xyz_td. All other matrix fields are set to 0.0.
fz_mat4x4_td the matrix diagonal uses the average of the x, y and z

members of the fz_xyz_td. All other matrix fields are set to 0.0.

Casting from a fz_rgb_float_td to:

 Default / Loss
fzrt_boolean the boolean becomes FALSE if the average of the r, g and b

members of the rgb is 0.0 and TRUE otherwise.
long the integer uses the average of the r, g and b members of the

rgb with the fractional part truncated. For example {1.0, 1.0,
0.0} becomes 0.

double the double uses the average of the r, g and b members of the
rgb. For example {1.0, 1.0, 0.0} becomes 0.666666... .

fz_xy_td the fz_xy_td uses the r and b member of the rgb. The b
member of the rgb is lost.

fz_xyz_td fz_xyz_td uses the r, g and b members of the rgb.
fz_rgb_float_td
fz_plane_equ_td the equation uses the r, g and b members of the rgb for its a,

b and c members and sets the d member to 0.0.
fz_mat3x3_td the matrix diagonal uses the average of the r, g and b

members of the rgb. All other matrix fields are set to 0.0.
fz_mat4x4_td the matrix diagonal uses the average of the r, g and b

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 408

members of the rgb. All other matrix fields are set to 0.0.

Casting from a fz_mat3x3_td to:

 Default / Loss
fzrt_boolean the boolean becomes FALSE if the average of the matrix fields

is 0.0 and TRUE otherwise.
long the integer uses the average of the matrix fields with the

fractional part truncated.
double the double uses the average of the matrix fields
fz_xy_td the fz_xy_td uses the average of the matrix fields for each of

its members.
fz_xyz_td fz_xyz_td uses the average of the matrix fields for each of its

members.
fz_rgb_float_td rgb uses the average of the matrix fields for each of its

members.
fz_plane_equ_td the equation uses the average of the matrix fields for each of

its members.
fz_mat3x3_td
fz_mat4x4_td the 3 by 3 matrix is copied into the upper part of the 4 by 4

matrix. The lowest row and the right most column of the 4 by 4
matrix is set to all 0.0, except for the lower right field, which is
set to 1.0.

Casting from a fz_mat4x4_td to:

 Default / Loss
fzrt_boolean the boolean becomes FALSE if the average of the matrix fields

is 0.0 and TRUE otherwise.
long the integer uses the average of the matrix fields with the

fractional part truncated.
double the double uses the average of the the average of the matrix

fields
fz_xy_td the fz_xy_td uses the average of the matrix fields for each of

its members.
fz_xyz_td fz_xyz_td uses the average of the matrix fields for each of its

members.
fz_rgb_float_td rgb uses the average of the matrix fields for each of its

members.
fz_plane_equ_td the equation uses the average of the matrix fields for each of

its members.
fz_mat3x3_td The upper part of the 3 by 3 matrix (2x2) is copied into the

upper part of the 4 by 4 matrix. The first two fields of the last
row of the 3 by 3 matrix is copied into the last row of the 4 by 4
matrix. All other fields of the 4 by 4 matrix remain initialized as
in the identity 4 by 4 matrix.

fz_mat4x4_td

Casting from a fzrt_ptr (or any of the specific pointer types) to:

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 409

 Default / Loss
fzrt_boolean the boolean becomes FALSE if the pointer is NULL and TRUE

otherwise.
long the integer uses the pointer value. This is usually a memory

address.
fzrt_ptr

Casting from an array of any FSL type to:

 Default / Loss
fzrt_boolean the boolean becomes FALSE if the array has no members,

TRUE otherwise
long the integer uses the address of the array in memory
fzrt_ptr the pointer uses the address of the array in memory

Types which are not listed above as “from” types cannot be cast to any other type. Enums of
different types cannot be cast to each other. For example:

fz_objt_model_type_enum my_model_type;
fz_lite_type_enum my_lite_type;

...
my_model_type = my_lite_type; /* THIS IS NOT VALID */

Likewise, pointers of different types cannot be cast into each other. However a pointer of a
specific type can be cast from and to the generic fzrt_ptr type. For example:

fzrt_ptr my_ptr;
fz_objt_ptr objt;
fz_lite_ptr lite;

...
objt = my_ptr; /* VALID */
my_ptr = objt; /* VALID */
lite = objt; /* THIS IS NOT VALID */

3.2.17 Defining constants

Syntax: #define constant_name value

In order to make source code more legible, is it helpful to give a constant value a name
placeholder. For example, the square root of 2 has a value of 1.41421. Instead of repeating these
numbers each time this value is used in the code, it would be more useful, to use a name instead,
which represents 1.41421. This can be done with the #define statement. The define statement
must be placed before the first use of the constant name. The best place to put it is the top of the
file, before the first function is written. It is not allowed to put a #define statement inside a
function.

#define SQRT_OF_TWO 1.41421

void my_func()
{

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 410

 double my_val;

 my_val = SQRT_OF_TWO;

...
}

Any of the types, which have a constant value can be used in a define statement:

#define SOME_STRING "This is a string constant"
#define XYZ_ORIGIN {0.0, 0.0, 0,0}
#define XY_PLANE {0.0, 0.0, 1,0, 0.0}
#define NOT_TRUE FALSE

A second advantage of using defined constant names, is that it takes only one modification of the
constant definition to have the change take effect for all uses of the constant. For example, if in a
revision of the code, the SQRT_OF_TWO constant is defined more accurately:

#define SQRT_OF_TWO 1.414213562

the change will apply automatically everywhere the constant is used. If the value 1.41421 were
used explicitly, the programmer would have to find each use of the value and apply the same
change.

3.2.18 Including scripts in other scripts

Syntax: #include "script_file_name"

With the #include statement, the source code of the script identified by the script's file name is
added to the script code, as if the content of the included script file were present directly in the
script it is included from. This allows a developer to reuse commonly used functions, without
having to retype the code. It also keeps the commonly used code in one place, so that if a change
is made, all other script which include that script will be updated with the change the next time
they are compiled.

A common use of the #include statement would be to include a script file which contains utility
function, that could be used by other scripts. The #include statement should be placed at the
top of a script. It is not allowed to be placed inside a function.The script file, which is included by
other scripts, should not be tagged with the script_type header. For example:

3.2 FSL Language Reference form•Z SDK (v6.0.0.0 rev 05/30/06) 411

utility_funcs.fsl

long utility_func1()
{
 ...
}

long utility_func2()
{
 ...
}

my_script.fsl

script_type FZ_UTIL_PROJ_EXTS_TYPE

#include "utility_funcs.fsl"

long fz_util_cbak_proj_main(long windex)
{
 long val1, val2;

 val1 = utility_func1();
 val2 = utility_func2();

 ...

}

is the same as:

my_script.fsl

script_type FZ_UTIL_PROJ_EXTS_TYPE

long utility_func1()
{
 ...
}

long utility_func2()
{
 ...
}

long fz_util_cbak_proj_main(long windex)
{
 long val1, val2;

 val1 = utility_func1();
 val2 = utility_func2();

 ...

}

3.3 Script File Structure form•Z SDK (v6.0.0.0 rev 05/30/06) 412

3.3 Script File Structure

A script consists of two parts, a header and the body. The header tells form•Z the type of script.
The body contains one or more functions.

3.3.1 Script header

The minimum script header consists of a single line of code with two key words:

script_type EXTENSION_TYPE_UUID

script_type must be the first non comment key word in a script, followed by the script type
identifier. The identifier indicates what type the script is, which can be a color, reflection,
transparency bump, depth effect or background shader. A script can also define a modeling tool,
project or system command and a project or system utility. Each of these script types has a
different identifier. The required and optional functions of each script type are discussed in further
detail in their respective sections. If a script were a color shader script, the first line in the script
source file would look like:

script_type FZ_SHDR_COLR_EXTS_TYPE

A second header identifier, called script_debug, is optional:

script_debug boolean

It defines, whether a script can be executed in debug mode or not. In order to test a script,
form•Z offers the script author to display the source code of the script as it is executed. This is
also known as debugging. The author may step through the code one statement at a time,
observe the content of variables and check the flow of the execution of the script. In order to turn
this mode on, the script needs to be enabled for debugging. This is done with the script_debug
identifier. If it is followed by the boolean value TRUE, debugging is enabled. If it is followed by
FALSE, or the script_debug identifier is not present in the script header, debugging is disabled.
In addition to the script_debug identifier, the Use Script Debugger item in the Extensions
menu in form•Z main menu bar needs to be selected. When a script is executed, form•Z will stop
at the first statement of each script function and bring up the debugger environment. This is
described in more detail in section 3.8.2.

3.3.2 Script Body

Depending on the type of script, different functions must be implemented. Each function must
have a specific name, required by the type of script and the function arguments must also match
those required by the script type. For example, a RenderZone color shader script must define at
least two functions. This is described in more detail in section 3.7.3, but is summarized again
below. These two functions constitute the basic functionality of a shader. They are:

A function which defines the name of the shader:

long fz_shdr_cbak_colr_name(mod fz_string_td name, long max_len);

A function which gives a pixel a color:

fz_rgb_float_td fz_shdr_cbak_colr_pixel();

3.3 Script File Structure form•Z SDK (v6.0.0.0 rev 05/30/06) 413

In addition to these required functions, there are optional functions. If they are not defined in a
script, form•Z will substitute a default behavior. For example, the color shader has an optional
function which returns the average color, representing the multi color pattern generated by the
shader:

fz_rgb_float_td fz_shdr_cbak_colr_avg();

This function is used to determine the color with which to draw objects in rendering modes which
use a single solid color, such as Wireframe or Surface Render. If this function is not defined by a
color shader, form•Z will substitute a 50% gray. There is one optional function, which is common
to all shaders, except the project and system utiltity. It is always defined as follows:

long fz_script_cbak_info(mod fz_string_td uuid,
 mod fz_string_td title,
 mod fz_string_td vendor,
 mod long version);

This is the init function for a script and is called once, when form•Z first loads the script, usually at
startup time. While it is optional, it is recommended, that a developer who intends to distribute the
script to other users implements this function. Specifically, the uuid (unique identifier) should be
defined, as it will avoid collisions of two scripts with the same id. The other arguments of this
function are as follows:

title: this string returned by the function is displayed as the title of the script in form•Z when
opening the Extensions dialog.
vendor: this string returned by the function is displayed as the script vendor in form•Z when
opening the Extensions dialog.
version: This is the version assigned to the script. It is used in the Extensions dialog to indicate
which version of the script is loaded. It may also be used by the respective script type to keep
track of the script's data when it is written to file. This is, for example, the case with shader scripts
and is discussed in more detail in section 3.7.3.

A simple, complete color shader script, including the init function, would look like this:

script_type FZ_SHDR_COLR_EXTS_TYPE

long fz_script_cbak_info(mod fz_string_td uuid,
 mod fz_string_td title,
 mod fz_string_td vendor,
 mod long version)
{
 uuid =
 "\xb5\xd7\xfb\x7a\x0c\x28\x48\x71\x92\x71\x34\x29\xf0\x78\x1e\x29";
 title = "Simple Black and White Checker Color Shader";
 vendor = "auto•des•sys Inc";
 version = 0;
}

long fz_shdr_cbak_colr_name(mod fz_string_td name, long max_len)
{
 name = "Simple Checker";
 return (FZRT_NOERR);
}

fz_rgb_float_td fz_shdr_cbak_colr_pixel()

3.3 Script File Structure form•Z SDK (v6.0.0.0 rev 05/30/06) 414

{
 fz_rgb_float_td color;
 fz_xy_td st;
 double s,t;

 fz_shdr_get_tspace_st(st);
 s = fz_shdr_saw_tooth(st.x,1.0);
 t = fz_shdr_saw_tooth(st.y,1.0);
 if (s < 0.5 && t < 0.5 ||
 s > 0.5 && t > 0.5) color = {0.0, 0.0, 0.0};
 else color = {1.0, 1.0, 1.0};
 return(color);
}

Naturally, functions can be defined in a script body, which are called from within the script. These
functions can have any name and any number of arguments, as long as they don't conflict with
the required or optional functions defined by a specific script type or any of the API functions
offered by form•Z.

3.4. Using form•Z API and callback functions

Much of the functionality of a script is derived from calling functions that form•Z provides and
which execute a large variety of operations. The functions are referred to as API functions. A
complete listing of all API functions can be found in the on line API reference (section 5.0). The
API reference describes each function, its prototypes, and provides some examples for using
them.

Most form•Z API functions are designed to be called by scripts, so that certain functionality
offered by form•Z can be executed by a script. Likewise, a script must offer certain functions to
form•Z, so that the functionality defined by a script can be executed by form•Z. These functions
are referred to as callback functions. Depending on which kind of script is implemented, the
callback functions vary. For each script type there is a fixed number of required and a fixed
number of optional callback functions. In each script type, the name, return type and arguments of
the callback functions are different, but must match the name, return type and arguments required
by form•Z. For each script type the callback functions are listed and described in more detail in
section 3.7.

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 415

3.5 Interface

The form•Z API includes support for common interface features such as dialogs, alerts, palettes,
wait cursor, key cancel detection and progress bars. The form•Z user interface manager (FUIM)
manages these interfaces. The prefix fz_fuim_ is used for all of the FUIM API entities
(functions, types, constants, etc.).

The layout of interface elements (buttons, menus, text, etc.) found in dialogs and palettes is called
a FUIM template. The template contains the definition of the interface elements, the definition of
dependencies between the elements, and the connection to data storage (variables) in the
extension. The form•Z template manager handles the graphic layout of the template
automatically and deals with all platform specific issues. The template definition is hierarchically
organized in the form of a tree. That is, each element has a parent element and may have
multiple sibling elements and child elements. The interface elements are implicitly dependent on
their parent. That is, if the parent element is disabled, all of its descendents are also disabled.

Templates are defined through a FUIM template function that is provided to form•Z by the
extension. The template function defines the template by calling form•Z API functions to create
the interface elements, define relationships between items, and bind the data storage (variables)
from the extension to the elements. The template function is provided to form•Z when a dialog is
invoked through a dialog driver, or through specific call back functions provided by form•Z. These
call back functions vary by the type of extension and are discussed in section 2.7.

Note that for clarity the strings in the example in this section are shown directly in the code rather
than using the recommended method of retrieving the strings from .fzr files, as described in
section 1.4.2.

3.5.1 Alerts

Alerts are simple dialogs that get the user’s attention by beeping and presenting information or
posing questions. They are frequently used for error notification or for asking the user to make
decisions at critical times. Alerts usually consist of a simple message and one or more buttons for
the user to select the desired response. An icon is shown in the alert to indicate that the alert
represents an error, a question or just useful information. The alert is closed when the user
selects one of its buttons. A set of standard alerts is provided and custom alerts can be created
using a set of functions to build and display the alert as follows:

Standard confirmation alert

long fz_fuim_alrt_std_confirm(
 fz_string_td prmt_str,

 fz_fuim_std_conf_enum confirm_flags
);

This alert contains a single prompt text string and up to two buttons. This is useful for
posting a simple notification or asking a simple OK/Cancel or Yes/No question. The
prmt_str parameter is the prompt text for the alert. The confirm_flags parameter
indicates which buttons the alert should have as follows:

FZ_FUIM_ALRT_CONFIRM_OK: The alert has a single button with a title of OK.
FZ_FUIM_ALRT_CONFIRM_OK_CANCEL: The alert has a button with a title of OK
and a button with a title of Cancel.

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 416

FZ_FUIM_ALRT_CONFIRM_YES_NO: The alert has a button with a title of Yes
and a button with a title of No.

The alert remains on the screen until the user selects one of the buttons in the alert. The
function returns FZRT_STD_OK if an OK or Yes button is pressed or FZRT_STD_CANCEL
if a Cancel or No button is pressed. The following as and example of a standard
confirmation alert used to ask the user if they wish to proceed with an operation.

long rv;

rv = fz_fuim_alrt_std_confirm(

“Are you sure you want to proceed?”,
FZ_FUIM_ALRT_CONFIRM_OK_CANCEL);

if(rv == FZRT_STD_OK)
{
 /* perform action here */
}

Standard name alert

long fz_fuim_alrt_std_name (
 fz_string_td prmt_str,
 fz_string_td name,
 long max_len
);

This alert contains a single prompt text string, an editable name text field and the
standard OK and Cancel buttons. This is useful for asking the user for simple text input.
The prmt_str parameter is the prompt text for the alert. The name parameter is the
string shown in the edit field. This parameter contains the desired default or current value
for the name string. When the dialog is dismissed, this parameter contains the string that
was entered in the text field. The max_len parameter is the length of the name string (in
bytes). The alert remains on the screen until the user selects one of the buttons in the
alert. The function returns FZRT_STD_OK if the OK button is pressed or
FZRT_STD_CANCEL if the Cancel button is pressed. The following as an example of a
standard name alert used to change an object name for a given object (obj) of a project
window (windex);.

long rv;
fz_string_td name;

if(fz_objt_attr_get_objt_name (windex, obj, name) == FZRT_NOERR)
{ rv = fz_fuim_alrt_std_name (

“New object name:”,
name,
256);

if(rv == FZRT_STD_OK)
{

 fz_objt_attr_set_objt_name(windex, obj, name);
}

 }

Standard error alert

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 417

fzrt_boolean fz_fuim_alrt_std_error(
 long err_id,
 long where_id,
 fz_string_td where_str
);

This alert is used for displaying error messages. This is used for posting error messages
returned from form•Z API functions or errors in an extension that registered the error with
the fzrt_error_set function. form•Z will post error messages for extensions that
return errors from their call back functions, however, there are times where it may be
desirable for an error alert to be displayed from an extension directly.

The alert contains a single prompt text string and the standard OK button. The err_id
parameter is the error value returned from a form•Z API function or fzrt_error_set
function call in an extension. The where_id parameter is a numeric indicator of where in
the extension the error occurred. Each call to the fz_fuim_alrt_std_error function
should have a unique numeric value in this parameter so that the location in the
extension code where the error occurred can be identified. The where_str is an optional
parameter that complements where_id. This string can be used to give additional
details of where in the extension the error occurred.). The alert remains on the screen
until the user selects the OK button in the alert.

err = fz_objt_attr_set_objt_name(windex, obj, name);

if(err != FZRT_NOERR)
{ fz_fuim_alrt_std_error(err, 1,

 “Attempting to change name”);
}

Custom alerts

Custom alerts are constructed by initializing an alert pointer, then adding prompt text item(s) and
button item(s). The alert is then displayed to the user and disposed when it is closed. The alert
remains on the screen until the user selects one of the buttons in the alert.

Custom alert initialization

long fz_fuim_alrt_ptr_init (
 mod fz_fuim_alrt_ptr fuim_alrt,
 fz_fuim_alrt_flag_enum flags,
 fz_fuim_alrt_icon_enum alrt_icon,
 fz_string_td alrt_title
);

This function creates the alert pointer. The alert pointer is a form•Z opaque data structure
used to manage alerts. The pointer is returned in the fuim_alrt parameter. The flags
parameter indicates optional control for the display of the alert. The default value for no
options is FZ_FUIM_ALRT_FLAG_NONE. The value FZ_FUIM_ALRT_FLAG_BVRT can be
used to indicate that the buttons in the alert should appear vertically stacked rather than
the default horizontal layout. The alrt_icon parameter tells form•Z which standard icon
should be shown in the alert. The valid values are FZ_FUIM_ALRT_ICON_STOP,
FZ_FUIM_ALRT_ICON_ASK and FZ_FUIM_ALRT_ICON_INFO. The alrt_title
parameter is the text for the title of the alert. This is shown in the title bar of the alert
dialog. This parameter is optional.

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 418

Custom alert strings

long fz_fuim_alrt_ptr_add_str(
 fz_fuim_alrt_ptr fuim_alrt,
 long flags,
 fz_string_td str
);

This function adds a string to the alert. The fuim_alrt parameter is the alert pointer
created by the fz_fuim_alrt_ptr_init function. The flags parameter is currently
not used and should always be set to 0. The str parameter is the text for the string that
is to be shown in the alert.

Custom alert buttons

long fz_fuim_alrt_ptr_add_button(
 fz_fuim_alrt_ptr fuim_alrt,
 long button_id,
 fz_fuim_alrt_butn_opts_enum button_opts,

fz_fuim_alrt_button_enum button_kind,
 fz_string_td str
);

This function adds a button to the alert. The fuim_alrt parameter is the alert pointer
created by the fz_fuim_alrt_ptr_init function. The button_id should be set to
a unique numeric value for each button. This value is used to identify which button the
user selects when the alert is displayed on the screen. The button_opts parameter
indicates optional control for the button. The value FZ_FUIM_ALRT_BUT_NONE is used
to indicate no options. The value FZ_FUIM_ALRT_BUT_DEF can be used to indicate that
the button is the default button. The default button is the button that is selected if the
return or enter key is pressed while the alert is displayed on the screen. The value
FZ_FUIM_ALRT_BUT_DEF_CANCEL can be used to indicate that the button is the cancel
button. The cancel button is the button that is selected if the escape (esc) key (or any
user defined cancel key shortcut) is pressed while the alert is displayed on the screen.
The button_kind parameter indicates what title should be used for the button. The
following values are available:

FZ_FUIM_ALRT_BUTTON_OK: Button is named “OK”.
FZ_FUIM_ALRT_BUTTON_CANCEL: Button is named “Cancel”.
FZ_FUIM_ALRT_BUTTON_YES: Button is named “Yes”.
FZ_FUIM_ALRT_BUTTON_NO: Button is named “No”.
FZ_FUIM_ALRT_BUTTON_QUIT: Button is named “Quit”.
FZ_FUIM_ALRT_BUTTON_CUSTOM: The title is specified in the str parameter.

Custom alert display

long fz_fuim_alrt_driver (
 fz_fuim_alrt_ptr fuim_alrt
);

This function displays the alert on the screen. The fuim_alrt parameter is the alert
pointer created by the fz_fuim_alrt_ptr_init function. The alert remains on the
screen until the user selects one of the buttons in the alert. The value returned from this
function is the ID of the user sleeted button. The ID is the value of the button_id

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 419

parameter that was used to create the button with the
fz_fuim_alrt_ptr_add_button function.

Custom alert disposal

void fz_fuim_alrt_ptr_finit(
 mod fz_fuim_alrt_ptr fuim_alrt
);

 This function disposes the alert pointer and all memory used by the alert .

Example

The following example shows a custom alert that asks the user if they want to delete selected
objects. Note that for clarity the strings in this example are shown directly rather than the
preferred method of storing them in .fzr files as described in section 1.4.2.

fz_fuim_alrt_ptr fuim_alrt;
long hit;

 /* initalize the alert */
 fz_fuim_alrt_ptr_init(fuim_alrt, FZ_FUIM_ALRT_FLAG_NONE,

FZ_FUIM_ALRT_ICON_STOP, NULL);

 /* add the message */
 fz_fuim_alrt_ptr_add_str(fuim_alrt, 0,

“Are you sure you want to delete the selected objects?”);

 /* add the “Delete“ and “Keep” buttons */

fz_fuim_alrt_ptr_add_button(fuim_alrt, 1,
FZ_FUIM_ALRT_BUT_DEF,

 FZ_FUIM_ALRT_BUTTON_CUSTOM, “Delete”);
 fz_fuim_alrt_ptr_add_button(fuim_alrt, 2,

FZ_FUIM_ALRT_BUT_DEF_CANCEL,
FZ_FUIM_ALRT_BUTTON_CUSTOM, “Keep”);

 /* display the alert to the user */
 hit = fz_fuim_alrt_driver(fuim_alrt);

 /* dispose the alert */
 fz_fuim_alrt_ptr_finit(fuim_alrt);

 /* handle the users choice */
 if(hit == 1)
 {
 /* Delete objects here */

}

3.5.2 Dialogs

Dialogs are invoked by calling a dialog driver function. The driver creates the window for the
dialog and calls a FUIM template function provided by the script to create the content of the
dialog. The driver displays the dialog on the screen and the user dismisses handles user
interaction with the template until the dialog.

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 420

There are two dialog driver functions that work in identical fashion. The two dialog driver variants
correspond to the two variants of template functions available as described in the next section.
By default the driver functions return FZRT_STD_OK if an OK button is pressed or
FZRT_STD_CANCEL if a Cancel button is pressed to dismiss the dialog. The two driver functions
are as follows.

long fz_fuim_script_run_dialog(
 fz_string_td tmpl_func_name
);

long fz_fuim_script_run_dialog_windex)(
 long windex,
 fz_string_td tmpl_func_name
);

The difference between the two is that the second function uses a project window index as the
first parameter. If the content of the dialog is dependent of any kind of project data, this dialog
function should be used. The other argument is the name of a template callback function. form•Z
will call this function to construct the items in the dialog. This function can have any name, but
must fit the required return type and arguments. The function definition for the callback function
passed to fz_fuim_script_run_dialog is:

long my_dialog_func(fz_fuim_tmpl_ptr fuim_tmpl);

The tmpl_ptr parameter is an opaque pointer that is created by form•Z and used to manage the
template. The template pointer parameter is used as the first parameter to all FUIM API functions.
This function should return FZRT_NOERR if the template is successfully created. Any other return
value indicates that template creation failed.

For fz_fuim_script_run_dialog_windex the template function is:

long my_dialog_windex_func(long windex, fz_fuim_tmpl_ptr fuim_tmpl);

This is the same as the first template function with the addition of the windex parameter. This
parameter is the project window index to be used for project references in the template function.
This template function variant is used when operating on project or window level data where the
windex is needed to access project or window data. The value for windex supplied by the
function that that is driving the template.

This dialog template callback function should first initialize the template by calling
fz_fuim_script_tmpl_init. One or more dialog items can be created with the respective
fz_fuim_script_new_... functions and variables can be attached to an item with the
fz_fuim_script_item_range_... functions. The dialog callback function should return
FZRT_NOERR if it succeeds, and an error if it does not. An example of a utility script, which posts
a simple dialog, is shown below. This script is also available as source code in the
Scripts/Samples/Utilities folder.

script_type FZ_UTIL_PROJ_EXTS_TYPE

fz_objt_model_type_enum test_model_type = FZ_OBJT_MODEL_TYPE_FACT;

long dialog_test_function(long windex, fz_fuim_tmpl_ptr fuim_tmpl)

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 421

{
 long err = FZRT_NOERR;
 long tab_gindx,g1;

 /* INIT THE TEMPALTE */
 if((err = fz_fuim_script_tmpl_init(fuim_tmpl,"Example",0,NULL,0))
 == FZRT_NOERR)
 {
 /* MAKE A TAB GROUP */
 tab_gindx = fz_fuim_script_new_tab_group(fuim_tmpl,FZ_FUIM_ROOT,
 FZ_FUIM_FLAG_NONE);

 /* FIRST TAB HAS THE STANDARD MODEL TYPE OPTIONS */
 g1 = fz_fuim_script_new_text_static(fuim_tmpl,tab_gindx,
 FZ_FUIM_FLAG_NONE,"Test Options");
 fz_fuim_model_type_group(fuim_tmpl,g1,test_model_type);

 /* SECOND TAB IS THE DISPLAY RESOLUTION ATTRIBUTE */
 fz_fuim_disp_res_surf_group(fuim_tmpl, tab_gindx, NULL);

 /* THIRD TAB IS THE STATUS OF OBJECTS */
 fz_fuim_status_of_objt_group(fuim_tmpl, tab_gindx);

 }

 return(err);
}

long fz_util_cbak_proj_main(long windex)
{
 long rv;

 rv =
fz_fuim_script_run_dialog_windex(windex,"dialog_test_function");

 return(FZRT_NOERR);
}

For the tool script, one of the optional callback functions is also a template function. This is
described in more detail in section 3.7.4.

3.5.3 Template Function

The first function that should be called inside of a template function is
fz_fuim_script_tmpl_init.

long fz_fuim_tmpl_script_init(
 fz_fuim_tmpl_ptr fuim_tmpl,
 fz_string_td titl_str,
 long tmpl_flags,
 fzrt_UUID_td uuid,
 long version
);

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 422

This function initializes the template definition. The fuim_tmpl parameter is the template
pointer. The titl_str parameter is the name of the template. For dialogs, this is the tittle that
appears in the title bar of the dialog window. This parameter is not used for palettes. The
tmpl_flags parameter is currently unused and should always be 0. The uuid parameter is the
ID of the template. This is an optional parameter. When a UUID is provided, the form•Z template
manager stores information about the state of the template for reuse each time the template is
used. This includes remembering which tab is active for tab elements and items that are
collapsed in palettes. The version parameter complements the UUID and is only used when a
UUID is provided. This number informs the form•Z template manager what version of the
template is in use. This number should be set to zero for the first implementation of a template
and then increased when changes are made to the implementation of the template (i.e. elements
changed, removed or added). This version change informs the temple manager that the template
has changed and that it should no longer use the saved state from the previous implementation.

3.5.3.1 Element creation and variable association

Each interface element in the template is referred to as a template item. Items are referenced by
their ID, which is the value returned by any of the item creation functions. All items except groups
and dividers have are said to have a value. The value can be a specific numeric value or a
range of values depending on the interface element. Items that have values can associate a
script variable with the item. When the user changes the interface element, the associated
variable is updated to the defined value.

The next section describes the common aspects of template item creation. The following section
describes how variables are associated with items. The remainder of the sections describes each
type of element, the function that is used to create the item and what types of association are
supported.

Item creation

There is a single function for creating an item of each type of interface element. All of the creation
functions return the ID of the new item. If the item can not be created, the value FZ_FUIM_NONE
is returned. All of the item creation functions start with fz_fuim_script_new_ and contain the
following common parameters:

fz_fuim_tmpl_ptr fuim_tmpl

The fuim_tmpl parameter is the template pointer.

long parent

The parent parameter is the ID of the parent item of the item being created. The value
FZ_FUIM_ROOT should be used if the item is at the top of the template’s hierarchy.

long flags

The flags parameter is a bit encoded parameter that specifies optional control for the
item being created. These values should be combined using the bitwise or (|)operator
(e.g. FZ_FUIM_FLAG_BRDR | FZ_FUIM_FLAG_SMAL). The following values are
supported:

FZ_FUIM_FLAG_NONE: Indicates no flags.

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 423

FZ_FUIM_FLAG_HORZ: Indicates that the child items of the new item should
have a horizontal layout. If this is not specified, they have the default vertical
layout.
FZ_FUIM_FLAG_BRDR: Indicates that the item should be drawn with a boarder
around it.
FZ_FUIM_FLAG_INDT: Indicates that the item’s position should be indented from
the position of its parent. The indentation moves the item towards the right if it is
in a vertical layout and towards the bottom if it is in a vertical layout.
FZ_FUIM_FLAG_GFLT: Indicates that the sibling items of the new item should
have a horizontal layout next to the new item.
FZ_FUIM_FLAG_HTOP: Items in a horizontal layout are by default center
aligned. If this value is provided, all of the child items that are in a horizontal
layout will be bottom aligned. Should not be used with FZ_FUIM_FLAG_HBOT.
FZ_FUIM_FLAG_HBOT: Items in a horizontal layout are by default center
aligned. If this value is provided, all of the child items in a horizontal layout will be
bottom aligned. Should not be used with FZ_FUIM_FLAG_HTOP.
FZ_FUIM_FLAG_VCNT: Items in a vertical layout are by default left aligned. If
this value is provided, all of the child items in a vertical layout will be center
aligned. Should not be used with FZ_FUIM_FLAG_VRGT.
FZ_FUIM_FLAG_VRGT: Items in a vertical layout are by default left aligned. If
this value is provided, all of the child items in a vertical layout will be right aligned.
Should not be used with FZ_FUIM_FLAG_VCNT.
FZ_FUIM_FLAG_SMAL: Indicates that the item should be shown in a reduced
width.
FZ_FUIM_FLAG_EQSZ: Indicates that all of the child item should be shown made
to be the same size. The size of the largest child is calculated and all child items
are set to be the same size.
FZ_FUIM_FLAG_JRGT: Indicates that the new item should be right justified. If
this is not set then the default left justification is used.
FZ_FUIM_FLAG_DIMM: Indicates that the item should be shown always dimmed
and inactive.
FZ_FUIM_FLAG_FRAM: Indicates that a boarder should be drawn around all of
the child items of the new item.
FZ_FUIM_FLAG_PASS: This is a special flag only used by text items. It indicates
that the text is a password field and it should not show the text directly. When this
option is selected, the text is shown with a “*” for each character in the string.

Most of the functions also contain a titl_str parameter. This string is the title of the item in the
template. It is recommended that the strings be stored in .fzr files and loaded from this file so that
they can be localized.

Variable association

The variables can be associated value can be a specific numeric value or a range of values.
Items that have values
Unary

Specific values

Specific values are used for interface elements that are binary. That is, they only have two states:
on (TRUE or 1) and off (FALSE or 0). These are check boxes and radio buttons. There are 2

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 424

functions that are used to associated a specific value. The TRUE value is supplied by the
script.as a function argument. The FALSE value is any value other than the TRUE value.

fz_fuim_script_item_unary_bool
fz_fuim_script_item_unary_long

Both functions have the same parameters and work identically. Each is provided for the type of
the variable that is being associated (long and boolean). For example if the script variable is a
long, then the function fz_fuim_script_item_unary_long is used.

void fz_fuim_script_item_unary_long(
 fz_fuim_tmpl_ptr fuim_tmpl,
 long item_id,
 mod long lval,
 long true_value
);

The fuim_tmpl parameter is the template pointer. The item_id parameter is the ID of the item
that is being associated . The lval parameter is the script variable that is being associated.
The type for this variable matches the type specified in the function name. The true_value
parameter is the value that the variable (lval) must have for the element to be in its TRUE
state. That is when lval == true_value, the items value is TRUE and when lval !=
true_value, the items value is FALSE.

Range values

Range association is used for interface elements that can represent more than a single specific
value. These are menus, sliders, tabs, frames and text fields. There are 3 functions that are used
to associate a specific value to an item.:

fz_fuim_script_item_range_long
fz_fuim_script_item_range_double
fz_fuim_script_item_range_str

Each variant is provided for the type of the variable that is being associated. For example if the
script variable is a long, then the function fz_fuim_script_item_range_long is used.

void fz_fuim_script_item_range_long(
 fz_fuim_tmpl_ptr fuim_tmpl,
 long item_id,
 mod long lval,
 long min_value,
 long max_value,
 fz_fuim_format_int_enum format,
 long flags
);

The fuim_tmpl parameter is the template pointer. The item_id parameter is the ID of the item
that is being associated. The lval parameter is the pointer to the script variable that is being
associated. The min_value parameter is the minimum value for the range and max_value
parameter is the maximum value. The format parameter is used if the associated item contains
a text string. There is currently only one value for this parameter
(FZ_FUIM_FORMAT_INT_DEFAULT). The flags parameter can be used to add additional
control as follows:

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 425

FZ_FUIM_RANGE_NONE: no flags (default).
FZ_FUIM_RANGE_MIN: Clamp input to the specified minimum value in text fields.
FZ_FUIM_RANGE_MIN_INCL: The specified minimum value is inclusive. If this is not set
it is exclusive.
FZ_FUIM_RANGE_MAX: Clamp input to the specified maximum value in text fields.
FZ_FUIM_RANGE_MAX_INCL: The specified maximum value is inclusive. If this is not set
it is exclusive.

The function used for floating point values is:

void fz_fuim_script_item_range_double(
 fz_fuim_tmpl_ptr fuim_tmpl,
 long item_id,
 mod double dval,
 double min_value,
 double max_value,
 fz_fuim_format_float_enum format,
 long flags
);

All of the parameters are the same as the integer function except for format. The format
parameter is used if the associated item contains a text string. The following are currently
supported:

FZ_FUIM_FORMAT_FLOAT_DEFAULT: The floating-point value is displayed as a fraction,
with the whole and fractional part of the number separated by a decimal point.
FZ_FUIM_FORMAT_FLOAT_DISTANCE: floating point value is displayed as a distance
value. The formatting is determined by the setting in the Working Units dialog. For
example, when English units are selected the default linear distances are displayed with
the feet and inch notation.
FZ_FUIM_FORMAT_FLOAT_ANGLE: The floating-point value is displayed as an angle.
The variable's value is expected to be in radians. The display of an angle is shown in
degrees in the text field.
FZ_FUIM_FORMAT_FLOAT_PERCENT: The floating-point value is displayed as a
percentage value. That is, the variable's value is multiplied by 100 before it is displayed in
the text field. This allows a value to be stored in a variable in a normalized range (0.0 to
1.0) but display it to the user as a percentage (0.0 to 100.0).

The function for a string is:

void fz_fuim_script_item_range_string(
 fz_fuim_tmpl_ptr fuim_tmpl,
 long item_id,
 mod fz_string_td str_val,
 long max_value
);

The fuim_tmpl parameter is the template pointer. The item_id parameter is the ID of the item
that is being associated . The str_val parameter is the string variable that is being
associated. The max_value parameter is the maximum number of characters allowed.

Check box

long fz_fuim_script_new_check(

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 426

 fz_fuim_tmpl_ptr fuim_tmpl,
 long parent,
 long flags,
 fz_string_td titl_str
);

A check box is an interface element that can be in either an "on" (true/1) or "off" (false/0) state.
Clicking on a check box changes its state from "on" to "off", or from "off" to "on". The title string is
shown to the right of the check box graphic. Variables are associated with check box items using
the fz_fuim_script_item_unary_long or fz_fuim_script_item_unary_bool
functions.

The following is a example of a check box with a long value associated with it such that the check
is on when the variable is 2 and off when the variable is anything else.

long item;
long my_variable;

/* Create a check box item */
item = fz_fuim_script_new_check(fuim_tmpl, FZ_FUIM_ROOT,

FZ_FUIM_FLAG_NONE, “My Check Box”);

/* Associate my_variable with the item, */
/* my_variable == 2 for check on, my_variable != 2 for off */
fz_fuim_script_item_unary_long(fuim_tmpl, item, my_variable, 2);

Radio button

long fz_fuim_script_new_radio(
 fz_fuim_tmpl_ptr fuim_tmpl,
 long parent,
 long flags,
 fz_string_td titl_str
);

Radio buttons are like checkboxes except that they are used in a set and are mutually exclusive
in the set: when one is switched "on", all others in the set are switched "off". This function creates
a single radio button. A set of radio buttons is defined by the creation of each button in the set
and then associating them with the same variable (see next section on binding). The title string is
shown to the right of the radio button graphic. Variables are associated with radio items using the
fz_fuim_script_item_unary_long or fz_fuim_script_item_unary_bool functions.

The following is an example of three radio buttons with a long variable associated with them such
that the radio buttons are mapped to the values of 2, 3, and 7. That is when the first button is
selected, the variable is set to 2, when the second is selected the variable is set to 3 and when
the third is selected the variable is set to 7.

long item;
long my_variable;

/* Create a radio button box item and variable with the item with a
value of 2 */
item = fz_fuim_script_new_radio(fuim_tmpl, FZ_FUIM_ROOT,

FZ_FUIM_FLAG_NONE, “My Radio 1”);
fz_fuim_script_item_unary_long(fuim_tmpl, item, my_variable, 2);

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 427

/* Create a radio button box item and variable with the item with a
value of 3 */
item = fz_fuim_script_new_radio(fuim_tmpl, FZ_FUIM_ROOT,

FZ_FUIM_FLAG_NONE, “My Radio 2”);
fz_fuim_script_item_unary_long(fuim_tmpl, item, my_variable, 3);

/* Create a radio button box item and variable with the item with a
value of 7 */
item = fz_fuim_script_new_radio(fuim_tmpl, FZ_FUIM_ROOT,

FZ_FUIM_FLAG_NONE, “My Radio 3”);
fz_fuim_script_item_unary_long(fuim_tmpl, item, my_variable, 7);

Button

long fz_fuim_script_new_button(
 fz_fuim_tmpl_ptr fuim_tmpl,
 long parent,
 long flags,
 fz_string_td titl_str,
 fz_string_td item_func_name
);

Buttons are interface items that perform an action when they arc clicked on. The action is handled
in the by the function identified by the item_func_name argument, as described below. The
title string is shown in graphics of the button. This item can not be associated with a variable as it
does not change in value.

The following is an example of a button.

/* global variable */
my_button_id item;

...
 /* inside a template creating function */

/* Create a button item */
my_button_id = fz_fuim_script_new_button(fuim_tmpl, FZ_FUIM_ROOT,

FZ_FUIM_FLAG_NONE, “My Button”, "my_button_func");

With the following item function to handle the click in the button.

long my_button_func (
 fz_fuim_tmpl_ptr fuim_tmpl,
 long item_id
)
{
 long rv = FALSE;

 if (item_id == my_button_id)
 {
 /* Handle hit here */

 rv = TRUE;
 }

 return(rv);
}

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 428

The button callback function can be used for more than one button. Each time the function is
invoked by form•Z, the id of the button which was clicked on is passed into the function via the
item_id argument. In the template setup function, the return value of
fz_fuim_script_new_button should be stored in a global variable. Inside the button
callback function, it can be compared against the item id passed in, as shown in the example
above. The button callback function should return TRUE, if the hit was handled by the function
and FALSE otherwise.

Static text

long fz_fuim_script_new_text_static(
 fz_fuim_tmpl_ptr fuim_tmpl,
 long parent,
 long flags,
 fz_string_td titl_str
);

Static text items are single line strings that are used for information, labels, or titles for sub-groups
in a template. The user can not change static text items. This item can not be associated with a
variable as it does not change in value.

The following is an example of static text.

long item;

/* Create static text item */
item = fz_fuim_script_new_text_static(fuim_tmpl, FZ_FUIM_ROOT,

FZ_FUIM_FLAG_NONE, “My Static Text”);

Editable text

long fz_fuim_script_new_text_edit(
 fz_fuim_tmpl_ptr fuim_tmpl,
 long parent,
 long flags,
 fz_string_td titl_str
);

Editable text items are strings that can be changed by the user. They are used for numeric fields
and string fields. If a numeric variable is associated with the edit text item, then the edit text will
shown a numeric value and accept numeric input. If a character variable is associated with the
edit text item, then the edit text will shown the string and accept character input. The title for the
edit text is shown to the left with the editable area in a box to the right. Variables are associated
with editable text items using fz_fuim_script_item_range_... functions.

The following is an example of editable text for a long variable with a range of 0 to 20.

long item;
long my_variable;

/* Create editable text item */
item = fz_fuim_script_new_text_edit(fuim_tmpl, FZ_FUIM_ROOT,

FZ_FUIM_FLAG_NONE, “My Edit Text”);
fz_fuim_script_item_range_long(fuim_tmpl, item, my_variable, 0, 20,

FZ_FUIM_FORMAT_INT_DEFAULT,
FZ_FUIM_RANGE_MIN | FZ_FUIM_RANGE_MIN_INCL |

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 429

FZ_FUIM_RANGE_MAX | FZ_FUIM_RANGE_MAX_INCL);

The following is an example of editable text for a double variable which must be greater than
zero.

long item;
double my_variable;

/* Create editable text item */
item = fz_fuim_script_new_text_edit(fuim_tmpl, FZ_FUIM_ROOT,

FZ_FUIM_FLAG_NONE, “My Edit Text”);
fz_fuim_script_item_range_double(fuim_tmpl, item, my_variable, 0.0,
0.0,

FZ_FUIM_FORMAT_FLOAT_DEFAULT,
FZ_FUIM_RANGE_MIN);

The following is an example of editable text for a string.

long item;
fz_string_td my_string;

/* Create editable text item */
item = fz_fuim_script_new_text_edit (fuim_tmpl, FZ_FUIM_ROOT,

FZ_FUIM_FLAG_NONE, “My Edit Text”);
fz_fuim_script_item_range_string(fuim_tmpl, item, my_string);

Note

long fz_fuim_script_new_note(
 fz_fuim_tmpl_ptr fuim_tmpl,
 long parent,
 long flags,
 fz_string_td titl_str
);

A note is like a static text item except that it supports multiple lines. Note are used for detailed
information. The user can not change these items. This item can not be associated with a
variable as it does not change in value.

/* Create note item */
item = fz_fuim_script_new_note(fuim_tmpl, FZ_FUIM_ROOT,

FZ_FUIM_FLAG_NONE, “My Note”);

Menu

long fz_fuim_script_new_menu (
 fz_fuim_tmpl_ptr fuim_tmpl,
 long parent,
 long flags,
 fzrt_boolean is_pop,
 fz_string_td titl_str,
 fz_string_td menu_items[],
 long nitems
);

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 430

A menu is a list of items form which items can be selected. A menu can be a regular menu or a
pop-up menu. In regular menu, the menu has one active item. The active item is shown in the
template and when the item is selected, the entire menu is displayed so that a new active item
can be selected. A pop-up menu is shown in the template as a small triangle. When the triangle is
selected, the menu is displayed and one of the items can be selected. As there is no active item,
this type of menu is useful when the selection of the item performs an action (like loading preset
values) or if the menu contains a series of on/off settings and the selection of an item toggles its
state.

If the is_pop parameter is set to TRUE, then the menu is a pop-up menu, and when it is set to
FALSE, it is a regular menu. The names of the menu items are supplied via the menu_items[]
argument, which is an array of strings. The number of items is passed via the nitems argument.
If a menu item string is a single '-' (dash) character, the menu item is formed as a separator line,
which cannot be selected.

Variables are associated with menu items using integer fz_fuim_item_range_* functions.
The following is an example of menu variable with a range of 0 to 6. Menus are implicitly clamped
at the range limits if one uses the FZ_FUIM_RANGE_NONE range flag. Otherwise, only the
inclusive range flags are useful for menus (FZ_FUIM_RANGE_MIN_INCL and
FZ_FUIM_RANGE_MAX_INCL).

long item;
long my_variable;
fz_string_td item_names[7]

/* set menu item names */
item_names[0] = "Veggies";
item_names[1] = "Meat";
item_names[2] = "Dairy";
item_names[3] = "-";
item_names[4] = "Beer";
item_names[5] = "Juice";
item_names[6] = "Wine";

/* create menu */
item = fz_fuim_script_new_menu(fuim_tmpl, FZ_FUIM_ROOT,

FZ_FUIM_FLAG_NONE, “My Edit Menu”, item_names, 7);
fz_fuim_script_item_range_long(fuim_tmpl, item, my_variable, 0, 6,

FZ_FUIM_FORMAT_INT_DEFAULT,
FZ_FUIM_RANGE_NONE);

Slider

long fz_fuim_script_new_slider(
 fz_fuim_tmpl_ptr fuim_tmpl,
 long parent,
 long flags,
 fz_string_td titl_str
);

A slider is a graphic control useful for setting a value that has a specific range. The slider has an
indicator that shows the current value of the slider. The user changes the value of the slider to the
desired value by dragging the indicator. Variables are associated with slider items using either the
integer or floating-point fz_fuim_script_item_range_... functions.

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 431

Group

long fz_fuim_script_new_group (
 fz_fuim_tmpl_ptr fuim_tmpl,
 long parent,
 long flags
);

Groups are invisible items that are used to organize items. This item can not be associated with
a variable since it does not change in value. To associate items within the same group, the group
id should be passed as the parent id to FUIM items created after the group. An example of a
useful flag for a group is one that organizes its items vertically (default) or horizontally, or puts a
border around the group. Groups can be organized hierarchically as well, having a group be a
parent to many child groups and other items.

Tab

long fz_fuim_script_new_tab_group (
 fz_fuim_tmpl_ptr fuim_tmpl,
 long parent,
 long flags
);

A tab is used to organize information in a template into categories such that only one of the
categories is shown at a given time. Each of the categories is represented by a title that is placed
in a tab at the top of the interface element. The tab is a graphic that mimics the tab that would be
found on a file folder. When a tab is clicked on, its contents are shown in the body of the tab
interface element. This function simply creates the tab group. To construct the tab, the
descendents of this item must be created in a certain fashion. Each child item of the tab item
establishes an entry in the tab element. The children of the tab entries, are the contents of each
tab. A long integer variable should be associated with the tab group to determine which tab is
actively viewable.

Frame

long fz_fuim_script_new_frame_group (
 fz_fuim_tmpl_ptr fuim_tmpl,
 long parent,
 long flags
);

A frame functions like a tab group except that it does not have any graphics. That is, there are a
number of categories of information in the frame that are all displayed in the same area of the
template. The selection of the active frame is driven by another interface element such as a menu
or radio button. A long integer variable should be associated with the frame group to determine
which frame is actively viewable.

Divider

long fz_fuim_script_new_divider (
 fz_fuim_tmpl_ptr fuim_tmpl,
 long parent,
 long flags

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 432

);

A divider is a graphic line drawn across the item. By default a divider is drawn horizontally. If the
value FZ_FUIM_FLAG_HORZ is set in the flags parameter, then the line is drawn vertically. This
item cannot be associated with a variable as it does not change in value.

Combination items

There are a number of convenience functions that combine more than one FUIM item.
Effectively, they create each of the component items, and align them in a horizontal group, and
link them to the same variable. This means that when one of the items is updated the other item
is updated as well. For example, a slider and edit field combo item has both a slider and an
editable text field. If one were to edit the text field by supplying a new number, the slider would
be updated with a new slider position and vice versa. The combination item functions are:

 fz_fuim_script_new_slider_edit_long (slider with editable long field).

fz_fuim_script_new_slider_edit_double (slider with editable double field).
fz_fuim_script_new_slider_edit_pcent_double (slider with editable double

field represented as a percentage).

The following combination functions disable the use of their edit fields when they are turned off:

fz_fuim_script_new_check_text_edit (check box with an editable field – use a
range function to associate a variable with edit field).

fz_fuim_script_new_radio_text_edit (radio button with an editable field – use a
range function to associate a variable with edit field).

3.5.4 Interface for time consuming tasks

Scripts that could potentially take a while to execute should implement the wait cursor, key
cancel, and where possible a progress bar. These interface elements provide feedback to the
user and allow the user to interrupt long or unintended tasks.

Wait cursor

The cursor should be changed to the wait cursor to indicate to the user when a task is being
performed. On the Macintosh, this cursor is a spinning circle with alternating black and white
quadrants. On Windows, the wait cursor is an animated hourglass. The function
fz_fuim_curs_wait should be called to update the wait cursor during the processing of a task.
This function takes a single parameter with the following three values:

FZ_FUIM_CURS_WAIT_START: This value is used once at the start of the task. The
cursor is changed to the wait cursor.
FZ_FUIM_CURS_WAIT_TURN: This value is used during the processing of the task. The
animated cursor is updated (turned). The function should be called with this value inside
loops and other places where the flow of the extension will consume its time.
Performance is not an issue with this value because the cursor is only updated every 1/4
second regardless of how frequently the function is called. Note that, if it is not called
frequently enough, the cursor will appear jumpy.
FZ_FUIM_CURS_WAIT_END: This value is used once at the end of a time consuming
task. The cursor is changed back to the state it was in prior to the start of the task.

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 433

It is important to have exactly one start and end call so that the cursor display stays balanced.
This allows for nesting of the wait cursor in a case where one time consuming extension invokes
another time consuming extension.

Cancel

The user should be able to cancel any time consuming task. A script can check to see if the user
has pressed the key shortcut for cancel by calling the function fz_fuim_key_cancel. This
function returns TRUE if the cancel key shortcut has been pressed and FALSE if it has not. Note
that the user can program a variety of key combinations for the cancel key shortcut using the
Shortcuts dialog, however, extensions do not need to make any adjustments for this as it is all
handled by the one function.

Progress bar

A progress bar gives the user feedback on the progress of a task. A progress bar is a small
window that displays graphic and optionally descriptive textual feedback on how far a task has
progressed. A progress bar is divided into stages so that task sub-portions can be identified to the
user. The progress bar is updated by the extension through the use of a variable in the extension
that tracks the task's progress. Loop counters are often good indication of progress through a
task as shown in the example at the end of this section.

form•Z offers normal and extended styles of the progress bar as shown below. The difference
between them is that the extended has much larger areas for text. Both styles have two text
areas referred to as the info and detail strings. The info string is usually used to display a title for
the detail string. The detail string usually is used to give some information about the task
progress. In the normal progress bar the info and detail strings are short and appear next to each
other. This is the style of progress bar used throughout most of form•Z. In the extended style,
the text fields are on top of each other and they are much larger. The space for the detail string
supports multiple lines. This style of progress bar is used in form•Z during animation generation.

There are a number of functions in the FUIM for working with progress bars. They all start with
fz_fuim_prog_. The basic required functions for implementing a progress bar are described
here and in the example at the end of the section. The remainder of the function descriptions can
be found in HTML API reference (chapter 5).

The function fz_fuim_prog_init is called once at the start of the task to initialize the
progress bar.

long fz_fuim_prog_init(
 long stages,
 fz_fuim_prog_kind_enum kind,
 fzrt_boolean use_clock
);

The stages parameter indicates how many stages the progress bar will have. There are
two types of progress bars indicated by the kind parameter. The normal progress bar
has a graphic progress indicator, a short information field and a short detail field. The
expanded progress bar has a graphic progress indicator and a single line information
field and a multi-line detail field. If the use_clock parameter is TRUE, then the graphic
progress indicator is redrawn every 1/4 second (if there has been any progress since the
last redraw). If this value is FALSE, then the progress bar is updated (redrawn) each time
that the progress bar indicator changes. To avoid performance degradation from the
progress bar, it is recommended that TRUE be used for this parameter.

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 434

The function fz_fuim_prog_stage_init is called to indicate the start of a task stage.

long fz_fuim_prog_stage_init(
 fz_string_td name,
 long min,
 long max
);

The name parameter is the title of the stage that is shown in the tittle bar of the progress
bar window. The min and max parameters define the range of the progress indicator
during the stage. That it is, the progress indicator will move from min to max during the
stage with min indicating 0% completion and max indicating 100% completion.

The function fz_fuim_prog_stage_set_current is used during the processing of a stage to
update the progress bar to indicate the current progress.

long fz_fuim_prog_stage_set_current(
 long current
);

The current parameter is the value of the progress indicator and must have a value
between the min and max parameters used in the most recent
fz_fuim_prog_stage_init function call.

The function fz_fuim_prog_stage_set_strings is used during the processing of a stage to
update the info or detail strings in the progress window.

long fz_fuim_prog_stage_set_strings(
 fz_string_td prog_info,
 fz_string_td prog_detail
);

The prog_info parameter is the string for the info field of the progress window. If this
string is not provided, the string is not changed. The prog_detail parameter is the
string for the detail field of the progress window. If this string is not provided, the string is
not changed.

The function fz_fuim_prog_stage_finit should be called to indicate the completion of a
stage.

long fz_fuim_prog_stage_finit();

The function fz_fuim_prog_finit should be called to indicate the completion of the entire
task. This function removes the progress bar window from the screen.

long fz_fuim_prog_finit();

The following example shows the implementation of the wait cursor, key cancel and multi-stage
progress bar in two loops of a script.

fzrt_boolean canceled = FALSE;
long i;
fz_string_td str;
double done;

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 435

/* start wait cursor */
fz_fuim_curs_wait(FZ_FUIM_CURS_WAIT_START);

/* initalize progress bar with 2 stages */
fz_fuim_prog_init(2, FZ_FUIM_PROG_KIND_NORMAL, TRUE);

/* start the first stage */
fz_fuim_prog_stage_init(“Loop 1”, 1, 100);
fz_fuim_prog_stage_set_strings(“Completed:”, “0 %”);
for(i=1; i<=100; i++)
{
 /* do task first stage processing here */

/* check for key cancel short cut */
if(fz_fuim_key_cancel())
{ canceled = TRUE;

break;
}
/* update the progress bar indicator */
fz_fuim_prog_stage_set_current(i);

/* update the progress bar detail text */
done = i;
sprint_float(str,done,0,0);
strcat(str, “ %”);
fz_fuim_prog_stage_set_strings(NULL, str);

/* update the wait cursor */
fz_fuim_curs_wait(FZ_FUIM_CURS_WAIT_TURN);

}
/* complete the first stage */
fz_fuim_prog_stage_finit();

if(!canceled)
{

/* start the second stage */
fz_fuim_prog_stage_init(“Loop 2”, 1, 2000);
fz_fuim_prog_stage_set_strings(“Completed:”, “0 %”);
for(i=1;i<=2000;i++)
{

 /* do second stage processing here */

/* check for key cancel short cut */
 if(fz_fuim_key_cancel())

{ canceled = TRUE;
 break;
}
/* update the progress bar indicator */
fz_fuim_prog_stage_set_current(i);

/* update the progress bar detail text */
done = floor((i/2000.0) * 100.0);
sprint_float(str,done,0,0);
strcat(str, “ %”);
fz_fuim_prog_stage_set_strings(NULL, str);

3.5 Interface form•Z SDK (v6.0.0.0 rev 05/30/06) 436

/* update the wait cursor */
fz_fuim_curs_wait(FZ_FUIM_CURS_WAIT_TURN);

/* complete the second stage */
fz_fuim_prog_stage_finit();

 }
}

/* complete the progress bar */
fz_fuim_prog_finit();

/* complete the wait cursor */
fz_fuim_curs_wait(FZ_FUIM_CURS_WAIT_END);

3.6 Notification form•Z SDK (v6.0.0.0 rev 05/30/06) 437

3.6 Notification

The form•Z notification manager is used to notify scripts when certain events occur. The events
include changes in form•Z project data like objects, lights and layers. All scripts, except project
and system utility scripts (see section 3.7.5) can receive these notifications by implementing
notification callback functions. These callbacks are invoked by form•Z when the respective event
occurs. Care should be used when implementing these functions because notification functions
are called throughout form•Z and a poor implementation can lead to performance issues or
crashes. Likewise only necessary functions should be implemented, as even empty “shell”
functions will cause some performance degradation. The notification functions can be included in
any script, except system and project utility scripts.

Notification call back functions

Notifications functions are implemented by giving them a specific name. They all start with
fz_notf_cbak_. All of the functions are optional. form•Z will only call the functions if the script
writer provides them.

The system function (optional)

long fz_notf_cbak_syst (
 fz_notf_syst_enum syst_notf
);

This function is called by form•Z when one of the actions specified by fz_notf_syst_enum
occurs. This function is provided so that scripts can be notified when one of the actions occurs
and the script can make any adjustments in reaction to the action.

long fz_notf_cbak_syst(
 fz_notf_syst_enum syst_notf
)
{
 long err = FZRT_NOERR;

 /** Handle notification here **/

 return(err);
}

The project function (optional)

long fz_notf_cbak_proj (
 long windex,
 fz_notf_proj_enum proj_notf
);

This function is called by form•Z when one of the actions specified by fz_notf_proj_enum
occurs in the specified project. This function will be called for each project in which the action
occurs. This function is provided so that scripts can be notified when one of the actions occurs
and the script can make any adjustments in reaction to the action.

long fz_notf_cbak_proj (
 long windex,
 fz_notf_proj_enum proj_notf
)

3.6 Notification form•Z SDK (v6.0.0.0 rev 05/30/06) 438

{
 long err = FZRT_NOERR;

 /** Handle project notification here **/

 return(err);
}

The window function (optional)

long fz_notf_cbak_wind (
 long windex,
 fz_notf_wind_enum wind_notf,
 fz_notf_proj_enum proj_notf
);

This function is called by form•Z when one of the actions specified by fz_notf_wind_enum occurs
in the specified project. This function will be called for each window in which the action occurs.
This function is provided so that scripts can be notified when one of the actions occurs and the
script can make any extension specific adjustments in reaction to the action.

This function is also called for each window in a project when a project notification happens (ie
fz_notf_cbak_proj is called). In this situation wind_notf == FZ_NOTF_WIND_PROJ and
proj_notf is the value of the project level notification.

long fz_notf_cbak_wind (
 long windex,
 fz_notf_wind_enum wind_notf,
 fz_notf_proj_enum proj_notf
)
{
 long err = FZRT_NOERR;

 /** Handle window notification here **/

 return(err);
}

The system units function (optional)

long fz_notf_cbak_syst_units (
 fz_unit_type_enum pref_units,
 fz_unit_scale_enum pref_scale
);

This function is called when the current unit type (English/Metric) or unit scale
(large/medium/small/miniture) changes. This happens when the user changes the settings in the
Working Units dialog , the function fz_proj_units_set_parm_data is called to change the
settings or when the active window is changed to a project with different Working units settings.
When this notification is received, all system level (global) dimensional values should be
converted to a reasonable setting for the current settings.

3.6 Notification form•Z SDK (v6.0.0.0 rev 05/30/06) 439

It is recommended that the function fz_fuim_unit_convert be used to get proper dimensional
values (units and data scale) from default values for the specified pref_units and
pref_scale. The fz_fuim_unit_convert function sets a double value to the current
pref_units and pref_scale given an English and metric default unit values for a specified
scale.

The following example establishes a default English value of 12.0 inches and a metric default
value of 25 cm for the medium scale for the global variable my_distance.

double my_distance;

...

long fz_notf_cbak_syst_units (
 fz_unit_type_enum pref_units,
 fz_unit_scale_enum pref_scale
)
{
 long err = FZRT_NOERR;
 double my_distance = 10;

 err = fz_fuim_unit_convert(12.0, 25.0, FZ_UNIT_SCAL_MEDIUM,

pref_units, pref_scale, my_distance);

 return(err);
}

The project units function (optional)

long fz_notf_cbak_proj_units (
 long windex,
 fz_unit_type_enum pref_units,
 fz_unit_scale_enum pref_scale
);

This function is called when the unit type (English/Metric) or unit scale
(large/medium/small/miniture) for a project is changed. This happens when the user changes the
settings in the Working Units dialog or the function fz_proj_units_set_parm_data is called
to change the settings. When this notification is received, all project level dimensional values
should be converted to a reasonable setting for the current settings.

It is recommended that the function fz_fuim_unit_convert be used to get proper dimensional
values (units and data scale) from default values for the specified pref_units and
pref_scale. The fz_fuim_convert_units function sets a double value to the current
pref_units and pref_scale given an English and metric default unit values for a specified
scale.

The following example establishes a default English value of 12.0 inches and a metric default
value of 25 cm for the medium scale for the global array my_proj_distance.

double my_proj_distance[];

...

long fz_notf_cbak_proj_units (

3.6 Notification form•Z SDK (v6.0.0.0 rev 05/30/06) 440

 long windex,
 fz_unit_type_enum pref_units,
 fz_unit_scale_enum pref_scale
)
{
 long err = FZRT_NOERR;
 double my_distance = 10;

 err = fz_fuim_unit_convert(12.0, 25.0, FZ_UNIT_SCAL_MEDIUM,

pref_units,pref_scale,my_proj_distance[windex])
;

 return(err);
}

The window units function (optional)

long fz_notf_cbak_wind_units (
 long windex,
 fz_unit_type_enum pref_units,
 fz_unit_scale_enum pref_scale
);

This function is called for each project window when the unit type (English/Metric) or unit scale
(large/medium/small/miniature) for a project changes. This happens when the user changes the
settings in the Working Units dialog or the function fz_proj_units_set_parm_data is called
to change the settings. When this notification is received, all project level dimensional values
should be converted to a reasonable setting for the current settings.

It is recommended that the function fz_fuim_unit_convert be used to get proper dimensional
values (units and data scale) from default values for the specified pref_units and
pref_scale. The fz_fuim_unit_convert function sets a double value to the current
pref_units and pref_scale given an English and metric default unit values for a specified
scale.

The following example establishes a default English value of 12.0 inches and a metric default
value of 25 cm for the medium scale for the global array my_wind_distance.

double my_wind_distance[];

...

long fz_notf_cbak_wind_units (
 long windex,
 fz_unit_type_enum pref_units,
 fz_unit_scale_enum pref_scale
)
{
 long err = FZRT_NOERR;
 double my_distance = 10;

 err = fz_fuim_unit_convert(12.0, 25.0, FZ_UNIT_SCAL_MEDIUM,

pref_units, pref_scale, my_wind_distance[windex]);

 return(err);
}

3.6 Notification form•Z SDK (v6.0.0.0 rev 05/30/06) 441

The object function (optional)

long fz_notf_cbak_objt (
 long windex,
 fz_notf_objt_enum objt_notf,
 fz_objt_ptr objt
);

This function is called to notify that an object has changed. The objt_notf parameter indicates
what change occurred.

long fz_notf_cbak_objt (
 long windex,
 fz_notf_objt_enum objt_notf,
 fz_objt_ptr objt
)
{
 long err = FZRT_NOERR;

 /** Handle object notification here **/

 return(err);
}

The Light function (optional)

long fz_notf_cbak_lite (
 long windex,

fz_notf_lite_enum lite_notf,
fz_lite_ptr lite

);

This function is called to notify that a light has changed. The lite_notf parameter indicates
what change occurred.

long fz_notf_cbak_lite (
 long windex,

fz_notf_lite_enum lite_notf,
fz_lite_ptr lite

)
{
 long err = FZRT_NOERR;

 /** Handle light notification here **/

 return(err);
}

The Layer function (optional)

long fz_notf_cbak_layr (
 long windex,

fz_notf_layr_enu layr_notf,
fz_layr_ptr layr

3.6 Notification form•Z SDK (v6.0.0.0 rev 05/30/06) 442

);

This function is called to notify that an layer has changed. The layr_notf parameter indicates
what change occurred.

long fz_notf_cbak_layr (
 long windex,

fz_notf_layr_enum layr_notf,
fz_layr_ptr layr

)
{
 long err = FZRT_NOERR;

 /** Handle layer notification here **/

 return(err);
}

The view function (optional)

long fz_notf_cbak_view (
 long windex,

fz_notf_view_enum view_notf,
fz_view_ptr view

);

This function is called to notify that a view has changed. The view_notf parameter indicates
what change occurred.

long fz_notf_cbak_view (
 long windex,

fz_notf_view_enum view_notf,
fz_view_ptr view

)
{
 long err = FZRT_NOERR;

 /** Handle view notification here **/

 return(err);
}

The preference defaults function (optional)

long fz_notf_cbak_pref_default (
 fz_unit_type_enum pref_units,
 fz_unit_scale_enum pref_scale
);

The default function is called by form•Z called once at startup and when a user resets the
preferences to defaults in the preferences dialog. This function is provided so that scripts can
establish default values for private data. All private data should be set to its default values and
dimensional values should be set to the specified pref_units and pref_scale. It is
recommended that the function fz_fuim_unit_convert should be used to get proper
dimensional values (units and data scale) from default values for the specified pref_units and

3.6 Notification form•Z SDK (v6.0.0.0 rev 05/30/06) 443

pref_scale. The fz_fuim_unit_convert function sets a double value to the current
pref_units and pref_scale given English and metric default unit values for a specified scale.

double my_distance;

...

long fz_notf_cbak_pref_default(
 fz_unit_type_enum pref_units,
 fz_unit_scale_enum pref_scale
)
{
 long err = FZRT_NOERR;

err = fz_fuim_unit_convert(12.0, 25.0,
FZ_UNIT_SCAL_MEDIUM, pref_units, pref_scale,
my_distance);

 return(err);
}

The preference model type function (optional)

long fz_notf_cbak_pref_model_type (
 fz_objt_model_type_enum model_type
);

The preference model type function is called by form•Z when the model type preference is
changed. This function notifies the script to change its internal preference to facetted
(FZ_OBJT_MODEL_TYPE_FACT) or smooth modeling (FZ_OBJT_MODEL_TYPE_SMOD) as
indicated by the model_type parameter. This function is useful for tool scripts, which support
both facetted and smooth modeling.

fz_objt_model_type_enum my_command_model_type;

...

long fz_notf_cbak_pref_model_type(
 fz_objt_model_type_enum model_type
)
{
 long err = FZRT_NOERR;

my_command_model_type = model_type;

 return(err);
}

3.7 Script Type (classes) form•Z SDK (v6.0.0.0 rev 05/30/06) 444

3.7 Script Types (classes)

There are 5 types of scripts: commands, palettes, RenderZone shaders, tools, and utilities.
Scripts are organized into types based on the functionality they provide and how they implement
it. Some types of scripts are flexible and can add functionality to various areas of form•Z. Other
types of scripts add very specific functionality to a certain area of the program. The command and
utility script types are examples of more flexible scripts while the RenderZone shader script type
is very specific.

There is also a distinction between system and project level scripts. System scripts are not
dependent on the active window or project hence the call back functions for system scripts do not
receive the active project window windex as a parameter. Project level scripts work on the active
project window, and therefore do receive windex as a parameter.

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 445

3.7.1 Command Scripts

A command in form•Z is an action that is invoked from a menu item, icon in the command palette
or a key shortcut. Command scripts are extensions that complement the form•Z commands and
behave consistently with the form•Z commands. Command scripts are available in system and
project levels. A system command is global in nature and does not require a project window
index. These are typically utility actions for which it is desirable to have access to the utility in the
form•Z interface. A project command requires a project or window index and are expected to
operate on the project information for a provided project. Project commands are unavailable when
there is no open project window.

Commands are described as states and actions. A state reflects a setting that has a specific set
of selectable values (states) and a single current setting (or active state). For example, the
Show Grid item in the Windows menu is a form•Z command that reflects the state of the grid
display (on or off). When this item is selected, the state is changed and the check mark in the
menu is updated to reflect the current state.

An action command is a command that performs a task when it is selected. The task is linear in
nature in that form•Z waits for the task to be completed before anything else can be done. An
action command is very flexible as virtually any form•Z API function can be called during the
execution of the task.

There is no explicit distinction between actions and states in the form•Z call back functions. For a
command to function properly as a state, it should implement the active function described below.
This tells form•Z that the command in its active state and that the check mark should be drawn in
the menu or the icon drawn active in the command palette.

Command script type

Command scripts are defined by tagging the script in its header with the script_type keyword
and the proper identifier as follows:

script_type FZ_CMND_SYST_EXTS_TYPE

for a system level command script and

script_type FZ_CMND_PROJ_EXTS_TYPE

for a project level command script.

3.7.1.1 System Command

System command scripts are implemented by defining a set of callback functions. There are 13
possible callback functions. Note that some of these functions are optional hence a script would
rarely implement all functions. All callback functions, if implemented, must match exactly the
required name, return type and arguments as described below. As with all other script types, the
system command script may implement the fz_script_cbak_info callback function, which
defines basic information about the script. This is discussed in more detail in section 3.3.

The initialization function (optional)

long fz_cmnd_cbak_syst_init();

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 446

This function is called by form•Z once when the script is successfully loaded and registered. The
initialization function is where the script should initialize any data that may be needed by the other
functions in the function set.

long fz_cmnd_cbak_syst_init()
{
 long err = FZRT_NOERR;

/* Do initialization here */

return(err);

}

The finalization function (optional)

long fz_cmnd_cbak_syst_finit();

This function is called by form•Z once when the script is unloaded when form•Z is quitting. This
is the complementary function to the initialization function. This function should be used to any
necessary cleanup.

long fz_cmnd_cbak_syst_finit()
{
 long err = FZRT_NOERR;

/* Perform cleanup here */

 return(err);
}

The name function (recommended)

long fz_cmnd_cbak_syst_name(
 mod fz_string_td name,
 long max_len

);

This function is called by form•Z to get the name of the command. The name is shown in various
places in the form•Z interface including the key shortcuts manager dialog. It is recommended that
the command name string is stored in a .fzr file so that it is localizable. This function is
recommended for all command scripts. If this function is not provided, the name of the script file is
used.

long fz_cmnd_cbak_syst_name(
 mod fz_string_td name,
 long max_len

)
{
 long err = FZRT_NOERR;

 /* Get the title string from the script’s resource file */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 1, name);

 return(err);
}

The help function (recommended)

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 447

long fz_cmnd_cbak_syst_help(
 mod fz_string_td help,
 long max_len
);

This function is called by form•Z to display a help string that describes the detail of what the
command does. This string is shown in the key shortcut manager dialog and the help dialogs.
The help parameter is a pointer to a memory block (string) which can handle up to max_len
characters. It is recommended that the command name is stored in a .fzr file so that it is
localizable. The display area for help is limited so form•Z currently will ask for no more than 256
bytes (characters).

long fz_cmnd_cbak_syst_help(
 mod fz_string_td help,
 long max_len
)

{
 long err = FZRT_NOERR;

 /* Get the help string from the script’s resource file */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, help);

 return(err);
}

The available function (recommended)

long fz_cmnd_cbak_syst_avail(
 mod long rv
);

This function is called by form•Z at various times to see if the command is available. This is
useful if the command is dependent on certain conditions and it is desirable to restrict its use
when the conditions are not currently satisfied. If the command is not available, then it is shown
as inactive (dimmed) in the form•Z interface (menu, icon or palette). Key shortcuts are also
disabled for the command when it is not available. If this function is not provided then the
command is always available.

Availability is determined by the value that is returned by the rv parameter. A value of 1 indicates
that the command is available, a value of 0 indicates that the command is unavailable.

long fz_cmnd_cbak_syst_avail(
 mod long rv
)
{
 long err = FZRT_NOERR;

/* return 1 for available, 0 for not available */
rv = 1;

 return(err);
}

The active function (Optional)

long fz_cmnd_cbak_syst_active(
 mod long rv
);

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 448

This function is called by form•Z at various times to see if the command is active. This function is
needed to implement a state command where the interface element indicates the current state.
This If the command is active, then it is shown selected in the form•Z interface. Active commands
in a menu are indicated with a check mark in front of the command name. Active commands in
command palettes are indicated with a highlighted icon.

Activity is determined by the value that is returned by the rv parameter. A value of 1 indicates
that the command is active, a value of 0 indicates that the command is inactive. The following
example shows the active function for a state command.

long fz_cmnd_cbak_syst_active(
 mod long rv
)
{
 long err = FZRT_NOERR;

 /* check if state is active */
 if(my_command_value1 == 1) rv = 1;
 else rv = 0;

 return(err);
}

The select function (required)

long fz_cmnd_cbak_syst_select();

This function is called by form•Z when an action or state command is selected from the interface
(menu, icon or palette) or when a key shortcut for the command is invoked. The select function is
where the real execution for the command takes place. For action commands the desired action
should be performed in this function. For state commands, the state should be changed and the
appropriate actions should be taken. After the select function is executed, form•Z will call the
active function to check for active states.

Action command example:

long fz_cmnd_cbak_syst_select()
{
 long err = FZRT_NOERR;

 /* perform command action here */

 return(err);
}

State command example:

long fz_cmnd_cbak_syst_select()
{
 long err = FZRT_NOERR;

 /* toggle state */
 my_command_value1 = !my_command_value1;

 return(err);
}

The menu function (Optional)

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 449

long fz_cmnd_cbak_syst_menu (

fz_fuim_menu_ptr menu_ptr,
fzrt_UUID_td extensions_uuid,
mod fzrt_UUID_td group_uuid,
mod long position

);

This function is called by form•Z to add the command to the Extensions menu. System
commands are grouped at the top of the extensions menu. The presence of this function places
the command in the menu. If this function is not provided, then the command does not appear in
the menu. Assigning values to the parameters of the function provides control over the placement
of items in the menu. The name that appears in the menu is the name returned in the
fz_cmnd_cbak_syst_name function.

A group of items can be placed into a pop-out hierarchical menu rather than in the extensions
menu itself. Calling the function fz_fuim_exts_menu creates a pop-out menu in the extensions
menu. The menu_ptr and extensions_uuid parameters provided to the
fz_cmnd_cbak_syst_menu function are used in the creation of the pop-out menu. The UUID of
the new menu should be assigned to the group_uuid parameter. The pop-out menu should be
created in each fz_cmnd_cbak_syst_menu call back function for the group so that if the user
has disabled one of the scripts, the menu will still be formed properly. form•Z ignores attempts to
create a menu when the UUID already exists that would occur if all the scripts are enabled.

form•Z will group together all commands in the extensions menu that have the same
group_uuid. That is, all fz_cmnd_cbak_syst_menu implemented functions that return the
same group_uuid parameter are placed together in the extensions menu in a group separated
from other items by a menu separator. The position parameter specifies the order of the
items. The items in the group are sorted from lowest to highest position. If position is set to
Zero, the items are placed in alphabetic order.

The following is an example of a menu function with a pop-out menu.

#define MY_GRUP_ID "\x5d\xe6\x85\x41\x6b\xaa\x4f\xb4\xa5\x6a\xf5\x0e\x65\x36\xfb\xd0"

long fz_cmnd_cbak_syst_menu (

fz_fuim_menu_ptr menu_ptr,
fzrt_UUID_td extensions_uuid,
mod fzrt_UUID_td group_uuid,
mod long position
)

{
 long err = FZRT_NOERR;
 fz_string_td my_str;

 /* Get the title string “My Group” from the script’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, my_str)) == FZRT_NOERR)
 {
 /* create the menu group */
 err = fz_fuim_exts_menu(menu_ptr, extensions_uuid, my_str, MY_GRUP_ID);

 if(err == FZRT_NOERR)
 {
 fzrt_UUID_copy(MY_GRUP_ID, group_uuid);
 position = 1;
 }
 }
 return(err);
}

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 450

Nested menus can be created up to 3 levels of hierarchy by passing the uuid of another pop-out
menu to the fz_fuim_cmnd_new_menu function. The following is an example of a nested pop-
out menu.

#define MY_GRUP_ID_NEST "\x24\xf6\x35\x41\x6b\xab\x7f\xb4\xa5\x6a\xd5\xaa\x65\x36\xfb\xe0"

long fz_cmnd_cbak_syst_menu (

fz_fuim_menu_ptr menu_ptr,
fzrt_UUID_td extensions_uuid,
mod fzrt_UUID_td group_uuid,
mod long position
)

{
 long err = FZRT_NOERR;
 fz_string_td my_str;

 /* Get the title string “My Group” from the script’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, my_str)) == FZRT_NOERR)
 {
 /* create the menu group */
 if((err = fz_fuim_exts_menu (menu_ptr, extensions_uuid,
 my_str, MY_GRUP_ID)) == FZRT_NOERR)
 {

 /* Get title string “My Nested Group” from the resource file */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 3, my_str);

 if(err == FZRT_NOERR)
 {
 /* create the nested menu group */
 err = fz_fuim_exts_menu (menu_ptr, MY_GRUP_ID,
 my_str, MY_GRUP_ID_NEST);

 if(err == FZRT_NOERR)
 { fzrt_UUID_copy(MY_GRUP_ID_NEST, group_uuid);
 position = 1;
 }
 }
 }
 }
 return(err);
}

By default menu items are enabled. The fz_cmnd_cbak_syst_avail function can be used to
disable the command and make its menu item shown dimmed. Menu items for state commands
are shown with a check mark when the fz_cmnd_cbak_syst_active function indicates that
the state for the command is active.

The icon menu function (Optional, mutually exclusive with
fz_cmnd_cbak_syst_icon_menu_adjacent)

long fz_cmnd_cbak_syst_icon_menu (
 fzrt_UUID_td icon_menu_uuid,
 mod fzrt_UUID_td group_uuid,
 mod fz_fuim_icon_group_enum group_pos,
 mod long group_row,
 mod long group_col
);

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 451

This function is called by form•Z to add the command to the system command icon menu palette.
The presence of this function places the command in the palette. If no other parameters are set
then the command will get added to a group of icons at the bottom (end) of the icon menu. Note
that this only adds the position to the icon palette. The function
fz_cmnd_cbak_syst_icon_file must be provided to add custom graphics for the icon. If it is
not provided, form•Z uses a generic icon graphic.

The group_uuid parameter is assigned to all commands that should be grouped together. That
is, all fz_cmnd_cbak_syst_icon_menu implemented functions that return the same
group_uuid parameter are placed together in the system icon menu in the same group (pop-out
tool menu). This group is added to the bottom (end) of the menu. The placement of the item in
the group is controlled by the group_pos parameter. A value of FZ_FUIM_ICON_GROUP_START
places the item at the start of the group and a value of FZ_FUIM_ICON_GROUP_END places it at
the end of the group. Note that these may not always yield constant results because script load
order can vary hence multiple uses of FZ_FUIM_ICON_GROUP_END my note build the icon
palette in the expected order. When FZ_FUIM_ICON_GROUP_CUSTOM is selected, then the
group_row and group_col parameters specify the position of the item in the tool menu group.

#define MY_GRUP_ID "\x5d\xe6\x85\x41\x6b\xaa\x4f\xb4\xa5\x6a\xf5\x0e\x65\x36\xfb\xd0"

long fz_cmnd_cbak_syst_icon_menu (
 fzrt_UUID_td icon_menu_uuid,
 mod fzrt_UUID_td group_uuid,
 mod fz_fuim_icon_group_enum group_pos,
 mod long group_row,
 mod long group_col
)
{
 long err = FZRT_NOERR;

fzrt_UUID_copy(MY_GRUP_ID, group_uuid);
 group_pos = FZ_FUIM_ICON_GROUP_CUSTOM;
 group_row = 1;
 group_col = 1;

 return(err);
}

The function fz_fuim_exts_icon_group can be called to better control the group containing
the set of commands. This adds the ability to name the group and insert the pop-out menu group
in the existing menu groups. The icon pop-out menu can be created in each
fz_cmnd_cbak_syst_icon_menu so that if the user has disabled one of the scripts, the icon
menu will still be formed properly. form•Z ignores attempts to create a menu when the UUID
already exists. That would occur if all the scripts are enabled. The following is an example of a
pop-out menu.

long fz_cmnd_cbak_syst_icon_menu (
 fzrt_UUID_td icon_menu_uuid,
 mod fzrt_UUID_td group_uuid,
 mod fz_fuim_icon_group_enum group_pos,
 mod long group_row,
 mod long group_col
)
{
 long err = FZRT_NOERR;

err = fz_fuim_exts_icon_group(
"My Group", MY_GRUP_ID, icon_menu_uuid,
FZRT_UUID_NULL, FZ_FUIM_POS_BEFORE,

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 452

FZRT_UUID_NULL, FZ_FUIM_POS_BEFORE);

if(err = FZRT_NOERR)
{ fzrt_UUID_copy(MY_GRUP_ID, group_uuid);

 group_pos = FZ_FUIM_ICON_GROUP_CUSTOM;
 group_row = 1;
 group_col = 1;
 }
 return(err);
}

The icon menu adjacent function (Optional, mutually exclusive with
fz_cmnd_cbak_syst_icon_menu)

long fz_cmnd_cbak_syst_icon_menu_adjacent(
 fzrt_UUID_td icon_menu_uuid,
 mod fzrt_UUID_td adjacent_uuid,
 mod fz_fuim_icon_adjacent_enum where
);

This function is called by form•Z to add the command to the command icon menu palette. It
serves the same purpose as the fz_cmnd_cbak_syst_icon_menu function, however it
specifies the location of the icon item quite differently. The location is identified by referencing
another command in the icon menu. The adjacent_uuid parameter is the UUID of the
command to which the icon should be added adjacent. The where parameter specifies to which
side of the adjacent icon the icon should be added. The available options are
FZ_FUIM_ICON_ADJACENT_TOP, FZ_FUIM_ICON_ADJACENT_BOTTOM,
FZ_FUIM_ICON_ADJACENT_LEFT, FZ_FUIM_ICON_ADJACENT_RIGHT. The default action is
specified by FZ_FUIM_ICON_ADJACENT_DEFAULT which currently is the same as
FZ_FUIM_ICON_ADJACENT_RIGHT. New pop-out groups can not be created with this function.
The following example adds the icon to the right of the form•Z save command.

long fz_cmnd_cbak_syst_icon_menu_adjacent(
 fzrt_UUID_td icon_menu_uuid,
 mod fzrt_UUID_td adjacent_uuid,
 mod fz_fuim_icon_adjacent_enum where
)
{
 long err = FZRT_NOERR;

 fzrt_UUID_copy(CMND_SAVE, adjacent_uuid);
 where = FZ_FUIM_ICON_ADJACENT_RIGHT;

 return(err);
}

The icon file function (Optional)

long fz_cmnd_cbak_syst_icon_file (
 fz_fuim_icon_enum which,
 fzrt_floc_ptr floc,
 mod long hpos,
 mod long vpos,
 fzrt_floc_ptr floc_mask,
 mod long hpos_mask,
 mod long vpos_mask
);

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 453

This function is called by form•Z to get an icon for the command from an image file. The icon
image can be in any of the form•Z supported image file formats or a format for which an image
file translator is installed. The TIFF format is the recommended format as the TIFF translator is
commonly available. form•Z will request an icon when the command is displayed in a tool menu
using fz_cmnd_cbak_syst_icon_menu or fz_cmnd_cbak_syst_icon_menu_adjacent.

form•Z supports 3 styles of icon display. Recall that these are selectable by the user from the
Icon Style menu in the Icons Customization dialog. The first two options (White and Gray) are
generated from a black and white source graphic with different treatments at drawing time. The
third option is generated from a color source graphic. The first two options are older icon styles
that are provided for backward compatibility. The color icons became the default with v 4.0. Note
that if an icon of one type or the other (or both) is not provided, then form•Z uses a generic icon
graphic.

The which parameter indicates the type of source graphic icon that is needed by form•Z. For
each type of icon source (black and white and color), there are two possible sizes. The full size
icon is the size that is used in the main tool palettes and tear off tool palettes. The black and
white source full size is 30 x 30 pixels and indicated by FZ_FUIM_ICON_MONOC. The color
source is 32 x 32 pixels and indicated by FZ_FUIM_ICON_COLOR. The alternate size is the
smaller size used for window icons that are drawn in the lower margin of the window. The
alternate size for both black and white and color sources is 20 x 16 pixels and indicated by
FZ_FUIM_ICON_MONOC_ALT and FZ_FUIM_ICON_COLOR_ALT respectively.

The floc parameter should be filled with the file name and location of the file that contains the
icon graphic. The hpos and vpos parameters should be set to the left and top pixel location of
icon data in the file respectively. It is recommended that the icon file be in the same directory as
the script file. This makes it simple to find the file. The location of the plugin file can be retained
using the fz_script_file_get_floc function.

The floc_mask parameter should be filled with the file name and location of the file that
contains the icon mask (this can be the same file as the floc parameter). The icon mask defines
the transparent areas of the icon. The hpos_mask and vpos_mask parameters should be set to
the left and top pixel location of icon mask data in the file respectively. If a mask is not provided
than the entire background of the icon will be drawn.

A single file can be used for multiple icons across a variety of commands by creating a grid of
icons in the file and specifying the location for each icon in the corresponding provided function.

long fz_cmnd_cbak_syst_icon_file (
 fz_fuim_icon_enum which,
 fzrt_floc_ptr floc,
 mod long hpos,
 mod long vpos,
 fzrt_floc_ptr floc_mask,
 mod long hpos_mask,
 mod long vpos_mask
)
{
 long err = FZRT_NOERR;

 switch(which)
 {
 case FZ_FUIM_ICON_MONOC:
 err = fz_script_file_get_floc(floc);
 if(err == FZRT_NOERR)
 { err = fzrt_file_floc_set_name(floc,"my_icon_bw.tif");
 hpos = 0;

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 454

 vpos = 0;
 }
 break;

 case FZ_FUIM_ICON_COLOR:
 err = fz_script_file_get_floc(floc);
 if(err == FZRT_NOERR)
 { err = fzrt_file_floc_set_name(floc,"my_icon_col.tif");
 hpos = 0;
 vpos = 0;
 }
 break;
 }
 return(err);
}

The preferences IO function (optional)

long fz_cmnd_cbak_syst_pref_io (
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 mod long version,

long size
);

form•Z calls this function to read and write any command specific data to a form•Z preference
file. This function is called when reading and writing user specified preference files (Save
Preferences button in the Preferences dialog). It is also called by form•Z when reading and
writing the session to session preference file maintained by form•Z. The file IO is performed
using the IO streams (iost) interface. This interface provides functions for reading and writing data
from a file (stream) and handles all cross platform endian issues. The iost parameter is the
pointer to the preference file and should be used in all IO Stream function calls. The IO Stream
functions are fully documented in the form•Z API reference.

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that is written when writing a file. When reading a file, the version parameter contains the
version of the data that was written to the file (and hence being read). The size parameter is
only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the plugin to maintain version changes of the plugin data. In the following
example, in its first release, a commands data consisted of four long integer values, a total of 16
bytes. When written, the version reported back to form•Z was 0. In a subsequent release, a fifth
long integer is added to increase the size to 20 bytes. When writing this new data, the version
reported to form•Z needs to be increased. When reading a file with the old version of the
command preference, form•Z will pass in the version number of the attribute when it was written,
in this case 0. This indicates to the plugin, that only four integers, 16 bytes, need to be read and
the fifth integer should be set to a default value.

long fz_cmnd_cbak_syst_pref_io (
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 mod long version,
 long size
)
{
 long err = FZRT_NOERR;

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 455

 if (dir == FZ_IOST_WRITE) version = 1;

 err = fz_iost_one_long(iost,my_command_value1);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_command_value2);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_command_value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_command_value4);

 if(version >= 1)
 { err = fz_iost_one_long(iost,my_command_value5);
 }
 }
 }
 }

 return(err);
}

3.7.1.2 Project Commands

Project command scripts are implemented by defining a set of callback functions. There are 17
possible callback functions. Note that some of these functions are optional hence a script would
rarely implement all functions. All callback functions, if implemented, must match exactly the
required name, return type and arguments as described below. As with all other script types, the
project command script may implement the fz_script_cbak_info callback function, which
defines basic information about the script. This is discussed in more detail in section 3.3.

The initialization function (optional)

long fz_cmnd_cbak_proj_init();

This function is called by form•Z once when the script is successfully loaded and registered. The
initialization function is where the script should initialize any data that may be needed by the other
functions in the function set.

long fz_cmnd_cbak_proj_init()
{
 long err = FZRT_NOERR;

/* Do initialization here */

return(err);

}

The finalization function (optional)

long fz_cmnd_cbak_proj_finit();

This function is called by form•Z once when the script is unloaded when form•Z is quitting. This
is the complementary function to the initialization function. This function should be used to
perform any necessary cleanup.

long fz_cmnd_cbak_proj_finit()
{
 long err = FZRT_NOERR;

/* Perform cleanup here */

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 456

 return(err);
}

The info function (required)

long fz_cmnd_cbak_proj_info(
 mod fz_proj_level_enum level
);

This function is called by form•Z once when the script is successfully loaded to determine the
kind of command that is implemented by the callback functions.

The level parameter indicates the context of the command. form•Z uses the value in this
parameter to determine when the command should be shown and when it should be updated.
The following are the available values:

FZ_PROJ_LEVEL_MODEL: Indicates that the command operates on the projects
modeling content (objects for example).

FZ_PROJ_LEVEL_MODEL_WIND: Indicates that the command operates on modeling
window specific content (views for example) of modeling windows.

FZ_PROJ_LEVEL_DRAFT: Indicates that the command operates on the projects drafting
content (elements for example).

FZ_PROJ_LEVEL_DRAFT_WIND: Indicates that the command operates on drafting
window specific content (views for example) of drafting windows.

long fz_cmnd_cbak_proj_info(
 mod fz_proj_level_enum level
)
{
 long err = FZRT_NOERR;

 /* indicate modeling level */

level = FZ_PROJ_LEVEL_MODEL;

return(err);

}

The name function (recommended)

long fz_cmnd_cbak_proj_name(
 mod fz_string_td name,
 long max_len

);

This function is called by form•Z to get the name of the command. The name is shown in various
places in the form•Z interface including the key shortcuts manager dialog. It is recommended that
the command name string is stored in a .fzr file so that it is localizable. This function is
recommended for all command scripts. If this function is not provided, the name of the script file is
used.

long fz_cmnd_cbak_proj_name(
 mod fz_string_td name,
 long max_len

)

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 457

{
 long err = FZRT_NOERR;
 fz_string_td my_str;

 /* Get the title string from the script’s resource file */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 1, my_str);

 return(err);
}

The help function (optional)

long fz_cmnd_cbak_proj_help(
 mod fz_string_td help,
 long max_len
);

This function is called by form•Z to display a help string that describes the detail of what the
command does. This string is shown in the key shortcut manager dialog and the help dialogs.
The help parameter is a pointer to a memory block (string) which can handle up to max_len
characters. It is recommended that the command name is stored in a .fzr file so that it is
localizable. The display area for help is limited so form•Z currently will ask for no more than 256
characters.

long fz_cmnd_cbak_proj_help(
 mod fz_string_td help,
 long max_len
)

{
 long err = FZRT_NOERR;

 /* Get the help string from the script’s resource file */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, help);

 return(err);
}

The available function (optional)

long fz_cmnd_cbak_proj_avail(
 long windex,
 mod long rv
);

This function is called by form•Z at various times to see if the command is available. This is
useful if the command is dependent on certain conditions and it is desirable to restrict its use
when the conditions are not currently satisfied. If the command is not available, then it is shown
as inactive (dimmed) in the form•Z interface (menu, icon or palette). Key shortcuts are also
disabled for the command when it is not available. If this function is not provided then the
command is always available.

Availability is determined by the value that is returned by the rv parameter. A value of 1 indicates
that the command is available, a value of 0 indicates that the command is unavailable.

long fz_cmnd_cbak_proj_avail(
 long windex,
 mod long rv
)
{

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 458

 long err = FZRT_NOERR;

/* return 1 for available, 0 for not available */
rv = 1;

 return(err);
}

The active function (Optional)

long fz_cmnd_cbak_proj_active(
 long windex,
 mod long rv
);

This function is called by form•Z at various times to see if the command is active. This function is
needed to implement a state command where the interface element indicates the current state.
This If the command is active, then it is shown selected in the form•Z interface. Active commands
in a menu are indicated with a check mark in front of the command name. Active commands in
command palettes are indicated with a highlighted icon.

Activity is determined by the value that is returned by the rv parameter. A value of 1 indicates
that the command is active, a value of 0 indicates that the command is inactive. The following
example shows the active function for a state command.

long fz_cmnd_cbak_proj_active(
 long windex,
 mod long rv
)
{
 long err = FZRT_NOERR;

 /* check if state is active */
 if(my_command_value1 == 1) rv = 1;
 else rv = 0;

 return(err);
}

The select function (required)

long fz_cmnd_cbak_proj_select(
 long windex
);

This function is called by form•Z when an action or state command is selected from the interface
(menu, icon or palette) or when a key shortcut for the command is invoked. The select function is
where the real execution for the command takes place. For action commands the desired action
should be performed in this function. For state commands, the state should be changed and the
appropriate actions should be taken. After the select function is executed, form•Z will call the
active function to check for active states.

Action command example:

long fz_cmnd_cbak_proj_select(
 long windex
)
{
 long err = FZRT_NOERR;

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 459

 /* perform command action here */

 return(err);
}

State command example:

long fz_cmnd_cbak_proj_select(
 long windex
)
{
 long err = FZRT_NOERR;

 /* toggle state */
 my_command_value1 = !my_command_value1;

 return(err);
}

The menu function (Optional)

long fz_cmnd_cbak_proj_menu (

fz_fuim_menu_ptr menu_ptr,
fzrt_UUID_td extensions_uuid,
mod fzrt_UUID_td group_uuid,
mod long position

);

This function is called by form•Z to add the command to the Extensions menu. Project
commands are grouped at the top of the extensions menu. The presence of this function places
the command in the menu. If this function is not provided, then the command does not appear in
the menu. Assigning values to the parameters of the function provides control over the placement
of items in the menu. The name that appears in the menu is the name returned in the
fz_cmnd_cbak_proj_name function.

A group of items can be placed into a pop-out hierarchical menu rather than in the extensions
menu itself. Calling the function fz_fuim_exts_menu creates a pop-out menu in the extensions
menu. The menu_ptr and extensions_uuid parameters provided to the
fz_cmnd_cbak_proj_menu function are used in the creation of the pop-out menu. The UUID of
the new menu should be assigned to the group_uuid parameter. The pop-out menu should be
created in each fz_cmnd_cbak_proj_menu call back function for the group so that if the user
has disabled one of the scripts, the menu will still be formed properly. form•Z ignores attempts to
create a menu when the UUID already exists. That would occur if all the scripts are enabled.

form•Z will group together all commands in the extensions menu that have the same
group_uuid. That is, all fz_cmnd_cbak_proj_menu implemented functions that return the
same group_uuid parameter are placed together in the extensions menu in a group separated
from other items by a menu separator. The position parameter specifies the order of the
items. The items in the group are sorted from lowest to highest position. If position is set to
Zero, the items are placed in alphabetic order.

The following is an example of a menu function with a pop-out menu.

#define MY_GRUP_ID "\x5d\xe6\x85\x41\x6b\xaa\x4f\xb4\xa5\x6a\xf5\x0e\x65\x36\xfb\xd0"

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 460

long fz_cmnd_cbak_proj_menu (
fz_fuim_menu_ptr menu_ptr,
fzrt_UUID_td extensions_uuid,
mod fzrt_UUID_td group_uuid,
mod long position
)

{
 long err = FZRT_NOERR;
 fz_string_td my_str;

 /* Get the title string “My Group” from the script’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, my_str)) == FZRT_NOERR)
 {
 /* create the menu group */
 err = fz_fuim_exts_menu(menu_ptr, extensions_uuid, my_str, MY_GRUP_ID);

 if(err == FZRT_NOERR)
 {
 fzrt_UUID_copy(MY_GRUP_ID, group_uuid);
 position = 1;
 }
 return(err);
 }
}

Nested menus can be created up to 3 levels of hierarchy by passing the uuid of another pop-out
menu to the fuim_cmnd_new_menu function. The following is an example of a nested pop-out
menu.

#define MY_GRUP_ID_NEST "\x24\xf6\x35\x41\x6b\xab\x7f\xb4\xa5\x6a\xd5\xaa\x65\x36\xfb\xe0"

long fz_cmnd_cbak_proj_menu (

fz_fuim_menu_ptr menu_ptr,
fzrt_UUID_td extensions_uuid,
mod fzrt_UUID_td group_uuid,
mod long position
)

{
 long err = FZRT_NOERR;
 fz_string_td my_str;

 /* Get the title string “My Group” from the script’s resource file */
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, my_str)) == FZRT_NOERR)

{
 /* create the menu group */
 if((err = fz_fuim_exts_menu (menu_ptr, extensions_uuid,
 my_str, MY_GRUP_ID)) == FZRT_NOERR)
 {

 /* Get title string “My Nested Group” from the resource file */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 3, my_str);

 if(err == FZRT_NOERR)

{
 /* create the nested menu group */

err = fz_fuim_exts_menu (menu_ptr, MY_GRUP_ID,
 my_str, MY_GRUP_ID_NEST);

 if(err == FZRT_NOERR)
 { fzrt_UUID_copy(MY_GRUP_ID_NEST, group_uuid);
 position = 1;
 }
 }

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 461

 }
 }
 return(err);
}

By default menu items are enabled. The fz_cmnd_cbak_proj_avail function can be used to
disable the command and make its menu item shown dimmed. Menu items for state commands
are shown with a check mark when the fz_cmnd_cbak_proj_active function indicates that the
state for the command is active.

The icon menu function (Optional, mutually exclusive with
fz_cmnd_cbak_proj_icon_menu_adjacent)

long fz_cmnd_cbak_proj_icon_menu (

fzrt_UUID_td icon_menu_uuid,
 mod fzrt_UUID_td group_uuid,
 mod fz_fuim_icon_group_enum group_pos,
 mod long group_row,
 mod long group_col
);

This function is called by form•Z to add the command to the commands icon menu palette. The
presence of this function places the command in the icon menu palette. If no other parameters
are set then the command will get added to a group of icons at the bottom (end) of the icon menu.
Note that this only adds the position to the tool menu. The function
fz_cmnd_cbak_proj_icon_file must be provided to add custom graphics for the icon. If it is
not provided, form•Z uses a generic icon graphic.

The group_uuid parameter is assigned to all commands that should be grouped together. That
is, all fz_cmnd_cbak_proj_icon_menu implemented functions that return the same
group_uuid parameter are placed together in the system icon menu in the same group (pop-out
tool menu). This group is added to the bottom (end) of the menu. The placement of the item in
the group is controlled by the group_pos parameter. A value of FZ_FUIM_ICON_GROUP_START
places the item at the start of the group and a value of FZ_FUIM_ICON_GROUP_END places it at
the end of the group. Note that these may not always yield constant results because plugin load
order can vary hence multiple uses of FZ_FUIM_ICON_GROUP_END my note build the menu in
the expected order. When FZ_FUIM_ICON_GROUP_CUSTOM is selected, then the group_row
and group_col parameters specify the position of the item in the tool menu group.

#define MY_GRUP_ID "\x5d\xe6\x85\x41\x6b\xaa\x4f\xb4\xa5\x6a\xf5\x0e\x65\x36\xfb\xd0"

long fz_cmnd_cbak_proj_icon_menu (

fzrt_UUID_td icon_menu_uuid,
 mod fzrt_UUID_td group_uuid,
 mod fz_fuim_icon_group_enum group_pos,
 mod long group_row,
 mod long group_col

)
{
 long err = FZRT_NOERR;

fzrt_UUID_copy(MY_GRUP_ID, group_uuid);
 group_pos = FZ_FUIM_ICON_GROUP_CUSTOM;
 group_row = 1;
 group_col = 1;

 return(err);
}

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 462

The function fz_fuim_exts_icon_group can be called to better control the group containing
the set of commands. This adds the ability to name the group and insert the pop-out menu group
in the existing menu groups. The icon pop-out menu can be created in each
fz_cmnd_cbak_proj_icon_menu so that if the user has disabled one of the scripts, the icon
menu will still be formed properly. form•Z ignores attempts to create a menu when the UUID
already exists. That would occur if all the scripts are enabled. The following is an example of a
pop-out menu.

long fz_cmnd_cbak_proj_icon_menu (

fzrt_UUID_td icon_menu_uuid,
 mod fzrt_UUID_td group_uuid,
 mod fz_fuim_icon_group_enum group_pos,
 mod long group_row,
 mod long group_col
)
{
 long err = FZRT_NOERR;

err = fz_fuim_exts_icon_group(
"My Group", MY_GRUP_ID, icon_menu_uuid,
FZRT_UUID_NULL, FZ_FUIM_POS_BEFORE,
FZRT_UUID_NULL, FZ_FUIM_POS_BEFORE);

if(err = FZRT_NOERR)
{ fzrt_UUID_copy(MY_GRUP_ID, group_uuid);

 group_pos = FZ_FUIM_ICON_GROUP_CUSTOM;
 group_row = 1;
 group_col = 1;
 }
 return(err);
}

The icon menu adjacent function (Optional, mutually exclusive with
fz_cmnd_cbak_proj_icon_menu)

long fz_cmnd_cbak_proj_icon_menu_adjacent (
 fzrt_UUID_td icon_menu_uuid,
 mod fzrt_UUID_td adjacent_uuid,
 mod fz_fuim_icon_adjacent_enum where
);

This function is called by form•Z to add the command to the system icon menu. It serves the
same purpose as the fz_cmnd_cbak_proj_icon_menu function, however it specifies the
location of the icon item quite differently. The location is identified by referencing another
command in the icon menu. The adjacent_uuid parameter is the UUID of the command to
which the icon should be added adjacent. The where parameter specifies to which side of the
adjacent icon the icon should be added. The available options are
FZ_FUIM_ICON_ADJACENT_TOP, FZ_FUIM_ICON_ADJACENT_BOTTOM,
FZ_FUIM_ICON_ADJACENT_LEFT, FZ_FUIM_ICON_ADJACENT_RIGHT. The default action is
specified by FZ_FUIM_ICON_ADJACENT_DEFAULT which currently is the same as
FZ_FUIM_ICON_ADJACENT_RIGHT. New pop-out groups can not be created with this function.
The following example adds the icon to the right of the form•Z save command.

long fz_cmnd_cbak_proj_icon_menu_adjacent (
 fzrt_UUID_td icon_menu_uuid,
 mod fzrt_UUID_td adjacent_uuid,

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 463

 mod fz_fuim_icon_adjacent_enum where
)
{
 long err = FZRT_NOERR;

 fzrt_UUID_copy(CMND_SAVE, adjacent_uuid);
 where = FZ_FUIM_ICON_ADJACENT_RIGHT;

 return(err);
}

The icon file function (Optional)

long fz_cmnd_cbak_proj_icon_file (
 fz_fuim_icon_enum which,
 fzrt_floc_ptr floc,
 mod long hpos,
 mod long vpos,
 fzrt_floc_ptr floc_mask,
 mod long hpos_mask,
 mod long vpos_mask
);

This function is called by form•Z to get an icon for the command from an image file. The icon
image can be in any of the form•Z supported image file formats or format for which an image file
translator is installed. The TIFF format is the recommended format as the TIFF translator is
commonly available. form•Z will request an icon when the command is displayed in a command
menu using fz_cmnd_cbak_proj_icon_menu or
fz_cmnd_cbak_proj_icon_menu_adjacent.

form•Z supports 3 styles of icon display. Recall that these are selectable by the user from the
Icon Style menu in the Icons Customization dialog. The first two options (White and Gray) are
generated from a black and white source graphic with different treatments at drawing time. The
third option is generated from a color source graphic. The first two options are older icon styles
that are provided for backward compatibility. The color icons became the default with v 4.0. Note
that if an icon of one type or the other (or both) is not provided, then form•Z uses a generic icon
graphic.

The which parameter indicates the type of source graphic icon that is needed by form•Z. For
each type of icon source (black and white and color), there are two possible sizes. The full size
icon is the size that is used in the main tool palettes and tear off tool palettes. The black and
white source full size is 30 x 30 pixels and indicated by FZ_FUIM_ICON_MONOC. The color
source is 32 x 32 pixels and indicated by FZ_FUIM_ICON_COLOR. The alternate size is the
smaller size used for window icons that are drawn in the lower margin of the window. The
alternate size for both black and white and color sources is 20 x 16 pixels and indicated by
FZ_FUIM_ICON_MONOC_ALT and FZ_FUIM_ICON_COLOR_ALT respectively.

The floc parameter should be filled with the file name and location of the file that contains the
icon graphic. The hpos and vpos parameters should be set to the left and top pixel location of
icon data in the file respectively. It is recommended that the icon file be in the same directory as
the script file. This makes it simple to find the file. The location of the script file can be acquired
using the fz_script_file_get_floc function.

The floc_mask parameter should be filled with the file name and location of the file that
contains the icon mask (this can be the same file as the floc parameter). The icon mask defines
the transparent areas of the icon. The hpos_mask and vpos_mask parameters should be set to

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 464

the left and top pixel location of icon mask data in the file respectively. If a mask is not provided
than the entire background of the icon will be drawn.

A single file can be used for multiple icons across a variety of commands by creating a grid of
icons in the file and specifying the location for each icon in the corresponding provided function.

long fz_cmnd_cbak_proj_icon_file (
 fz_fuim_icon_enum which,
 fzrt_floc_ptr floc,
 mod long hpos,
 mod long vpos,
 fzrt_floc_ptr floc_mask,
 mod long hpos_mask,
 mod long vpos_mask
)
{
 long err = FZRT_NOERR;

 switch(which)
 {
 case FZ_FUIM_ICON_MONOC:
 err = fz_script_file_get_floc (floc);
 if(err == FZRT_NOERR)
 { err = fzrt_file_floc_set_name(floc,"my_icon_bw.tif");
 hpos = 0;
 vpos = 0;
 }
 break;
 case FZ_FUIM_ICON_COLOR:
 err = fz_script_file_get_floc (floc);
 if(err == FZRT_NOERR)
 { err = fzrt_file_floc_set_name(floc,"my_icon_col.tif");
 hpos = 0;
 vpos = 0;
 }
 break;
 }
 return(err);
}

The preferences IO function (optional)

long fz_cmnd_cbak_proj_pref_io (
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 mod long version,

long size
);

form•Z calls this function to read and write any command specific data to a form•Z preference
file. This function is called when reading and writing user specified preference files (Save
Preferences button in the Preferences dialog). It is also called by form•Z when reading and
writing the session to session preference file maintained by form•Z. The file IO is performed
using the IO streams (iost) interface. This interface provides functions for reading and writing data
from a file (stream) and handles all cross platform endian issues. The iost parameter is the
pointer to the preference file and should be used in all IO Stream function calls. The IO Stream
functions are fully documented in the form•Z API reference.

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 465

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that is written when writing a file. When reading a file, the version parameter contains the
version of the data that was written to the file (and hence being read). The size parameter is
only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the script to maintain version changes of the plugin data. In the following
example, in its first release, a commands data consisted of four long integer values, a total of 16
bytes. When written, the version reported back to form•Z was 0. In a subsequent release, a fifth
long integer is added to increase the size to 20 bytes. When writing this new data, the version
reported to form•Z needs to be increased. When reading a file with the old version of the
command preference, form•Z will pass in the version number of the attribute when it was written,
in this case 0. This indicates to the script that only four integers, 16 bytes, need to be read and
the fifth integer should be set to a default value.

long fz_cmnd_cbak_proj_pref_io (
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 mod long version,
 long size
)
{
 long err = FZRT_NOERR;

 if (dir == FZ_IOST_WRITE) version = 1;

 err = fz_iost_one_long(iost,my_command_value1);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_command_value2);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_command_value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_command_value4);

 if(version >= 1)
 { err = fz_iost_one_long(iost,my_command_value5);
 }
 }
 }
 }

 return(err);
}

The project data IO function (optional)

long fz_cmnd_cbak_proj_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,

mod long version,
long size

);

form•Z calls this function to read and write any command specific project data to a form•Z project
file. This function is called once when reading and writing form•Z project files. The file IO is
performed using the IO streams (iost) interface. This interface provides functions for reading and

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 466

writing data from a file (stream) and handles all cross platform endian issues. The iost
parameter is the pointer to the form•Z project file and should be used in all IO Stream function
calls. The IO Stream functions are fully documented in the form•Z API reference.

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that was is written when writing a file. When reading a file, the version parameter contains the
version of the data that was written to in the file (and hence being read). The size parameter is
only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the script to maintain version changes of the script data. In the following
example, in its first release, a commands data consisted of four long integer values, a total of 16
bytes. When written, the version reported back to form•Z was 0. In a subsequent release, a fifth
long integer is added to increase the size to 20 bytes. When writing this new data, the version
reported to form•Z needs to be increased. When reading a file with the old version of the
command preference, form•Z will pass in the version number of the attribute when it was written,
in this case 0. This indicates to the script that only four integers, 16 bytes, need to be read and
the fifth integer should be set to a default value.

long fz_cmnd_cbak_proj_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 mod long version,
 long size
)
{
 long err = FZRT_NOERR;

 if (dir == FZ_IOST_WRITE) version = 1;

 err = fz_iost_one_long(iost,my_command_value1);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_command_value2);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_command_value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_command_value4);

 if(version >= 1)
 { err = fz_iost_one_long(iost,my_command_value5);
 }
 }
 }
 }

 return(err);
}

The project window data IO function (optional)

long fz_cmnd_cbak_proj_wind_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 mod long version,

long size
);

3.7.1 Command Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 467

form•Z calls this function to read and write any command specific project window data to a
form•Z project file. This function is called once for each window in the project when reading and
writing form•Z project files. The file IO is performed using the IO streams (iost) interface. This
interface provides functions for reading and writing data from a file (stream) and handles all cross
platform endian issues. The iost parameter is the pointer to the form•Z Project file and should
be used in all IO Stream function calls. The IO Stream functions are fully documented in the
form•Z API reference.

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that was is written when writing a file. When reading a file, the version parameter contains the
version of the data that was written to in the file (and hence being read). The size parameter is
only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the plugin to maintain version changes of the script data. In the following
example, in its first release, a commands data consisted of four long integer values, a total of 16
bytes. When written, the version reported back to form•Z was 0. In a subsequent release, a fifth
long integer is added to increase the size to 20 bytes. When writing this new data, the version
reported to form•Z needs to be increased. When reading a file with the old version of the
command preference, form•Z will pass in the version number of the attribute when it was written,
in this case 0. This indicates to the script that only four integers, 16 bytes, need to be read and
the fifth integer should be set to a default value.

long fz_cmnd_cbak_proj_wind_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 mod long version,
 long size
)
{
 long err = FZRT_NOERR;

 if (dir == FZ_IOST_WRITE) version = 1;

 err = fz_iost_one_long(iost,my_command_value1);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_command_value2);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_command_value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_command_value4);

 if(version >= 1)
 { err = fz_iost_one_long(iost,my_command_value5);
 }
 }
 }
 }

 return(err);
}

3.7.2 Palette Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 468

3.7.2 Palette Scripts

A palette is a floating window that contains an interface for a feature or set of related features.
The interface is composed of a variety of interface elements (buttons, radio buttons, check boxes,
etc.) provided by the form•Z interface manager (fuim). Palette scripts are extensions that
complement the form•Z palettes and behave consistently with the form•Z palettes.

Palettes are available in system and project levels. System palettes are global in nature and do
not require a project window index while project palettes require a project or window index and
are expected to operate on project information for a provided project, Palettes are flexible
extensions as a lot of functionality can be included in a palette. The interface of the palette is
defined by the extension through a fuim template. A description of fuim templates can be found in
section 3.5 and in the form•Z API reference.

The names of palette scripts are added to a group near the bottom of the Palettes menu. As with
all other palette names in this menu, selecting a palette name toggles the visibility of the palette.
That is, if the palette is visible, then it is hidden and vice versa. Palettes that are visible are
indicated by a check mark in the menu before the name. All palettes appear in the Key Shortcuts
Manager dialog so that they may have key shortcuts assigned to them to open and close the
palette. Note that if it is desirable to have the ability for the user to assign a key shortcut for
individual items within the interface of the palette, then a separate command script must be
implemented for this action.

The Samples directory in the Scripts folder contains a folder named Palettes that contains an
example of a palette script named palt_my_view.fsl. This example creates a project palette with
buttons for selecting a standard view type. This sample can be very valuable as both starting
points for development as well as examples of how the functions work.

Palette script type

Palette scripts are defined by tagging the script in its header with the script_type keyword and
the proper identifier as follows:

script_type FZ_PALT_SYST_EXTS_TYPE

for a system level palette script and

script_type FZ_PALT_PROJ_EXTS_TYPE

for a project level palette script.

3.7.2.1 System Palette

System palette scripts are implemented by defining a set of callback function. Only one is
required, while others are optional, but should be implemented to enable certain functionality. All
callback functions, if implemented, must match exactly the required name, return type and
arguments as described below. As with all other script types, the system palette script may
implement the fz_script_cbak_info callback function, which defines basic information about
the script. This is discussed in more detail in section 3.3.

The initialization function (optional)

3.7.2 Palette Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 469

long fz_palt_cbak_syst_init();

This function is called by form•Z once when the script is successfully loaded and registered. The
initialization function is where the script should initialize any data that may be needed by the other
functions in the script.

long fz_palt_cbak_syst_init()
{
 long err = FZRT_NOERR;

/** Do initialization here **/

return(err);

}

The finalization function (optional)

long fz_palt_cbak_syst_finit();

This function is called by form•Z once when the script is unloaded when form•Z is quitting. This
is the complementary function to the initialization function. This function should be used to
perform any cleanup that may be necessary.

long fz_palt_cbak_syst_finit()
{
 long err = FZRT_NOERR;

/** clean up here **/

 return(err);
}

The name function (recommended)

long fz_palt_cbak_syst_name (
 mod fz_string_td name,
 long max_len

);

This function is called by form•Z at various times to get the name of the palette. It is
recommended that the name is stored in a .fzr file so that it is localizable. The name is the name
that is added to the palette menu and is used as the tittle for the palette.

long fz_palt_cbak_syst_name (
 mod fz_string_td name,
 long max_len

)
{
 long err = FZRT_NOERR;

 /* Get the title string “My Palette” from the script's resource file */

err = fzrt_fzr_get_string(my_rfzr_refid, 1, 1, name);

 return(err);
}

The help function (recommended)

long fz_palt_cbak_syst_help (

3.7.2 Palette Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 470

 mod fz_string_td help,
 long max_len
);

This function is called by form•Z to display a help string that describes the detail of what the
palette does. This string is shown in the key shortcut manager dialog and the help dialogs. The
help parameter is a string which can handle up to max_len characters. It is recommended that
the help string is stored in .fzr file so that it is localizable. The display area for help is limited so
form•Z currently will ask for no more than 256 characters.

long fz_palt_cbak_syst_help (
 mod fz_string_td help,
 long max_len
)

{
 long err = FZRT_NOERR;

 /* Get the help string from the script's resource file */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, help);

 return(err);
}

The interface template function (required)

long fz_palt_cbak_syst_iface_tmpl (
 fz_fuim_tmpl_ptr tmpl_ptr
);

This function is called by form•Z when the interface for the palette is needed. The form•Z
interface template functions should be called to construct the interface of the palette in this
function. Please see section 3.5 for more details on the fuim template functions that are available
for scripts. As scripts are more limited in scope than plugins, the range of fuim functions is smaller
and only certain dialog interface items can be constructed by a palette script.

The following sample is a template for 3 buttons grouped inside a border with a title.

#define MY_STRINGS 1

#define MY_STRING_NAME 1
#define MY_STRING_TYPE 2
#define MY_STRING_1 3
#define MY_STRING_2 4
#define MY_STRING_3 5

long fz_palt_cbak_syst_iface_tmpl (
 fz_fuim_tmpl_ptr tmpl_ptr
)
{
 long err;
 long gindx;
 fz_string_td str;

 /* get the options title from script’s resource file */

fzrt_fzr_get_string(my_rfzr_refid, MY_STRINGS, MY_STRING_NAME, str);
if((err = fz_fuim_script_tmpl_init(tmpl_ptr, str,0,

MY_PALETTE_TMPL_UUID, 0)) == FZRT_NOERR)
 {
 /* create a static text item */
 fzrt_fzr_get_string(my_rfzr_refid, MY_STRINGS,

3.7.2 Palette Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 471

MY_STRING_TYPE, str);

 gindx = fz_fuim_script_new_text_static(tmpl_ptr, FZ_FUIM_ROOT,

FZ_FUIM_FLAG_BRDR | FZ_FUIM_FLAG_EQSZ, str);

 /* create a button */
 fzrt_fzr_get_string(my_rfzr_refid,

MY_STRINGS, MY_STRING_1, str);
 fz_fuim_script_new_button(tmpl_ptr, gindx,

FZ_FUIM_FLAG_NONE, str, "my_button_func1");

 /* create a button */
 fzrt_fzr_get_string(my_rfzr_refid,

MY_STRINGS, MY_STRING_2, str);
 fz_fuim_script_new_button(tmpl_ptr, gindx,

FZ_FUIM_FLAG_NONE, str, "my_button_func2");

 /* create a button */
 fzrt_fzr_get_string(my_rfzr_refid,

MY_STRINGS, MY_STRING_3, str);
 fz_fuim_script_new_button(tmpl_ptr, gindx,

FZ_FUIM_FLAG_NONE, str, "my_button_func3");
 }

 return (err);
}

Note, that the fuim function fz_fuim_script_new_button receives the name of a function,
which is called by form•Z, when the button is pressed by the user. This function must be defined
in the same script. It can have any name, but must have a return type of long and must have
one argument, which is is a pointer of type fz_fuim_tmpl_ptr. The return value must be
TRUE, if the function executed any statements, which represent the action assigned to the button.
It should return FALSE, if the pressing of the button did not execute anything. One of the button
functions used above is shown below:

long my_button_func1(

fz_fuim_tmpl_ptr tmpl_ptr
)

{

 /* Add code here which executes when button was pressed */

 return(TRUE);
}

The preferences IO function (optional)

long fz_palt_cbak_syst_pref_io (
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 mod long version,

long size
);

form•Z calls this function to read and write any palette specific data to a form•Z preference file.
This function is called when reading and writing user specified preference files (Save Preferences
button in the Preferences dialog). It is also called by form•Z when reading and writing the session
to session preference file maintained by form•Z. The file IO is performed using the IO streams
(iost) interface. This interface provides functions for reading and writing data from a file (stream)
and handles all cross platform endian issues. The iost parameter is the pointer to the

3.7.2 Palette Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 472

preference file and should be used in all IO Stream function calls. The IO Stream functions
available for scripts are fully documented in the form•Z API reference.

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that is written when writing a file. When reading a file, the version parameter contains the
version of the data that was written to the file (and hence being read). The size parameter is
only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the script to maintain version changes of the script data. In the following
example, in its first release, a palette data consisted of four long integer values, a total of 16
bytes. When written, the version reported back to form•Z was 0. In a subsequent release, a fifth
long integer is added to increase the size to 20 bytes. When writing this new data, the version
reported to form•Z needs to be increased. When reading a file with the old version of the palette
preference data, form•Z will pass in the version number of the palette data when it was written, in
this case 0. This indicates to the script, that only four integers, 16 bytes, need to be read and the
fifth integer should be set to a default value.

long fz_palt_cbak_syst_pref_io (
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 mod long version,
 long size
)
{
 long err = FZRT_NOERR;

 if (dir == FZ_IOST_WRITE) version = 1;

 err = fz_iost_one_long(iost,my_palette_value1);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_palette_value2);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_palette_value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_palette_value4);

 if(version >= 1)
 { err = fz_iost_one_long(iost,my_palette_value5);
 }
 }
 }
 }

 return(err);
}

3.7.2.2 Project Palette

Project palette scripts are implemented by defining a set of callback function. Only two are
required, while others are optional, but should be implemented to enable certain functionality. All
callback functions, if implemented, must match exactly the required name, return type and
arguments as described below. As with all other script types, the project palette script may
implement the fz_script_cbak_info callback function, which defines basic information about
the script. This is discussed in more detail in section 3.3.

3.7.2 Palette Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 473

The initialization function (optional)

long fz_palt_cbak_proj_init ();

This function is called by form•Z once when the script is successfully loaded and registered. The
initialization function is where the script should initialize any data that may be needed by the other
functions in the function set.

long fz_palt_cbak_proj_init ()
{
 long err = FZRT_NOERR;

/* Do initialization here */

return(err);

}

The finalization function (optional)

long fz_palt_cbak_proj_finit();

This function is called by form•Z once when the script is unloaded when form•Z is quitting. This
is the complementary function to the initialization function. This function should be used to
perform any cleanup.

long fz_palt_cbak_proj_finit()
{
 long err = FZRT_NOERR;

/* perform cleanup here */

 return(err);
}

The information function (required)

long fz_palt_cbak_proj_info (
 mod fz_proj_level_enum level
);

This function is called by form•Z once when the script is successfully loaded and registered
immediately after the initialization function (if provided). The level parameter indicates the
context of the palette. FZ_PROJ_LEVEL_MODEL indicates that the palette operates on the
project's modeling content (objects for example). FZ_PROJ_LEVEL_MODEL_WIND indicates that
the palette operates on window specific content (views for example) of modeling windows.
FZ_PROJ_LEVEL_DRAFT indicates that the palette operates on the projects drafting content
(elements for example). FZ_PROJ_LEVEL_DRAFT_WIND indicates that the palette operates on
window specific content (views for example) of drafting windows. form•Z uses the value in this
parameter to determine when the palette should be shown and when it should be updated.

long fz_palt_cbak_proj_info (
 mod fz_proj_level_enum level
)
{
 long err = FZRT_NOERR;

3.7.2 Palette Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 474

level = FZ_PROJ_LEVEL_MODEL;

return(err);

}

The name function (recommended)

long fz_palt_cbak_proj_name (
 mod fz_string_td name,
 long max_len

);

This function is called by form•Z at various times to get the name of the palette. It is recomended
that the name is stored in a .fzr file so that it is localizable. The name is the name that is added to
the palette menu and is used as the tittle for the palette.

long fz_palt_cbak_proj_name (
 mod fz_string_td name,
 long max_len

)
{
 long err = FZRT_NOERR;

 /* Get the title string “My Palette” from the script's resource file */

err = fzrt_fzr_get_string(my_rfzr_refid, 1, 1, name);

 return(err);
}

The help function (recommended)

long fz_palt_cbak_proj_help (
 mod fz_string_td help,
 long max_len
);

This function is called by form•Z to display a help string that describes the detail of what the
palette does. This string is shown in the key shortcut manager dialog and the help dialogs. The
help parameter is a string which can handle up to max_len characters. It is recommended that
the help string is stored in a .fzr file so that it is localizable. The display area for help is limited so
form•Z currently will ask for no more than 256 characters.

long fz_palt_cbak_proj_help (
 mod fz_string_td help,
 long max_len
)
{
 long err = FZRT_NOERR;

 /* Get the help string from the script's resource file */

err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, help);

 return(err);
}

The interface template function (required)

long fz_palt_cbak_proj_iface_tmpl (
 long windex,
 fz_fuim_tmpl_ptr tmpl_ptr

3.7.2 Palette Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 475

);

This function is called by form•Z when the interface for the palette is needed. The form•Z
interface template functions should be called to construct the interface of the palette in this
function. Please see section 3.5 for more details on the fuim template functions. The full fuim
template documentation can be found in the API reference.

The following sample is a template for 3 buttons grouped inside a boarder with a title.

#define MY_STRINGS 1

#define MY_STRING_NAME 1
#define MY_STRING_TYPE 2
#define MY_STRING_1 3
#define MY_STRING_2 4
#define MY_STRING_3 5

long fz_palt_cbak_proj_iface_tmpl (
 long windex,
 fz_fuim_tmpl_ptr tmpl_ptr
)
{
 long err;
 long gindx;
 fz_string_td str;

 /* get the options title from script’s resource file */

fzrt_fzr_get_string(my_rfzr_refid, MY_STRINGS, MY_STRING_NAME, str);
if((err = fz_fuim_script_tmpl_init(tmpl_ptr, str,0,

MY_PALETTE_TMPL_UUID, 0)) == FZRT_NOERR)
 {
 /* create a static text item */
 fzrt_fzr_get_string(my_rfzr_refid,

MY_STRINGS,MY_STRING_TYPE, str);

 gindx = fz_fuim_script_new_text_static(tmpl_ptr, FZ_FUIM_ROOT,

FZ_FUIM_FLAG_BRDR | FZ_FUIM_FLAG_EQSZ, str);

 /* create a button */
 fzrt_fzr_get_string(my_rfzr_refid,

MY_STRINGS, MY_STRING_1, str);
 fz_fuim_script_new_button(tmpl_ptr, gindx,

FZ_FUIM_FLAG_NONE, str, "my_button_func1");

 /* create a button */
 fzrt_fzr_get_string(my_rfzr_refid,

MY_STRINGS, MY_STRING_2, str);
 fz_fuim_script_new_button(tmpl_ptr, gindx,

FZ_FUIM_FLAG_NONE, str, "my_button_func2");

 /* create a button */
 fzrt_fzr_get_string(my_rfzr_refid,

MY_STRINGS, MY_STRING_3, str);
 fz_fuim_script_new_button(tmpl_ptr, gindx,

FZ_FUIM_FLAG_NONE, str, "my_button_func3");
 }

 return (err);
}

The preferences IO function (optional)

3.7.2 Palette Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 476

long fz_palt_cbak_plat_proj_pref_io (
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 mod long version,
 long size
);

form•Z calls this function to read and write any palette specific data to a form•Z preference file.
This function is called when reading and writing user specified preference files (Save Preferences
button in the Preferences dialog). It is also called by form•Z when reading and writing the session
to session preference file maintained by form•Z. The file IO is performed using the IO streams
(iost) interface. This interface provides functions for reading and writing data from a file (stream)
and handles all cross platform endian issues. The iost parameter is the pointer to the
preference file and should be used in all IO Stream function calls. The IO Stream functions
available for scripts are fully documented in the form•Z API reference.

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that is written when writing a file. When reading a file, the version parameter contains the
version of the data that was written to the file (and hence being read). The size parameter is
only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the script to maintain version changes of the script data. In the following
example, in its first release, a palette's data consisted of four long integer values, a total of 16
bytes. When written, the version reported back to form•Z was 0. In a subsequent release, a fifth
long integer is added to increase the size to 20 bytes. When writing this new data, the version
reported to form•Z needs to be increased. When reading a file with the old version of the palette
data, form•Z will pass in the version number of the data when it was written, in this case 0. This
indicates to the script, that only four integers, 16 bytes, need to be read and the fifth integer
should be set to a default value..

long fz_palt_cbak_plat_proj_pref_io (
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 mod long version,
 long size
)
{
 long err = FZRT_NOERR;

 if (dir == FZ_IOST_WRITE) version = 1;

 err = fz_iost_one_long(iost,my_palette_value1);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_palette_value2);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_palette_value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_palette_value4);

 if(version >= 1)
 { err = fz_iost_one_long(iost,my_palette_value5);
 }
 }
 }
 }

3.7.2 Palette Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 477

 return(err);
}

The project data IO function (optional)

long fz_palt_cbak_proj_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 mod long version,
 long size
);

form•Z calls this function to read and write any palette specific project data to a form•Z project
file. This function is called once when reading and writing form•Z project files. The file IO is
performed using the IO streams (iost) interface. This interface provides functions for reading and
writing data from a file (stream) and handles all cross platform endian issues. The iost
parameter is the pointer to the form•Z project file and should be used in all IO Stream function
calls. The IO Stream functions available to scripts are fully documented in the form•Z API
reference.

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that was is written when writing a file. When reading a file, the version parameter contains the
version of the data that was written to in the file (and hence being read). The size parameter is
only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the script to maintain version changes of the script data. In the following
example, in its first release, a palette's project data consisted of four long integer values, a total
of 16 bytes. When written, the version reported back to form•Z was 0. In a subsequent release, a
fifth long integer is added to increase the size to 20 bytes. When writing this new data, the version
reported to form•Z needs to be increased. When reading a file with the old version of the palette's
project data, form•Z will pass in the version number of the data when it was written, in this case
0. This indicates to the script, that only four integers, 16 bytes, need to be read and the fifth
integer should be set to a default value.

long fz_palt_cbak_proj_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 mod long version,
 long size
)
{
 long err = FZRT_NOERR;

 if (dir == FZ_IOST_WRITE) version = 1;

 err = fz_iost_one_long(iost,my_palette_value1);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_palette_value2);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_palette_value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_palette_value4);

3.7.2 Palette Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 478

 if(version >= 1)
 { err = fz_iost_one_long(iost,my_palette_value5);
 }
 }
 }
 }

 return(err);
}

The project window data IO function (optional)

long fz_palt_cbak_proj_wind_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 mod long version,

long size
);

form•Z calls this function to read and write any palette specific project window data to a form•Z
project file. This function is called once for each window in the project when reading and writing
form•Z project files. The file IO is performed using the IO streams (iost) interface. This interface
provides functions for reading and writing data from a file (stream) and handles all cross platform
endian issues. The iost parameter is the pointer to the form•Z Project file and should be used in
all IO Stream function calls. The IO Stream functions available to scripts are fully documented in
the form•Z API reference.

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that was written when writing a file. When reading a file, the version parameter contains the
version of the data that was written in the file (and hence being read). The size parameter is
only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the script to maintain version changes of the script data. In the following
example, in its first release, a palette's window data consisted of four long integer values, a total
of 16 bytes. When written, the version reported back to form•Z was 0. In a subsequent release, a
fifth long integer is added to increase the size to 20 bytes. When writing this new data, the version
reported to form•Z needs to be increased. When reading a file with the old version of the palette's
window data, form•Z will pass in the version number of the data when it was written, in this case
0. This indicates to the script, that only four integers, 16 bytes, need to be read and the fifth
integer should be set to a default value.

long fz_palt_cbak_proj_wind_data_io (
 long windex,
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 mod long version,
 long size
)
{
 long err = FZRT_NOERR;

 if (dir == FZ_IOST_WRITE) version = 1;

 err = fz_iost_one_long(iost,my_palette_value1);
 if(err == FZRT_NOERR)

3.7.2 Palette Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 479

 { err = fz_iost_one_long(iost,my_palette_value2);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_palette_value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_palette_value4);

 if(version >= 1)
 { err = fz_iost_one_long(iost,my_palette_value5);
 }
 }
 }
 }

 return(err);
}

3.7.3 RenderZone Shader Script form•Z SDK (v6.0.0.0 rev 05/30/06) 480

3.7.3 RenderZone Shaders

The shader pipeline

When a pixel in an image is rendered, the shaders needed to compute the final pixel color are
executed in a specific order. This order is referred to as the shader pipeline. The sequence of the
shader pipeline for each pixel is as follows:
1. The color shader of the material assigned to the surface on which the pixel lies is executed.
This defines the unshaded pixel color.
2. The bump shader of the material assigned to the surface on which the pixel lies is executed.
This defines a new normal direction at the pixel, which is important for the reflection calculation
that comes next.
3. The reflection shader of the material assigned to the surface on which the pixel lies is
executed. The unshaded pixel color, generated by the color shader is augmented with shading
information from all lights in the scene. If a bump shader other than None was used, the altered
surface normal direction will be used to create bump patterns from the shading calculation. The
shaded color is returned by the reflection shader.
4. The transparency shader of the material assigned to the surface on which the pixel lies is
executed. The transparency of the pixel is returned by the shader and retained by form•Z.
5. If the transparency value from step 4 is more than 0.0 (i.e. there is some level of transparency)
the background shader is executed. The color from the background shader and the shaded color
from step 3 are mixed using the transparency value and returned by the shader.
6. The depth effect shader is executed. It uses the color from step 5. A new color is calculated
using the depth information of the current pixel. This color is returned and becomes the final pixel
color in the image.

Any of the six shaders contained in the shader pipeline can be extended through a script. Color,
reflection, transparency and bump extension shaders are added to the respective menus in the
Surface Style Parameters dialog. Background and Depth Effect script shaders are added in the
RenderZone Options dialog. A Background script shader also becomes available as an
Environment shader.

Shader script type

Each of the six shader types is identified by a different keyword in the header portion of the script.
To identify a color shader the first line in the scrip should be:

script_type FZ_SHDR_COLR_EXTS_TYPE

Similarily, the other shader types are identified as follows:

script_type FZ_SHDR_REFL_EXTS_TYPE
script_type FZ_SHDR_TRNS_EXTS_TYPE
script_type FZ_SHDR_BUMP_EXTS_TYPE
script_type FZ_SHDR_BGND_EXTS_TYPE
script_type FZ_SHDR_FGND_EXTS_TYPE

Shader call back functions

Shader scripts are implemented by defining a number of call back functions. Of the eight callback
functions of a color shader, only some are required, while others are optional. When an optional callback

3.7.3 RenderZone Shader Script form•Z SDK (v6.0.0.0 rev 05/30/06) 481

is defined, the respective functionality of the shader is disabled. For example, if the
fz_shdr_cbak_colr_avg callback function is not provided, form•Z will substitute a 50% gray for the
color, whenever a single solid color is used, such as in wireframe drawing. The required callback
functions for a color shader are:

fz_shdr_cbak_colr_name
fz_shdr_cbak_colr_pixel

Optional functions are:

fz_script_cbak_info
fz_shdr_cbak_colr_set_parameters
fz_shdr_cbak_colr_pre_render
fz_shdr_cbak_colr_post_render
fz_shdr_cbak_colr_get_avg

The functions shown below are taken from the Sine Wave shader scripts, which are available as
samples in the form•Z SDK.

The following section gives a detailed description of each of the shader functions and what task
each function is expected to perform. The functions are explained in detail for the color shader.
Any differences for the equivalent function of the other shaders are noted where necessary.

The script init function (recommended)

long fz_script_cbak_info(mod fzrt_UUID_td uuid,
 mod fz_string_td title,
 mod fz_string_td vendor,
 mod long version);

This function defines a unique identifier and returns basic information about the script. It is
described in more detail in section 3.3. If this function is implemented, it needs to return the
version of the shader. It is up to the developer to assign a version number to the shader. When a
form•Z project file is saved with a script shader, the version of the shader is saved as well. If the
project is opened later and a newer version of the shader exists at that time, form•Z will reset the
parameters of the shader to default values. A shader developer must increase the version
number when, during ongoing development of the shader, the parameters of the older shader do
not match the parameters of the newer shader. If the shader is changed so that saved shader
parameters are still meaningful, and are aligned with the current shader parameters, then the
version does not need to be changed. Assume, for example, that a shader is originally defined
with 2 color and 2 integer parameters. The version assigned to the shader initially was 0. In the
second release of the shader, the developer adds a 5th parameter. This requires that the version
be increased to 1. In a third release of the shader, the first integer parameter, which originally
could take on values between 0 and 10, can now take on values from 0 to 20. This does not
require a version change.

The name function (required)

long fz_shdr_cbak_colr_name(

mod fz_string_td name,
long maxlen
);

3.7.3 RenderZone Shader Script form•Z SDK (v6.0.0.0 rev 05/30/06) 482

The name function must assign a string to the name argument. The length of the string assigned
cannot exceed max_len characters. This string appears as the shader's name in the respective
menu. It is recommended that the name is stored in a .fzr resource file and retrieved from it, when
assigned to the name argument, so that it can be localized for different languages. In the example
below, this step is omitted for the purpose of simplicity. A script name function would look like
this:

long fz_shdr_cbak_colr_name(mod fz_string_td name, long maxlen)
{
 name = "Sine Wave";
 return(FZRT_NOERR);
}

The set parameters function (optional)

long fz_shdr_cbak_colr_set_parameters();

The set parameters function is called once at startup. It needs to establish the number and types
of parameters for the shader. Based on the parameters set up in this function, form•Z
automatically builds the content of the shader's option dialog, which can be invoked by clicking on
the Options... botton next to the shader menu, as usual. Setting the shader's parameters is
accomplished with a number of form•Z API function calls. There are standard parameters which
can be set up automatically, such as scale or noise. Custom parameters can be created
individually, such as colors, floating point values with sliders or check boxes. If the shader is a
color, transparency or bump shader, fhe first form•Z API call in the set parameters function
should identify the shader as a 2d (wrapped) or 3d (solid) shader. This is done with the API call:
 fz_shdr_set_wrapped(TRUE);
if the shader is 2d, and
 fz_shdr_set_solid(TRUE);
if the shader is 3d. Note, not calling these functions is equivalent to calling either function with the
argument set to FALSE. It is also possible to call both function with TRUE, in which case the
shader would be labeled as a 2d and 3d shader. While this is rarely the case, it is conceivable,
that a shader creates a pattern based on 2d and 3d texture space mapping. Mirror, background
and depth effect shaders do not need to call this API function.

Shaders which create a pattern should present the standard scale parameter to a user. This
parameter is set up with the API call:
 fz_shdr_set_scale_parm (1.0);
The function argument 1.0 sets the default value of the scale parameter to 100%. This function
call will automatically add the Scale field in the shader options dialog. form•Z will apply the
current scale factor to the 2d or 3d texture space coordinate, which is used in the pixel function to
calculate the shader's pattern.

If a shader uses any of the noise functions, which create random patterns, the standard noise
parameters can be added to the shader with the API call:
 fz_shdr_set_noise_parm(FZ_SHDR_TURB_TYPE_BETTER,3);
This will add the Noise menu and # of Impulses field to the shader option dialog. The current
setting of these parameters may be retrieved in the pre-render function and used in a call to any
of the noise functions in the shader's pixel function.

Most procedural shaders that create some kind of pattern suffer from strong moire artifacts, when
the pattern becomes very small. With an area sampling technique, these artifacts can be avoided.

3.7.3 RenderZone Shader Script form•Z SDK (v6.0.0.0 rev 05/30/06) 483

Automatic area sampling can be added to a color, transparency, or bump shader by adding the
standard shader parameter with the API function call:

fz_shdr_set_area_sample_parm(FALSE);
The argument in the API function call sets the default value of area sampling to TRUE or FALSE
(FALSE should be the default). The standard "Area Sampling" check box will be added by form•Z
in the shader dialog. If this API call is not made in the set parameters callback, the shader will not
have area sampling. Note, that his call only applies in the set parameters function of color,
transparency and bump shaders. For all other shader types, this API call is ignored.

If the shader is a reflection shader, additional standard parameters can be set up. They define the
six shading parameters: ambient, diffuse, specular, mirror, transmission and glow:
 fz_shdr_set_ambient_parm (1.0);
 fz_shdr_set_diffuse_parm (0.75);
 fz_shdr_set_specular_parm (0.5,0.1);
 fz_shdr_set_specular_color_parm (col);
 fz_shdr_set_mirror_parm (0.5);
 fz_shdr_set_transmission_parm (0.5,1.0);
 fz_shdr_set_glow_parm (0.0);
When the respective setup call is made, the shader options dialog will add the Factor field, Map
menu and map Options button. Not all reflection parameters need to be offered. Any combination
of them can be selected and mixed with custom parameters.

Custom parameters are created with the API calls:

fz_shdr_set_pct_parm("Value 1", 0.5, 1, 1, SHDR_VAL1_ID);
fz_shdr_set_col_parm("Color 1", col, SHDR_COL_ID);
fz_shdr_set_sld_flt_parm("Value 2", 0.5,1,1, SHDR_VAL2_ID);
fz_shdr_set_sld_int_parm("Value 3", 5,1,10,1,1, SHDR_VAL3_ID);
fz_shdr_set_flt_parm("Value 4", 0.5, 0.0, 1.0, 1, 1, SHDR_VAL4_ID);
fz_shdr_set_int_parm("Value 5", 5, 1, 10, 1, 1, SHDR_VAL5_ID);
fz_shdr_set_bool_parm("Boolean", TRUE, SHDR_BOOL_ID);

Each of these calls creates a shader parameter of the respective type, with the given title, default
values, allowable range and range checking. The last parameter to each function is an integer id,
which must be unique. This id is used when retrieving the current value of a parameter in the pre
render function. It is possible to pass a value of -1 for the id argument. In this case form•Z will
generate a unique id and pass it back through the function's return value. For example:

id = fz_shdr_set_col_parm("Color 1", col, -1);
Since the form•Z generated id must be used to retrieve the parameter value in the pre render
function, it must be a global variable.

A user may edit the preset and custom values in the options dialog. In the pre render function the
current values of the custom parameters should be retrieved and passed on to the pixel function,
where they are used to compute the shader pattern.

The set parameters function for the Sine Wave color shader in a script is:

#define PARAM_ID_1 1
#define PARAM_ID_2 2
#define PARAM_ID_HEIGHT 3
#define PARAM_ID_FUZZ 4

long fz_shdr_cbak_colr_set_parameters()
{
 fz_rgb_float_td col;

 // 2d texture mapping
 fz_shdr_set_wrapped(TRUE);

3.7.3 RenderZone Shader Script form•Z SDK (v6.0.0.0 rev 05/30/06) 484

 // allow scaling
 fz_shdr_set_scale_parm(1.0);
 // allow area sampling
 fz_shdr_set_area_sample_parm(TRUE);

 // color of first part of sine wave
 col = {0.0,0.0,0.0};
 fz_shdr_set_col_parm("Color 1", col, PARAM_ID_1);
 // color of second part of sine wave
 col = {1.0,1.0,1.0};
 fz_shdr_set_col_parm("Color 2", col, PARAM_ID_2);
 // amplitude of sine wave
 fz_shdr_set_sld_flt_parm("Wave Height", 0.5, 1, 2, PARAM_ID_HEIGHT);
 // fuzziness of boundary
 fz_shdr_set_sld_flt_parm("Fuzz", 0.1, 1, 1, PARAM_ID_FUZZ);
}

The dialog resulting from these shader parameters is shown below:

There is one important detail to the use of the custom parameters API functions, such as
fz_shdr_set_sld_flt_parm. The first parameter to this API is the name of the parameter as it will
appear in the shader dialog. A transparency shader is also used to define an equivalent shader in the
reflection map menus of a reflection shader, which uses any of the six standard reflection parameters.
When the dialog for this shader (if used as a diffuse map for eample) is invoked, the parameter, which
would be called, for example, "Background Transparency" in the transparency shader options dialog, is
called "Background Diffuse" in the diffuse map options dialog. This automatic adjustment of the parameter
name can be achieved by substituting %s in the name parameter of the API, for those calls of the API
which would use the word "Transparency" in the dialog. The same mechanism also works for color and
bump shaders, although they are not used in any other context. For example the API call to define a color
in the set parameters function of a color shader can be written in two different ways:

 fz_shdr_set_col_parm("Color 1",def_col1, PARAM_ID_COLOR1);
or
 fz_shdr_set_col_parm("%s 1",def_col1, PARAM_ID_COLOR1);

3.7.3 RenderZone Shader Script form•Z SDK (v6.0.0.0 rev 05/30/06) 485

While it is not necessary to substitute the %s in color and bump shaders, it is necessary to do so
in transparency shaders, in order to get the correct parameter title, when the transparency shader
is also used in the context of a reflection map shader.

The pre render function (recommended)

long fz_shdr_cbak_colr_pre_render();

This function is called once before the start of each rendering. It is expected to precompute
information that will be used by the pixel function. Using the pre render function can significantly
speed up the execution of a shader. Certain information, that is needed during the calculation of
the shader pattern does not change during the rendering. For example, a shader may use a
floating point value from a shader parameter, but really needs the inverse (1.0 / value) during the
pixel calculation. Instead of computing 1.0 / value each time during the execution of the pixel
function, the value can be computed once in the pre render function and then be reused in the
pixel function. Any of the shader parameters defined in the set parameters function can be
retrieved in the pre render function. For the standard parameter function, there are the equivalent
functions which get the current value of a standard parameter. They are:

fz_shdr_get_noise_type
fz_shdr_get_noise_impulses

Note, that there is no function to get the scale parameter. Form•Z automatically applies the scale
factor, if it exists, to the texture space or 3D coordinate before it is used by the pixel function.
For custom parameters, a single API call retrieves the value of a given parameter:

fz_shdr_get_parm(PARAM_ID,value);

The parameter is identified by the first argument to the function, which is the id used when the
parameter was defined, or the id generated by form•Z, if -1 was passed for the id. The standard
reflection parameters for ambient, diffuse, specular, mirror, transmission and glow should not be
retrieved in the pre render function but in the pixel function. This is described in more detail later
in this section.

The pre render function typically will use global variables and fill them with precomputed
information. The pixel function may then use the global variables for its own computations. The
pre_render function for the Sine Wave color shader is shown below.

fz_rgb_float_td col1;
fz_rgb_float_td col2;
double min_left, min_right, max_left, max_right, amplitude;

long fz_shdr_cbak_colr_pre_render()
{
 double fuzz;

 fz_shdr_get_parm(PARAM_ID_1, col1);
 fz_shdr_get_parm(PARAM_ID_2, col2);
 fz_shdr_get_parm(PARAM_ID_HEIGHT, amplitude);
 fz_shdr_get_parm(PARAM_ID_FUZZ, fuzz);

 // keep sine wave within boundaries
 amplitude = amplitude * 0.25;
 if (amplitude < 0.0)

3.7.3 RenderZone Shader Script form•Z SDK (v6.0.0.0 rev 05/30/06) 486

 amplitude = 0.0;

 // scale fuzziness
 fuzz = fuzz * 0.25;
 if (fuzz < 0.0) fuzz = 0.0;
 if (fuzz > 0.25) fuzz = 0.25;

 // set where to start and end the sine wave
 // boundaries based on the fuzziness.
 min_left = 0.25 - fuzz;
 min_right = 0.25 + fuzz;
 max_left = 0.75 - fuzz;
 max_right = 0.75 + fuzz;

 return(FZRT_NOERR);
}

The pixel function (required)

The pixel function is called during a rendering one or more times for each pixel. Depending on which kind
of shader is written, the pixel function needs to compute different types of information.

The color pixel function

fz_rgb_float_td fz_shdr_cbak_colr_pixel();

For a color shader, the pixel function needs to compute and return the rgb color of the surface pixel,
based on the 2d or 3d texture coordinate. This coordinate is retrieved via a form•Z API call:
 fz_shdr_get_tspace_st(st);
for 2d shaders or
 fz_shdr_get_tspace_pnt(pnt);
for 3d shaders. Note, that the scale factor, set up in the set parameters function does not need to be
applied to the 2d or 3d texture space coordinate, as form•Z already has performed this step. Together
with the shader parameters, the point's coordinates can be transformed into a color pattern. A number of
form•Z API function are offered to facilitate the computation of regular and random patterns. This is
described in further detail in later in this section. The pixel function of the Sine Wave color shader is
shown below:

fz_rgb_float_td fz_shdr_cbak_colr_pixel()
{
 double ss,tt;
 fz_rgb_float_td col;
 fz_xy_td st;

 // get current texture space coordinate
 fz_shdr_get_tspace_st(st);

 // apply saw tooth filter w/sine function
 ss = fz_shdr_saw_tooth(st.x, 1.0);
 tt = fz_shdr_saw_tooth(st.y, 1.0) + sin(ss * FZ_2PI) * amplitude;
 tt = fz_shdr_saw_tooth(tt, 1.0);

 // apply fuzziness
 tt = fz_shdr_smooth_step(min_left, min_right, tt) *

3.7.3 RenderZone Shader Script form•Z SDK (v6.0.0.0 rev 05/30/06) 487

 (1.0 - fz_shdr_smooth_step(max_left, max_right, tt));

 // apply linear interpolation
 col = col1 * tt + (1.0 - tt) * col2;

 return(col);
}

Note, in the context of shader scripts one can run in to potential multi-threaded or multi-processor system-
dependent problems. Global variables should not be used inside the pixel shading function if one is
changing the value in the global variable in this call back function. This will result in noisy images where
different threads or processors have computed different parts of the image with the same global variable
that had been changing under their feet.

The reflection pixel function

fz_rgb_float_td fz_shdr_cbak_refl_pixel();

For a reflection shader, the pixel function is expected to take the pixel color, computed by the color shader
and apply shading to it, based on the lighting conditions in the scene. The unshaded pixel color can be
retrieved with the API call:
 fz_shdr_get_col(color);
If the reflection shader uses any of the standard reflection parameter setup function in the set parameters
function, the current value of each parameter needs to the retrieved in the pixel function. Since any of the
standard reflection parameters may be altered by a reflection map, the value of a reflection parameter
may vary on a surface. Therefore, it cannot be retrieved in the pre render function and stored in a global
variable. For example, consider the set parameters function of a reflection shader to define the standard
diffuse reflection shader:

long fz_shdr_cbak_refl_set_parameters()
{
 ...
 fz_shdr_set_diffuse_parm(0.75);
 ...
}

The pixel function of the same reflection shader would retrieve the current value of the diffuse parameter:

fz_rgb_float_td fz_shdr_cbak_refl_pixel()
{
 ...
 fz_shdr_get_diffuse_param(df);
 ...
}

df will then contain the diffuse factor at the current pixel, taking into account the value of the diffuse factor
entered by the user and a possible diffuse map, which will alter the user's value based on the diffuse
map's pattern. In addition to obtaining the diffuse factor for a pixel, it is also necessary to perform the
actual diffuse illumination. form•Z offers API function which perform this task, as well as illumination for
ambient, specular, mirror and transmission. Of course, it is up to the script writer to implement a custom
illumination algorithm, if desired. The illumination function offered by form•Z are the same used by the
RenderZone display mode. To calculate the diffuse illumination of a pixel the form•Z API

 fz_shdr_get_diffuse_term(dcol);

3.7.3 RenderZone Shader Script form•Z SDK (v6.0.0.0 rev 05/30/06) 488

can be called. The color returned is the illumination from all lights, including shadows. Typically, this color
is multiplied (filtered) with the unshaded pixel color, created by the color shader of a surface style to
create the final diffuse shaded pixel. The classic shading algorithm computes the final pixel shading using
ambient, diffuse and specular illumination with the following algorithm:

 col_out = col_in * (af * acol + df * dcol) + sf * scol;

Where col_in is the unilluminated pixel color, af is the ambient factor, acol is the ambient color (the
result of fz_shdr_get_ambient_term), df is the diffuse factor, dcol is the diffuse color (the result of
fz_shdr_get_diffuse_term), sf is the specular factor and scol is the specular color (the result of
fz_shdr_get_specular_term). The full pixel function for such a standard reflection shader would look
like this:

fz_rgb_float_td fz_shdr_cbak_refl_pixel()
{
 double af,df,sf;
 fz_rgb_float_td col,acol,dcol,scol;

 fz_shdr_get_ambient_factor(af);
 fz_shdr_get_diffuse_factor(df);
 fz_shdr_get_specular_factor(sf);

fz_shdr_get_ambient_term(acol);
 fz_shdr_get_diffuse_term(dcol);
 fz_shdr_get_specular_term(inv_roughness,scol);

 fz_shdr_get_col(col);
 col.r = col.r * (af*acol.r + df*dcol.r) + sf*scol.r;
 col.g = col.g * (af*acol.g + df*dcol.g) + sf*scol.g;
 col.b = col.b * (af*acol.b + df*dcol.b) + sf*scol.b;

 return(col);
}

Note, that the original color is filtered (multiplied) by the ambient and diffuse shading component and the
specular color is added on top of it.

Adding raytraced effects.

In addition to the simple shading calculations shown above, it is possible to add reflection effects through
raytracing. In the standard reflection shaders offered by form•Z, these effects create mirrored and
transmission reflections. To add mirrored reflections, a form•Z API function can be called:
 fz_shdr_raytrace_reflected(world_pt,mirr_vec,mf,mirr_col);

This function takes the following arguments: world_pt is the point where the reflected ray starts on the
rendered surface. This point can be retrieved with the API call:
 fz_shdr_get_world_pnt(world_pt);
which is the point on the surface where the current pixel is rendered. mirr_vec is the direction of the
reflected ray as it bounces off the surface. For a true mirror surface, this direction is the direction of the
view vector, reflected about the normal direction of the surface. The following API functions can be used
to calculate this mirror direction:

fz_shdr_get_world_shading_normal(norm);
fz_shdr_get_view_dir(view_vec);
fz_shdr_ray_reflect(view_vec,norm,mirr_vec);

3.7.3 RenderZone Shader Script form•Z SDK (v6.0.0.0 rev 05/30/06) 489

The mirror factor argument mf tells the fz_shdr_raytrace_reflected API function how much of the
calculated mirror color will be added to the final shaded color. If the mirror factor is small, the raytracing
can stop earlier, because the added mirror color only makes up a small component of the final pixel color,
and it would not make any visible difference to let the raytraced ray bounce longer between other
mirroring surfaces. However, if the mirror factor is large, such as in a perfect mirror, the reflected ray
needs to bounce longer between other mirroring surfaces to compute accurate reflections. Recall that the
termination of raytraced rays is determined through the options set in the Raytrace Options dialog, which
is invoked from the RenderZone Options dialog.

To create transmission effects, which simulate glasslike materials, a similar API function can be called:
 fz_shdr_raytrace_refracted(world_pt,mirr_vec,tf,mirr_col);
The arguments are the same as to fz_shdr_raytrace_reflected. The transmission factor
argument tf acts in the same manner as the mirror factor argument. It determines how long refracted
rays are allowed to bounce between transmissive and reflective surfaces. In order to calculate the vector
with which a refracted ray enters a glass like material, the API function fz_shdr_ray_refract can be
called. It bends an incoming ray, usually the view direction vector, about the surface normal, using the
index of refraction of a material. Thus a complete calculation of a transmission effect can be written like
this:

 if (tf > 0.0)
 { fz_shdr_get_world_pnt(world_pt);
 fz_shdr_get_world_shading_normal(norm);
 fz_shdr_get_view_dir(view_vec);

 if(fz_shdr_ray_refract(view_vec,norm,eta,mirr_vec) == TRUE)
 { fz_shdr_raytrace_refracted(world_pt,mirr_vec,tf,mirr_col);
 col.r += mcol.r * mf;
 col.g += mcol.g * mf;
 col.b += mcol.b * mf;

 if (fz_shdr_ray_inside_solid() == TRUE) mf = 0.0;
 }
 }

Note, that the API fz_shdr_ray_refract returns a boolean value, which is TRUE, if the incoming ray
is bent so that it enters the surface. When the incoming ray is angled in such a way, that with the given
index of refraction, it would bounce off the surface rather than enter it, the API function returns FALSE. In
this case no transmission needs to be calculated. Raytracing usually causes a recursive call to the
shading pipeline. For example, a ray which is spawned through the call fz_shdr_ray_reflect as
shown above, may hit another surface. The color of that point on the surface needs to be calculated
through the same shader calls as the original surface pixel on the screen. As a result, the same pixel
function may be invoked again in a nested fashion. Consider two parallel opposing mirrors. A ray
bouncing off one mirror in an exact perpendicular direction would bounce between the two mirrors
infinitely. form•Z will pre-empt this process at a given time, when a satisfactory accuracy of the color to be
calculated is achieved. It is quite possible that there may be as many as 10 or more rays before this
occurs. In this case, the pixel function of the mirror reflection shader would be called in a stack of 10
nestings. The same may be the case with fz_shdr_ray_refract. A typical glass like material is both
refractive and reflective. This means that both raytrace API functions are called. If the ray from a
refraction calculation is currently bouncing inside a solid material, such as the wall of a glass bottle, it is
only necessary to spawn off another refracted ray when the ray exits the material on the other side. Only
when the ray enters the material is it necessary to compute refraction and reflection. In the code example
above, the API fz_shdr_ray_inside_solid() is called to determine, whether the current ray is
inside or outside a solid material. If it is inside, the mirror factor for the subsequent reflection calculation is
set to 0.0, effectively disabling mirroring for this ray. Putting all shading components together, a complete
reflection shader can be written as shown below. This is actually the code that is used to implement the
Generic reflection shader offered by form•Z.

3.7.3 RenderZone Shader Script form•Z SDK (v6.0.0.0 rev 05/30/06) 490

fz_rgb_float_td fz_shdr_cbak_refl_pixel()
{
 double af,df,sf,mf,tf,gf;
 fz_rgb_float_td col,acol,dcol,scol,mcol,gcol;
 fz_xyz_td world_pt,norm,view_vec,mirr_vec;

 fz_shdr_get_col(col);
 gcol = col; /* SAVE UNSHADED SURFACE COLOR FOR GLOW LATER */

 /* GET REFLECTION FACTORS */
 fz_shdr_get_ambient_factor(af);
 fz_shdr_get_diffuse_factor(df);
 fz_shdr_get_specular_factor(sf);
 fz_shdr_get_mirror_factor(mf);
 fz_shdr_get_transmission_factor(tf);
 fz_shdr_get_glow_factor(gf);

/* CALCULATE BASIC SHADING */
fz_shdr_get_ambient_term(acol);

 fz_shdr_get_diffuse_term(dcol);
 fz_shdr_get_specular_term(inv_roughness,scol);

 col.r = col.r * (af*acol.r + df*dcol.r) + sf*scol.r;
 col.g = col.g * (af*acol.g + df*dcol.g) + sf*scol.g;
 col.b = col.b * (af*acol.b + df*dcol.b) + sf*scol.b;

/* CALCULATE RAYTRACE EFFECTS */
if (mf > 0.0 || tf > 0.0)

 { fz_shdr_get_world_pnt(world_pt);
 fz_shdr_get_world_shading_normal(norm);
 fz_shdr_get_view_dir(view_vec);

 /* CALCULATE REFRACTED RAYS */
if(tf > 0.0 &&
 fz_shdr_ray_refract(view_vec,norm,eta,mirr_vec) == TRUE)

 {
fz_shdr_raytrace_refracted(world_pt,mirr_vec,tf,mcol);

 col.r += mcol.r * tf;
 col.g += mcol.g * tf;
 col.b += mcol.b * tf;

 if (fz_shdr_ray_inside_solid() == TRUE) mf = 0.0;
 }

 /* CALCULATE REFLECTED RAYS */
 if (mf > 0.0)
 { fz_shdr_ray_reflect(view_vec,norm,mirr_vec);
 fz_shdr_raytrace_reflected(world_pt,mirr_vec,mf,mcol);
 col.r += mcol.r * mf;
 col.g += mcol.g * mf;
 col.b += mcol.b * mf;
 }
 }

 /* NOW ADD GLOW, IF ANY */
 if (gf > 0.0)
 {
 col.r += gcol.r * gf;
 col.g += gcol.g * gf;
 col.b += gcol.b * gf;
 }

3.7.3 RenderZone Shader Script form•Z SDK (v6.0.0.0 rev 05/30/06) 491

 return(col);
}

The transparency pixel function

double fz_shdr_cbak_trns_pixel();

The pixel function of a transparency shader is expected to return the level of transparency of the current
pixel towards the background. If a value of 0.0 is returned, the pixel is considered completely opaque. If
1.0 is returned, the pixel is considered completely transparent. Values less than 0.0 and larger than 1.0
are not accepted and are clamped to the respective limit. As with a color shader, the transparency shader
can compute the pixel transparency based on a pattern. All utility function that can be used by a color
shader also apply to a transparency shader. In addition, a transparency shader may compute
transparency based on surface geometry. The Neon shader offered by form•Z is such a shader. It uses
the angle between the surface normal and the view direction to compute the transparency. As such, it is
not tagged as a 2d or 3d shader and therefore shows up in the correct section in the Transparency menu
in the Surface Style Parameters dialog. The sine wave transparency shader pixel function is shown
below:

double fz_shdr_cbak_trns_pixel()
{
 fz_xy_td st;
 double ss,tt;
 double trn;

 shdr_get_tspace_st(st);

 ss = fz_shdr_saw_tooth(st.x,1.0);
 tt = fz_shdr_saw_tooth(st.y,1.0) + sin(ss * FZ_2PI)*amplitude;
 tt = fz_shdr_saw_tooth(tt,1.0);

 tt = fz_shdr_smooth_step(min_left, min_right, tt) *
 (1.0 - fz_shdr_smooth_step(max_left, max_right, tt));

 trn = val1 * tt + (1.0 - tt) * val2;

 return(trn);
}

The bump pixel function

double fz_shdr_cbak_bump_pixel();

The pixel function of a bump shader is expected to return the bump amplitude (height) of the current pixel.
Values should be in the range of 0.0 to 1.0, but may be smaller and larger. The pixel function of a bump
shader is actually called more than once per pixel. A number of calls to this function determine how the
surface bends around the area of the pixel. This information is then used to alter the normal direction
used for the shading calculation during the pixel function of the reflection shader or a surface style. Bump
shaders are usually either 2d or 3d and should therefore be tagged as such in the set parameters
function. Special care should be taken when writing a bump shader that is based on a pattern. The
transition of high and low areas in the pattern should be gradual and smooth for best bump results. For
example, the sine wave shader shown below creates a "fuzzy" zone between the wave and background
part of the pattern. This is achieved via the fuzz parameter using the fz_shdr_smooth_step utility API,
which is described in further detail later in this section. If the transition between the wave and the
background area would be sharp, the bumps would not be as pronounced, even with a large amplitude
parameter. The sine wave bump shader pixel function is shown below:

3.7.3 RenderZone Shader Script form•Z SDK (v6.0.0.0 rev 05/30/06) 492

double fz_shdr_cbak_bump_pixel()
{
 fz_xy_td st;
 double ss,tt;
 double ampl;

 shdr_get_tspace_st(st);

 ss = fz_shdr_saw_tooth(st.x,1.0);
 tt = fz_shdr_saw_tooth(st.y,1.0) + sin(ss * FZ_2PI)*amplitude;
 tt = fz_shdr_saw_tooth(tt,1.0);

tt = fz_shdr_smooth_step(min_left, min_right, tt) *
(1.0 - fz_shdr_smooth_step(max_left,max_right,tt));

 ampl = val1 * tt + (1.0 - tt) * val2;

 return(ampl);
}

The background pixel function

fz_rgb_float_td fz_shdr_cbak_bgnd_pixel();

The pixel function of a background shader is expected to calculate the color of a pixel in the background
of the scene. A background pixel is a part of the image, which is not covered by a surface, or which may
be visible through a transparent surface. No tagging as 2d or 3d is necessary for this shader in the set
parameters function. The coordinate of the current background pixel can be retrieved with the API call:
 fz_shdr_get_ispace_xy(bg_pixel);
The coordinate for the upper left corner of the pixel would be x = 0.0, y = 0.0, the lower right corner is x =
1.0, y = 1.0 regardless of the image pixel resolution. The sine wave background shader pixel function is
shown below:

fz_rgb_float_td fz_shdr_cbak_bgnd_pixel()
{
 fz_xy_td st;
 double ss,tt;
 fz_rgb_float_td col;

 fz_shdr_get_ispace_xy(st);

 ss = fz_shdr_saw_tooth(st.x,1.0);
 tt = fz_shdr_saw_tooth(st.y,1.0) + sin(ss * FZ_2PI)*amplitude;
 tt = fz_shdr_saw_tooth(tt,1.0);

 tt = fz_shdr_smooth_step(min_left,min_right, tt) *
 (1.0 - fz_shdr_smooth_step(max_left,max_right, tt));

 col.r = col1.r * tt + (1.0 - tt) * col2.r;
 col.g = col1.g * tt + (1.0 - tt) * col2.g;
 col.b = col1.b * tt + (1.0 - tt) * col2.b;

 return(col);
}

3.7.3 RenderZone Shader Script form•Z SDK (v6.0.0.0 rev 05/30/06) 493

Note, that this function is the same as the pixel function of the sine wave color shader, with the exception of the
API call to get the pixel coordinate. The color pixel function uses fz_shdr_get_tspace_xy(st) to get the
texture space coordinate, whereas the background pixel function uses fz_shdr_get_ispace_xy(st) to get
the image space coordinate. Similar to the color shader pixel function, the standard scale factor is already
contained in the image space coordinate.

The depth effect (foreground) pixel function

fz_rgb_float_td fz_shdr_cbak_fgnd_pixel();

The pixel function of a depth effect shader is expected to change the color of a pixel based on the depth
of the surface pixel in the scene. The depth effect shader is the last shader invoked in the shader pipeline.
The API function fz_shdr_get_dist_eye_world_pnt can be called to get the distance of the pixel's
world coordinate point to the eye point. If the current pixel is a background pixel, the API function will
return FALSE. In this case, there is no surface to be rendered at that pixel. An example of a simple depth
effect shader, that adds a constant color to a pixel based on its distance between the eye point and the
yon view clipping plane is shown below:

fz_rgb_float_td fz_shdr_cbak_fgnd_pixel()
{
 fz_rgb_float_td col;
 double dist,ratio,inv_ratio;

 fz_shdr_get_col(col);
 if(fz_shdr_get_dist_eye_world_pnt(dist) == TRUE)
 {

 ratio = dist / yon;
 if (ratio > 1.0) ratio = 1.0;

 inv_ratio = 1.0 - ratio;

 col.r = col.r * inv_ratio + col.r * ratio;
 col.g = col.g * inv_ratio + col.g * ratio;
 col.b = col.b * inv_ratio + col.b * ratio;
 }

 return(col);
}

The post render function (optional)

long fz_shdr_cbak_colr_post_render();

This function is called once at the end of each rendering. It is expected to perform any tasks necessary
when the shader is done rendering the image.

long fz_shdr_cbak_colr_post_render()
{
 /* CLEANUP CODE, IF ANY, GOES HERE */
 ...

 return(FZRT_NOERR);
}

Shader utiltity functions

3.7.3 RenderZone Shader Script form•Z SDK (v6.0.0.0 rev 05/30/06) 494

There are a number of additional API function, which are intended to facilitate the implementation of a
shader script. The most important of these apis are described in more detail below.

Repeating patterns

If a pattern is regular and repeats in a tile like fashion, such as bricks or checkers, the values of the
texture coordinate need to be modulated. This can be done with the API call:
 s = fz_shdr_saw_tooth(st.x,1.0);
 t = fz_shdr_saw_tooth(st.y,1.0);
This guarantees, that the incoming values st.x and st.y, for example, oscillate between 0.0 and 1.0. The
pattern algorithm then only needs to consider values in that range. In the Sine Wave shader, for example,
the y component of the 2d texture coordinate is modified with fz_shdr_saw_tooth. This will yield one
sine curve for each texture tile, instead of just one sine curve in the whole texture space. The saw tooth
function can also be described through this simple algorithem:

 if (val_in < 0.0) val_out = -fmod(val_in,module);
 else val_out = fmod(val_in,module);

Random Patterns

form•Z offers a number of utility functions, which compute a random pattern based on a single value, a 2d
coordinate or a 3d coordinate. They are

 fz_shdr_turbulance_1d
 fz_shdr_turbulance_2d
 fz_shdr_turbulance_3d
 fz_shdr_noise_1d
 fz_shdr_noise_2d
 fz_shdr_noise_3d

The turbulance and noise functions are very similar. The turbulance functions take an additional integer
parameter, which creates more detail if passed in with a higher value. The input to the noise and
turbulance functions is usually a value of the texture space coordinate of the pixel to be rendered. The
function returns a pseudo random number between 0.0 and 1.0. This number can be used to design a
pattern. For example, the code below creates a random pattern of black dots on a white background:

fz_shdr_get_tspace_st(st);

val = fz_shdr_noise_2d(st,FZ_SHDR_TURB_TYPE_BETTER,0);

if (val < 0.5) col = black_color;
else col = white_color;

It is up to the creativity of the shader developer to use noise and turbulance functions to break up regular
patterns and to create unique pattern designs. In form•Z these functions are used in a number of
shaders. For example, the Textured Brick shader uses noise functions to mix two brick colors and also to
break up the straight line of the mortar edges. The Textured Marble color shader uses turbulance
functions to mix the marble colors.

Smooth transitions

It is often desirable to create a soft transition between two colors in a pattern. In form•Z shaders, this
softening of contrast is called fuzz and offered in many shaders. Not only can it be used to create different

3.7.3 RenderZone Shader Script form•Z SDK (v6.0.0.0 rev 05/30/06) 495

variations of the shader pattern, but it also help to avoid aliasing artifacts. A API utility function is available
to compute smooth transitions:

val_out = fz_shdr_smooth_step(min,max,val_in);

If the val parameter is less than min fz_shdr_smooth_step will return 0.0. If the val parameter is
greater than max fz_shdr_smooth_step will return 1.0. If the val parameter is between min and max,
fz_shdr_smooth_step will return a value between 0.0 and 1.0. However, the value is not a linear
interpolation, When plotted as a function graph, the curve resembles a leaning S, connecting y = 0.0 and
y = 1.0 in a smooth fashion. This function can be used to create fuzz along edges of sharp contrast in a
pattern.

For example consider a simple pattern of horizontal stripes:

 fz_shdr_get_tspace_st(st);
 st.y = fz_shdr_saw_tooth(st.y,1.0);
 if (st.y < 0.5) col = black;
 else col = white;

This will create a crisp border between the black and white color. To create a fuzzy border,
fz_shdr_smooth_step can be used:

 fz_shdr_get_tspace_st(st);
 st.y = fz_shdr_saw_tooth(st.y,1.0);
 val = fz_shdr_smooth_step(0.4,0.6,st.y);
 col = val * white + (1.0 - val) * black;

If st.y is less than 0.4 fz_shdr_smooth_step returns 0.0 and the color computation yields :

col = 0.0 * white + (1.0 - 0.0) * black;

which is all black. If st.y is greater than 0.6 fz_shdr_smooth_step returns 1.0 and the color
computation yields :

 col = 1.0 * white + (1.0 - 1.0) * black;

which is all white. In the zone where st.y is between 0.4 and 0.6 black and white are mixed.
More black is used as st.y approaches 0.4 and more white is used as it approaches 0.6.This
creates a smooth color transition from black to white.

Naturally, the smooth step function is not limited to the context of blending colors. It is just as
useful to create smooth transitions between opaque and transparent areas in a transparency
shader and between high and low areas in a bump shader.

Another method to create smooth transitions is the API

fz_shdr_spline_color(val,ncolors,colors,color_out);

It computes a smoothly blended color from a list of individual colors. The first argument is a
parametric value that must be in the range of 0.0 to 1.0. For example, if there are four colors, and
the val argument is below 0.25, the first color is returned. If val is around 0.25, a mixture between
the first and second color is returned. If it is between 0.25 and 0.5 the second color is returned,
etc. This function can be combined with a turbulence function to create a pattern of random
colored spots.

3.7.3 RenderZone Shader Script form•Z SDK (v6.0.0.0 rev 05/30/06) 496

fz_shdr_get_tspace_st(st);
val = fz_shdr_turbulance_2d(st,3,FZ_SHDR_TURB_TYPE_BETTER,0);
fz_shdr_spline_color(val,5,colors_in,color_out);

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 497

3.7.4 Tool Scripts

Tool scripts are extensions that complement the form•Z tool set and behave consistently with the
form•Z tools. They appear in the form•Z interface in the icon tool palettes just like a form•Z tool.
Tools can either be operators or modifiers. An operator creates or edits the form•Z project data
(objects, lights, etc.) through graphic manipulation in the form•Z project window. A modifier is a
tool that controls a setting that affects a group of operators. For example, the self/copy modifier
tools affect how the transformation operator tools function. Modifiers are never implemented as a
single tool but rather a set of tools that have a number of modifiers representing different options
and a set of operators that are sensitive to the selected modifier.

The user selects a tool from a tool icon menu or via a key shortcut to make it the active tool. A
click (or multiple clicks) in the project window or input in the prompt palette is used to execute the
tool. Tools are dependent on a project window and are expected to function on the provided
project window. Tools are unavailable when there is no open project window.

Tools my have user controlled options associated with them. These options appear in the tool
options palette when the tool is active . The options can also be accessed in a dialog that is
invoked by double clicking on the tool’s icon or by right-clicking on the tool’s icon. The dialog can
also be invoked by pressing option (Macintosh) or ctrl+shift (Windows) while clicking on the
tool’s icon.

Tools are very flexible and can do a variety of things. Object creation, editing and derivation
operations are common uses of tools. In an object creation tool, input from the user in the form of
clicks and/or prompt entry is used to construct an object. To create an interactive tool, a base
object should be constructed as early in the tool as possible and then refined as additional input
is acquired.

An editing operation modifies existing objects. A derivative operation uses existing objects as a
starting point to create new objects. Both of these operations need to execute pick operations to
select the objects (or other topological levels) to operate on. The tools should support the prepick
and postpick model that is standard in form•Z.

The graphic image of the icon is supplied by the script. If one is not provided, a default script icon
is supplied by form•Z. The script can also specify where in the tool palette the icon for the tool is
positioned. If a position is not provided, then the tool is placed at the bottom of the tool palette.
The icons for tool scripts appear at the bottom of the Tool Set in the Icons Customization dialog. It
can be customized as with any form•Z tool. All tools appear in the Key Shortcuts Manager dialog
so that they may have key shortcuts assigned for them.

The Scripts directory in the form•Z application folder contains a sample script tool : star_tool.fsl.
It creates star shaped objects with interactive or preset user input.

Tool script type

Tool scripts are defined by tagging the script in its header with the script_type keyword and
the proper identifier as follows :

script_type FZ_TOOL_EXTS_TYPE

Tool call back function set.

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 498

Tool scripts are implemented by defining a set of callback functions. There are a total of twenty-
four callback functions. Note that some of these functions are optional and some are mutually
exclusive hence a script would never implement all of these functions. Each of these functions is
described in the following sections. As with all other script types, the tool script may implement
the fz_script_cbak_info callback function, which defines basic information about the script.
This is discussed in more detail in section 3.3.

The tool initialization function (optional)

long fz_tool_cbak_init();

This function is called by form•Z once when the script is successfully loaded and registered. The
initialization function is where the script should initialize any data that may be needed by the other
callback functions. This function is called by form•Z once when the plugin is successfully loaded
and registered. The initialization function is where the plugin should initialize any data that may be
needed by the other functions in the function set. If the tool is an editing operation which creates
new objects from selected objects, the staus of objects options for the tool needs to be initialized
by calling fz_sys_cmnd_set_status_of_objt in the tool’s initialization funtion.

long fz_tool_cbak_init()
{
 long err = FZRT_NOERR;

/* Do initialization here */

return(err);

}

The tool finalization function (optional)

long fz_tool_cbak_finit();

This function is called by form•Z once when the script is unloaded when form•Z is quitting. This
is the complementary function to the initialization function. This function should be used to
perform any cleanup operations.

long fz_tool_cbak_finit()
{
 long err = FZRT_NOERR;

/* Perform cleanup here */

 return(err);
}

The tool info function (required)

long fz_tool_cbak_info(
 mod fz_tool_kind_enum kind,
 mod fz_proj_level_enum level
);

This function is called by form•Z once when the script is successfully loaded to determine the
kind and level of the tool that is implemented by the script. The kind parameter indicates if the
tool is an operator (FZ_TOOL_KIND_OPERATOR) or a modifier (FZ_TOOL_KIND_MODIFIER).
form•Z uses the value in this parameter to determine how the icons are handled when they are
selected by the user.

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 499

The level parameter indicates the context of the tool. FZ_PROJ_LEVEL_MODEL indicates that
the tool operates on the projects modeling content (objects for example).
FZ_PROJ_LEVEL_MODEL_WIND indicates that the tool operates on modeling window specific
content (views for example) of modeling windows. FZ_PROJ_LEVEL_DRAFT indicates that the
tool operates on the projects drafting content (elements for example).
FZ_PROJ_LEVEL_DRAFT_WIND indicates that the tool operates on drafting window specific
content (views for example) of drafting windows. form•Z uses the value in this parameter to
determine which tool palette to add the icon for the tool script.

long fz_tool_cbak_info(
 mod fz_tool_kind_enum kind,
 mod fz_proj_level_enum level
)
{
 long err = FZRT_NOERR;

/* set kind and level for the tool */
kind = FZ_TOOL_KIND_OPERATOR;
level = FZ_PROJ_LEVEL_MODEL;

return(err);

}

The tool name function (recommended)

long fz_tool_cbak_name(
 mod fz_string_td name,
 long max_len

);

This function is called by form•Z to get the name of the tool. The name is shown in various places
in the form•Z interface including the key shortcuts manager dialog. It is recommended that the
tool name string is stored in a .fzr file so that it is localizable. This function is recommended for all
tool scripts. If this function is not provided , the name of the script file is used.

long fz_tool_cbak_name(
 mod fz_string_td name,
 long max_len

)
{
 long err = FZRT_NOERR;

 /* Get the title string “My Tool” from the script’s resource file */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 1, name);

 return(err);
}

The tool help function (optional)

long fz_tool_cbak_help(
 mod fz_string_td help,
 long max_len
);

This function is called by form•Z to display a help string that describes the detail of what the tool
does. This string is shown in the key shortcut manager dialog and the help dialogs. The help
parameter is a string which can handle up to max_len characters. It is recommended that the

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 500

tool name is stored in a .fzr file so that it is localizable . The display area for help is limited so
form•Z currently will ask for no more than 256 bytes (characters).

long fz_tool_cbak_help(
 mod fz_string_td help,
 long max_len
)

{
 long err = FZRT_NOERR;

 /* Get the help string from the script’s resource file */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, help);

 return(err);
}

The tool available function (optional)

long fz_tool_cbak_avail(
 long windex,
 mod long rv
);

This function is called by form•Z at various times to see if the tool is available. This is useful if the
tool is dependent on certain conditions and it is desirable to restrict its use when the conditions
are not currently satisfied. If the tool is not available, then it is shown as inactive (dimmed) in the
form•Z tool palette. Key shortcuts are also disabled for the tool when it is not available. If this
function is not provided then the tool is always available.

Availability is determined by the value that is returned by the rv parameter. A value of 1 indicates
that the tool is available, a value of 0 indicates that the tool is unavailable.

long fz_tool_cbak_avail(
 long windex,
 mod long rv
)
{
 long err = FZRT_NOERR;

/* return 1 for available, 0 for not available */
rv = 1;

 return(err);
}

The tool active function (required for modifiers, not used for operators)

long fz_tool_cbak_active(
 long windex,
 mod long rv
);

This function is called by form•Z at various times to see if the modifier tool is active. This is used
by form•Z to draw the icon in the selected state. The value that is returned by the rv parameter
determines if the tool is active or not. A value of 1 indicates that the tool is active, a value of 0
indicates that the tool is inactive.

long fz_tool_cbak_active(

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 501

 long windex,
 mod long rv
)
{
 long err = FZRT_NOERR;

/* return 1 for active, 0 for not active */
if(my_modifier_state == 2) rv = 1;
else rv = 0;

 return(err);
}

The tool select function (optional)

long fz_tool_cbak_select(
 long windex
);

This function is called by form•Z when the tool is selected from the tool icon palette or when a
key shortcut for the tool is invoked.

For operator tools, the select function is where any tool specific preparation occurs for the
execution of the tool (which is triggered by a click in the project window). The select function
should set the prompt string (in the prompts palette) for the tool. The select function is also called
after the execution of the tool to prepare it for the next execution.

The following example shows the select function for an operator tool that draws a line. It starts by
asking for the origin point for an object in the prompts palette. Note the prompt string is shown
here for readability. It should be stored in a .fzr resource file and loaded with fzrt_get_string
to support localization.

long fz_tool_cbak_select(
 long windex
)
{

fz_string_td prompt_str;
long err = FZRT_NOERR;

 /* Get the prompt string “First point:” from the script’s resource file
*/
 if((err = fzrt_fzr_get_string(my_rfzr_refid, 1, 3, prompt_str)) ==
FZRT_NOERR)

{
 err = fz_fuim_prompt_line(

prompt_str, /* prompt string */
FZ_FUIM_PROMPT_LINE_NEXT, /* place it on the next line */
FZ_FUIM_PROMPT_EDIT_XYZ); /* set the edit mode of prompt */

 }
 return(err);
}

The following example shows the select function for a tool that starts by asking the user to select
an object. Note that the prompt handles prepick and postpick by checking the state of the pick
buffer.

long fz_tool_cbak_select(
 long windex
)
{

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 502

fz_string_td prompt_str;
fzrt_boolean pre_pick;
long i,npick;
fz_model_pick_enum pkind;
long err = FZRT_NOERR;

 /* Get the number of picked entities */
 fz_model_pick_get_count(windex,npick);

 /* loop through picked entities */
 for(i = 0; i < npick; i++)
 {
 /* get one picked entity */

fz_model_pick_get_data(windex,i,pkind,NULL,NULL,NULL);

/* check if it was picked at the object level */
if (pkind == FZ_MODEL_PICK_OBJT)

 { pre_pick = TRUE;
 break;
 }
 }

/* check if it was picked at the object level */
 if(pre_pick)
 { /* Get the string "Click to frame selected objects” */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 4, prompt_str);
 }

else
 { /* Get the string "Select object to frame” */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 5, prompt_str);
 }

 err = fz_fuim_prompt_line(

prompt_str, /* prompt string */
FZ_FUIM_PROMPT_LINE_NEXT, /* place it on the next line */
FZ_FUIM_PROMPT_EDIT_NONE); /* set the edit mode of prompt to

none */

 return(err);
}

For modifier tools, the select function should change the state of the modifier to the desired value
for the selected icon. The modifier is usually a global variable in the script that can be accessed
by the tools that use it.

long fz_tool_cbak_select(
 long windex
)
{

long err = FZRT_NOERR;

 /* Set modifier state for the tool */

my_modifier_state = 2;

return(err);

}

The tool click function (required for operators, not used for modifiers)

long fz_tool_cbak_click (
 long windex,

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 503

 fzrt_point where,
 fz_xyz_td where_3d,
 fz_map_plane_td map_plane,
 fz_fuim_click_enum clicks,
 long click_count,
 mod fzrt_boolean click_handled,
 mod fz_fuim_click_wait_enum click_wait,
 mod fzrt_boolean done
);

This function is called by form•Z for operators when the tool is the active tool and a click occurs
in the active project window. This function is called by form•Z for each click in the project window
until TRUE is returned in the done parameter (or from the fz_tool_cbak_prompt function) or
the user cancels the operation.

The windex parameter is the active window. The where parameter indicates in 2 dimensional
screen space where the mouse was clicked. The where_3d parameter indicates the 3
dimensional location in world space where the mouse was clicked. This is a point on the active
reference plane provided in the map_plane parameter. The clicks parameter indicates if the
click is a single, double or triple click. The click_count parameter is the number of clicks since
the start of the tool. This value starts at 1 for the first click and increases with each click of the
mouse.

The click_handled parameter should be set to TRUE if the click function handled the click and
it should be set to FALSE if the function did not handle the click. The default value is TRUE. The
click_wait parameter tells form•Z to wait until a specific type of click happens before calling
the click function again. The default is FZ_FUIM_CLICK_WAIT_NOT. The done parameter
determines the completion of the tool. A value of TRUE indicates that the tool is done, a value of
FALSE indicates that the tool expects more clicks. The default is FALSE.

The following example shows the click function for a tool that draws a line. The first click creates
a new object with a single segment (edge) with identical start and end points at the click point.
The second click fixes the end point at the click point. This is done in this manner to
accommodate the track function (see following section). If a track function is not provided then the
object does not need to be created until the final click. In this situation, the click points could be
accumulated into a buffer and then used to create the object. Note that this is not an ideal
interface for the user as they will get no interactive feedback during the operation. If performance
is a concern because of the complexity of the operation, then a proxy should be used so that the
user gets some feedback during the tools execution.

fz_objt_ptr line_obj;
fz_xyz_td line_points[3];

long fz_tool_cbak_click (
 long windex,
 fzrt_point where,
 fz_xyz_td where_3d,
 fz_map_plane_td map_plane,
 fz_fuim_click_enum clicks,
 long click_count,
 mod fzrt_boolean click_handled,
 mod fz_fuim_click_wait_enum click_wait,
 mod fzrt_boolean done
)
{
 long err = FZRT_NOERR;
 fz_string_td prompt_str;
 long pindx[2];

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 504

 if(click_count == 1) /* handle first click */
 {
 /* make new object */
 if((err = fz_objt_cnstr_objt_new(windex,line_obj)) == FZRT_NOERR)
 {
 /* construct line object */
 line_points[0] = where_3d;
 line_points[1] = where_3d;
 fz_objt_fact_add_pnts(windex,line_obj,line_points,2);

 pindx[0] = 0;
 pindx[1] = 1;
 fz_objt_fact_create_wire_face(windex,line_obj,pindx,2,NULL);

 /* add object to the project */
 err = fz_objt_add_objt_to_project(windex,line_obj);

 if (err != FZRT_NOERR)
 { fz_objt_edit_delete_objt(windex,line_obj);
 }
 else
 {
 /* Get the string "Second point:” */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 6, prompt_str);

 /* set prompt for next point */
 fz_fuim_prompt_line(prompt_str,

FZ_FUIM_PROMPT_LINE_NEXT,
FZ_FUIM_PROMPT_EDIT_XYZ);

 }
 }
 }
 else if(click_count == 2) /* handle second click */
 {
 /* reset object and construct with new second point */
 fz_objt_fact_reset(windex, line_obj);
 line_points[1] = where_3d;
 fz_objt_fact_add_pnts(windex,line_obj,line_points,2);

 pindx[0] = 0;
 pindx[1] = 1;
 fz_objt_fact_create_wire_face(windex,line_obj,pindx,2,NULL);

 done = TRUE; /* tool complete */
 }

 return(err);
}

If the operation requires the picking (selection) of objects (or other topological levels), then this
should be handled following the form•Z prepick and postpick standard. That is for each click the
pick buffer is inspected to see if the requirements have been satisfied for the operation (prepick).
If it is not satisfied, the function fz_model_pick is called to handle the click as a postpick and then
the pick buffer is re-inspected. If the pick requirements have been satisfied with the prepick or
postpick then the operation completes. The prompts palette should also be updated in the click
function to reflect the desired user actions using the fz_fuim_prompt_line function.

long fz_tool_cbak_click (
 long windex,
 fzrt_point where,
 fz_xyz_td where_3d,
 fz_map_plane_td map_plane,

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 505

 fz_fuim_click_enum clicks,
 long click_count,
 mod fzrt_boolean click_handled,
 mod fz_fuim_click_wait_enum click_wait,
 mod fzrt_boolean done
)
{
 fz_objt_ptr pick_obj1,pick_obj2;
 long npick;

fz_model_pick_enum pkind1,pkind2;
long err = FZRT_NOERR;

done = FALSE;

 /* Get the number of picked entities */

fz_model_pick_get_count(windex,npick);
if(npick < 2)

 {
 /* use the click to pick an object */

fz_model_pick(windex,where,FZ_MODEL_PICK_OBJT);
 fz_model_pick_get_count(windex,npick);

}

/* check if enough picked to execute operation */
if(npick >= 2)
{
 /* get first two objects from pick buffer */

fz_model_pick_get_data(windex,0,pkind1,NULL,pick_obj1,NULL);
 fz_model_pick_get_data(windex,1,pkind2,NULL,pick_obj2,NULL);
 if(pkind1 == FZ_MODEL_PICK_OBJT && pkind2 == FZ_MODEL_PICK_OBJT)
 {
 /** operate on objects here **/

}

done = TRUE;
}

 return(err);
}

If the tool is an editing operation which creates new objects from selected objects, the status of
objects functionality should be implemented. This can be done easily with two api calls:
fz_objt_edit_handle_status_of_opnd and fz_objt_edit_handle_new_objt_volms. These
two functions correspond directly to the options in the Status Of Objects palette. Note that the
tool also needs to initialize its status of objects option in the fz_tool_cbak_init callback
function by calling fz_syst_cmnd_set_status_of_objt with the appropriate arguments.

The tool prompt function (required for operators, not used for modifiers)

long fz_tool_cbak_prompt (
 long windex,
 fz_xyz_td prompt_value,
 fz_string_td prompt_string,
 fz_map_plane_td map_plane,
 long click_count,
 mod fzrt_boolean prompt_handled,
 mod fz_fuim_click_wait_enum click_wait,
 mod fzrt_boolean done
);

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 506

This function is called by form•Z when the tool is the active tool and the user makes input in an
editable prompt string in the prompts palette. This function is very similar to the click function and
each input of data in the prompts palette is treated by form•Z the same as a click. This function is
called by form•Z each time the user enters data in the prompts palette and then presses the
enter or return keys. Like the click function, this function is called until TRUE is returned in the
done parameter (or TRUE is returned in the done parameter from the click function) or the user
cancels the operation.

The windex parameter is the active window. The prompt_value and prompt_string
parameters are the users input from the prompts palette. An editable prompt is created by calls to
the fz_fuim_prompt_line function in the select function, click function, undo function, redo
function or previous click handling in the prompt function. Editable input is specified by the last
parameter to the fz_fuim_prompt_line function. This parameter instructs the prompts palette
as to what type of input is desired (if any). The following table shows the available options.

Name Description
FZ_FUIM_PROMPT_EDIT_NONE No editable text in prompt string
FZ_FUIM_PROMPT_EDIT_XY Standard 2D world Cartesian coordinate
FZ_FUIM_PROMPT_EDIT_XYZ Standard 3D world Cartesian coordinate
FZ_FUIM_PROMPT_EDIT_ANGLE Angular dimension
FZ_FUIM_PROMPT_EDIT_LINEAR_X Linear dimension
FZ_FUIM_PROMPT_EDIT_LINEAR_XY Linear 2D
FZ_FUIM_PROMPT_EDIT_LINEAR_XYZ Linear 3D
FZ_FUIM_PROMPT_EDIT_LINEAR_DECIMAL_X Linear dimension, displayed in decimal format.
FZ_FUIM_PROMPT_EDIT_LINEAR_DECIMAL_XY Linear 2D, displayed in decimal format.
FZ_FUIM_PROMPT_EDIT_LINEAR_DECIMAL_XY
Z

Linear 3D, displayed in decimal format.

FZ_FUIM_PROMPT_EDIT_STRING string

Note that the FZ_FUIM_PROMPT_EDIT_STRING does not return a value for the prompt_value
parameter. Instead the raw string is returned in the prompt_string parameter. The
prompt_value parameter is interpreted based on the type of the prompt edit shown in the
above table. If the prompt edit is FZ_FUIM_PROMPT_EDIT_ANGLE,
FZ_FUIM_PROMPT_EDIT_LINEAR_X, or FZ_FUIM_PROMPT_EDIT_LINEAR_DECIMAL_X,
then the value is found in the first field (x). If the prompt edit is FZ_FUIM_PROMPT_EDIT_XY,
FZ_FUIM_PROMPT_EDIT_LINEAR_XY, or FZ_FUIM_PROMPT_EDIT_LINEAR_DECIMAL_XY,
then the values are found in the first two fields (x and y). If the prompt edit is
FZ_FUIM_PROMPT_EDIT_XYZ, FZ_FUIM_PROMPT_EDIT_LINEAR_XYZ, or
FZ_FUIM_PROMPT_EDIT_LINEAR_DECIMAL_XYZ, then the values are found all three fields (x,
y and z).

The map_plane parameter is the active reference plane. The click_count parameter is the
number of clicks (or prompts) since the start of the tool. This value starts at 1 for the first click (or
prompt) and increases with each click (or prompt).

The prompt_handled parameter should be set to TRUE if the prompt function handled the
prompt and it should be set to FALSE if the function did not handle the prompt. The default value
is TRUE. The click_wait parameter tells form•Z to wait until a specific type of click happens
before calling the next click function. The default is FZ_FUIM_CLICK_WAIT_NOT. The done
parameter determines the completion of the tool. A value of TRUE indicates that the tool is done,
a value of FALSE indicates that the tool expects more clicks. The default is FALSE.

The following example shows the prompt function for a tool that draws a line. The prompt
function is very similar to the click function in the previous line tool example. In the prompt

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 507

function the coordinate location comes from the prompt_value parameter rather than the click
point.

fz_objt_ptr line_obj;
fz_xyz_td line_points[3];

long fz_tool_cbak_prompt(
 long windex,
 fz_xyz_td prompt_value,
 fz_string_td prompt_string,
 fz_map_plane_td map_plane,
 long click_count,
 mod fzrt_boolean prompt_handled,
 mod fz_fuim_click_wait_enum click_wait,
 mod fzrt_boolean done
)
{
 long err;
 fz_string_td prompt_str;
 long pindx[2];

 if(click_count == 1) /* handle first click */
 {
 /* make new object */
 if((err = fz_objt_cnstr_objt_new(windex,line_obj)) == FZRT_NOERR)
 {
 /* construct line object */
 line_points[0] = prompt_value;
 line_points[1] = prompt_value;
 fz_objt_fact_add_pnts(windex,line_obj,line_points,2);

 pindx[0] = 0;
 pindx[1] = 1;
 fz_objt_fact_create_wire_face(windex,line_obj,pindx,2,NULL);

 /* add object to the project */
 err = fz_objt_add_objt_to_project(windex,line_obj);

 if (err != FZRT_NOERR)
 { fz_objt_edit_delete_objt(windex,line_obj);
 }
 else
 {
 /* Get the string "Second point:” */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 6, prompt_str);

 /* set prompt for next point */
 fz_fuim_prompt_line(prompt_str,

FZ_FUIM_PROMPT_LINE_NEXT,
FZ_FUIM_PROMPT_EDIT_XYZ);

 }
 }
 }
 else if(click_count == 2) /* handle second click */
 {
 /* reset object and construct with new second point */
 fz_objt_fact_reset(windex, line_obj);
 line_points[1] = prompt_value;
 fz_objt_fact_add_pnts(windex,line_obj,line_points,2);

 pindx[0] = 0;
 pindx[1] = 1;
 fz_objt_fact_create_wire_face(windex,line_obj,pindx,2,NULL);

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 508

 done = TRUE; /* tool complete */
 }
}

The tool track function (optional, not used for modifiers)

long fz_tool_cbak_track(
 long windex,
 fzrt_point where,
 fz_xyz_td where_3d,
 fz_map_plane_td map_plane,
 long click_count
);

This function is called by form•Z when the tool is the active tool and the mouse is moved in the
active project window after the first click. This function is used to update any interactive input as
the mouse moves in the window. In general this function performs the same action as the next
click would allowing the input to appear interactive

The windex parameter is the active window. The where parameter indicates in 2 dimensional
screen space where the cursor is located. The where_3d parameter indicates the 3 dimensional
location in world space where the cursor is located. This is a point on the active reference plane
provided in the map_plane parameter. The click_count parameter is the number of clicks
since the start of the tool (first click).

The following example shows the track function for a tool that draws a line. This complements
the previous line tool example for the click and prompt functions. In this function the location of
the second point is updated to the current cursor location.

fz_objt_ptr line_obj;
fz_xyz_td line_points[3];

long fz_tool_cbak_track(
 long windex,
 fzrt_point where,
 fz_xyz_td where_3d,
 fz_map_plane_td map_plane,
 long click_count
)
{
 long err = FZRT_NOERR;
 long pindx[2];

 if(click_count == 1)
 {
 /* reset object and construct with new second point */
 fz_objt_fact_reset(windex, line_obj);

line_points[1] = where_3d;
 fz_objt_fact_add_pnts(windex,line_obj,line_points,2);

 pindx[0] = 0;
 pindx[1] = 1;
 fz_objt_fact_create_wire_face(windex,line_obj,pindx,2,NULL);
 }
}

The tool cancel function (optional)

long fz_tool_cbak_cancel (
 long windex,

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 509

 long click_count
);

This function is called by form•Z when a tool is interrupted. A tool can be canceled by the user
using the key cancel key shortcut or by form•Z if a form•Z operation id executed that cancels the
current operation (selecting another tool for example). This function is used to cleanup any data
that was generated during the execution of the tool.

The windex parameter is the active window. The click_count parameter is the number of
clicks since the start of the tool (first click).

The following example complements the previous line tool example for the click, prompt and
track functions. In this function, the object that was created in the prior functions is deleted.

fz_objt_ptr line_obj;
fz_xyz_td line_points[3];

long fz_tool_cbak_cancel (
 long windex,
 long click_count
)
{
 long err = FZRT_NOERR;

 /* delete object crated at first click */

if(click_count >= 1)fz_objt_edit_delete_objt(windex,line_obj);

 return(err);
}

The tool undo function (optional)

long fz_tool_cbak_undo (
 long windex,
 long click_count,
 mod fz_fuim_click_wait_enum click_wait,
 mod fzrt_boolean done
);

This function is called by form•Z when the user selects the undo menu item from the Edit menu
during the execution of the tool. This function is used to back the input up to the state of the
previous click. If this function is not provided, the undo command does not perform undos during
the tool.

The windex parameter is the active window. The click_count parameter is the number of
clicks which will be one less than the last call to the click or prompt functions. The click_wait
parameter tells form•Z to wait until a specific type of click happens before calling the click
function again.

The done parameter determines the completion of the tool. A value of TRUE indicates that the
tool is done, a value of FALSE indicates that the tool expects more clicks. The default is FALSE.

long fz_tool_cbak_undo (
 long windex,
 long click_count,
 mod fz_fuim_click_wait_enum click_wait,
 mod fzrt_boolean done
)
{

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 510

 long err = FZRT_NOERR;

 /** return to previous click state here ***/

 return(err);
}

The tool redo function (optional)

long fz_tool_cbak_redo (
 long windex,
 long click_count,
 mod fz_fuim_click_wait_enum click_wait
 mod fzrt_boolean done
);

This function is called by form•Z when the user selects the redo menu item from the Edit menu
during the execution of the tool. This function is used to move the input up to the state of the
previously undone click. If this function is not provided, the redo command does not perform
redos during the tool. This function is only called immediately after a call to the undo function.
Once a click or prompt entry occurs, the redo is reset.

The windex parameter is the active window. The click_count parameter is the number of
clicks that will be one more that the last call to the undo function. The click_wait parameter
tells form•Z to wait until a specific type of click happens before calling the click function again.

The done parameter determines the completion of the tool. A value of TRUE indicates that the
tool is done, a value of FALSE indicates that the tool expects more clicks. The default is FALSE.

long fz_tool_cbak_redo (
 long windex,
 long click_count,
 mod fz_fuim_click_wait_enum click_wait,
 mod fzrt_boolean done
)
{
 long err = FZRT_NOERR;

 /** return to previously undone click state here ***/

 return(err);
}

The tool icon menu function (Optional, mutually exclusive with icon menu adjacent function)

long fz_tool_cbak_icon_menu (
 fzrt_UUID_td icon_menu_uuid,
 mod fzrt_UUID_td group_uuid,
 mod fz_fuim_icon_group_enum group_pos,
 mod long group_row,
 mod long group_col
);

This function is called by form•Z to add the tool to the Tool icon menu. The presence of this
function places the tool in the Tool set of tools. If no other parameters are set then the tool will get
added to a group of icons at the bottom (end) of the icon menu. Note that this only adds the
position to the tool menu. The function fz_tool_cbak_icon_file must be provided to add
custom graphics for the icon. If one of these is not provided, form•Z uses a generic icon graphic.

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 511

The group_uuid parameter is assigned to all tools that should be grouped together. That is, all
fz_tool_cbak_icon_menu implemented functions that return the same group_uuid
parameter are placed together in the system icon menu in the same group (pop-out tool menu).
This group is added to the bottom (end) of the menu. The placement of the item in the group is
controlled by the group_pos parameter. A value of FZ_FUIM_ICON_GROUP_START places the
item at the start of the group and a value of FZ_FUIM_ICON_GROUP_END places it at the end of
the group. Note that these may not always yield constant results because plugin and script load
order can vary hence multiple uses of FZ_FUIM_ICON_GROUP_END my note build the menu in
the expected order. When FZ_FUIM_ICON_GROUP_CUSTOM is selected, then the group_row
and group_col parameters specify the position of the item in the tool menu group.

#define MY_GRUP_ID
"\x5d\xe6\x85\x41\x6b\xaa\x4f\xb4\xa5\x6a\xf5\x0e\x65\x36\xfb\xd0"

long fz_tool_cbak_icon_menu (
 fzrt_UUID_td icon_menu_uuid,
 mod fzrt_UUID_td group_uuid,
 mod fz_fuim_icon_group_enum group_pos,
 mod long group_row,
 mod long group_col
)
{
 long err = FZRT_NOERR;

fzrt_UUID_copy(MY_GRUP_ID, group_uuid);
 group_pos = FZ_FUIM_ICON_GROUP_CUSTOM;
 group_row = 1;
 group_col = 1;

 return(err);
}

The function fuim_cmds_new_icon_group can be called to better control the group containing
the set of tools. This adds the ability to name the group and insert the pop-out menu group in the
existing menu groups. The icon pop-out menu can be created in each
fz_tool_cbak_icon_menu so that if the user has disabled one of the scripts, the icon menu
will still be formed properly. form•Z ignores attempts to create a menu when the uuid already
exists that would occur if all the scripts are enabled. The following is an example of a pop-out
menu.

long fz_tool_cbak_icon_menu (
 fzrt_UUID_td icon_menu_uuid,
 mod fzrt_UUID_td group_uuid,
 mod fz_fuim_icon_group_enum group_pos,
 mod long group_row,
 mod long group_col
)
{
 long err = FZRT_NOERR;

err = fz_fuim_exts_icon_group(
"My Group", MY_GRUP_ID, icon_menu_uuid,
FZRT_UUID_NULL, FZ_FUIM_POS_BEFORE,
FZRT_UUID_NULL, FZ_FUIM_POS_BEFORE);

if(err = FZRT_NOERR)

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 512

{ fzrt_UUID_copy(MY_GRUP_ID, group_uuid);
 group_pos = FZ_FUIM_ICON_GROUP_CUSTOM;
 group_row = 1;
 group_col = 1;
 }
 return(err);
}

The tool icon menu adjacent function (Optional, mutually exclusive with icon menu function)

long fz_tool_cbak_icon_menu_adjacent(
 fzrt_UUID_td icon_menu_uuid,
 mod fzrt_UUID_td adjacent_uuid,
 mod fz_fuim_icon_adjacent_enum where
);

This function is called by form•Z to add the tool to the system icon menu. It serves the same
purpose as the fz_cmnd_cbak_proj_icon_menu function, however it specifies the location of
the icon item quite differently. The location is identified by referencing another tool in the icon
menu. The adjacent_uuid parameter is the UUID of the tool to which the icon should be added
adjacent. The where parameter specifies to which side of the adjacent icon the icon should be
added. The available options are FZ_FUIM_ICON_ADJACENT_TOP,
FZ_FUIM_ICON_ADJACENT_BOTTOM, FZ_FUIM_ICON_ADJACENT_LEFT,
FZ_FUIM_ICON_ADJACENT_RIGHT. The default action is specified by
FZ_FUIM_ICON_ADJACENT_DEFAULT which currently is the same as
FZ_FUIM_ICON_ADJACENT_RIGHT. New pop-out groups can not be created with this function.
The following example ads the icon to the right of the form•Z primitive spheroid tool.

long fz_tool_cbak_icon_menu_adjacent(
 fzrt_UUID_td icon_menu_uuid,
 mod fzrt_UUID_td adjacent_uuid,
 mod fz_fuim_icon_adjacent_enum where
)
{
 long err = FZRT_NOERR;

 /* copy UUID of adjacent tool */

fzrt_UUID_copy(FZ_CMND_MODEL_PRIM_SPHR, adjacent_uuid);
 where = FZ_FUIM_ICON_ADJACENT_RIGHT;

 return(err);
}

The tool icon file function (Optional, mutually exclusive with icon resource function)

long fz_tool_cbak_icon_file (
 fz_fuim_icon_enum which,
 fzrt_floc_ptr floc,
 mod long hpos,
 mod long vpos,
 fzrt_floc_ptr floc_mask,
 mod long hpos_mask,
 mod long vpos_mask
);

This function is called by form•Z to get an icon for the tool from an image file. The icon image can
be in any of the form•Z supported image file formats or format for which an image file translator

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 513

is installed. The TIFF format is the recommended format as the TIFF translator is commonly
available. form•Z will request an icon when the tool is displayed in a tool menu using
fz_tool_cbak_icon_menu or fz_tool_cbak_icon_menu_adjacent.

form•Z supports 3 styles of icon display. Recall that these are selectable by the user from the
Icon Style menu in the Customize Tools dialog. The first two options (White and Gray) are
generated from a black and white source graphic with different treatments at drawing time. The
third option is generated from a color source graphic. The first two options are older icon styles
that are provided for backward compatibility. The color icons became the default with v 4.0. Note
that if an icon of one type or the other (or both) is not provided, then form•Z uses a generic icon
graphic.

The which parameter indicates the type of source graphic icon that is needed by form•Z. For
each type of icon source (black and white and color), there are two possible sizes. The full size
icon is the size that is used in the main tool palettes and tear off tool palettes. The black and
white source full size is 30 x 30 pixels and indicated by FZ_FUIM_ICON_MONOC. The color
source is 32 x 32 pixels and indicated by FZ_FUIM_ICON_COLOR. The alternate size is the
smaller size used for window icons that are drawn in the lower margin of the window. The
alternate size for both black and white and color sources is 20 x 16 pixels and indicated by
FZ_FUIM_ICON_MONOC_ALT and FZ_FUIM_ICON_COLOR_ALT respectively.

The floc parameter should be filled with the file name and location of the file that contains the
icon graphic. The hpos and vpos parameters should be set to the left and top pixel location of
icon data in the file respectively. It is recommended that the icon file be in the same directory as
the script file. This makes it simple to find the file. The location of the script file can be acquired
using the fz_script_file_get_floc API function.

The floc_mask parameter should be filled with the file name and location of the file that
contains the icon mask (this can be the same file as the floc parameter). The icon mask defines
the transparent areas of the icon. The hpos_mask and vpos_mask parameters should be set to
the left and top pixel location of icon mask data in the file respectively. If a mask is not provided
than the entire background of the icon will be drawn.

A single file can be used for multiple icons across a variety of tools by creating a grid of icons in
the file and specifying the location for each icon in the corresponding provided function.

long fz_tool_cbak_icon_file (
 fz_fuim_icon_enum which,
 fzrt_floc_ptr floc,
 mod long hpos,
 mod long vpos,
 fzrt_floc_ptr floc_mask,
 mod long hpos_mask,
 mod long vpos_mask
)
{

long err = FZRT_NOERR;

 switch(which)
 {
 case FZ_FUIM_ICON_MONOC :
 err = fz_script_file_get_floc(floc);
 if(err == FZRT_NOERR)

{ err = fzrt_file_floc_set_name(floc,"my_icon_bw.tif");
 hpos = 0;
 vpos = 0;
 }

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 514

 break;
 case FZ_FUIM_ICON_COLOR :
 err = fz_script_file_get_floc(floc);
 if(err == FZRT_NOERR)

{ err = fzrt_file_floc_set_name(floc,"
my_icon_col.tif");

 hpos = 0;
 vpos = 0;
 }
 break;
 }
 return(err);
}

The tool preferences IO function (optional)

long fz_tool_cbak_pref_io (
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 mod long version,

long size
);

form•Z calls this function to read and write any tool specific data to a form•Z preference file. This
function is called when reading and writing user specified preference files (Save Preferences
button in the Preferences dialog). It is also called by form•Z when reading and writing the session
to session preference file maintained by form•Z. The file IO is performed using the IO streams
(iost) interface. This interface provides functions for reading and writing data from a file (stream)
and handles all cross platform endian issues. The iost parameter is the pointer to the
preference file and should be used in all IO Stream function calls. The IO Stream functions
available to scripts are fully documented in the form•Z API reference.

The dir parameter indicates if the file is being written with a value of FZ_IOST_WRITE or read
with a value of FZ_IOST_READ. The version parameter should return the version of the data
that is written when writing a file. When reading a file, the version parameter contains the
version of the data that was written to the file (and hence being read). The size parameter is
only valid when dir == FZ_IOST_READ (read). This is the size of the data that was written in
the file.

It is the responsibility of the script to maintain version changes of the script data. In the following
example, in its first release, a tools data consisted of four long integer values, a total of 16 bytes.
When written, the version reported back to form•Z was 0. In a subsequent release, a fifth long
integer is added to increase the size to 20 bytes. When writing this new data, the version reported
to form•Z needs to be increased. When reading a file with the old version of the tool preference,
form•Z will pass in the version number of the attribute when it was written, in this case 0. This
indicates to the script, that only four integers, 16 bytes, need to be read and the fifth integer
should be set to a default value.

long fz_tool_cbak_pref_io (
 fz_iost_ptr iost,
 fz_iost_dir_td_enum dir,
 mod long version,
 long size
)
{
 long err = FZRT_NOERR;

 if (dir == FZ_IOST_WRITE) version = 1;

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 515

 err = fz_iost_one_long(iost,my_tool_value1);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_tool_value2);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_tool_value3);
 if(err == FZRT_NOERR)
 { err = fz_iost_one_long(iost,my_tool_value4);

 if(version >= 1)
 { err = fz_iost_one_long(iost,my_tool_value5);
 }
 }
 }
 }

 return(err);
}

The tool options name function (Optional)

long fz_tool_cbak_opts_name(
 mod fz_string_td name,
 long max_len

);

This function is called by form•Z to get the name of the tools options. The name is shown in
various places in the form•Z interface including the key shortcuts manager dialog. It is
recommended that the tool name is stored in a .fzr file so that it is localizable

long fz_tool_cbak_opts_name(
 mod fz_string_td name,
 long max_len

)
{
 long err = FZRT_NOERR;

 /* Get the title str “My Tool Options” from the script’s resource file */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 11, name);

 return(err);
}

The tool options uuid function (optional)

long fz_tool_cbak_opts_uuid (
 mod fzrt_UUID_td uuid
);

This function is called by form•Z to get the uuid of the tools options. This unique id is used by
form•Z to distinguish the tool options from other tool options . This function is recommended for
all tool scripts. If a UUID is not provided, one will be generated internally by form•Z. in this
situation the UUID will not be the same each time form•Z is run and hence persistent information
will not be retained. This any user customization like key shortcuts.

#define MY_TOOL_OPTS_ID
 "\xc1\x29\xc9\x71\x87\x16\x43\x19\xb9\xa5\x96\xe4\x1d\xe1\x7e\xb9"

long fz_tool_cbak_opts_uuid (
 mod fzrt_UUID_td uuid

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 516

)
{
 long err = FZRT_NOERR;

/* copy constant UUID to into the uuid parameter */
fzrt_UUID_copy(MY_TOOL_OPTS_ID, uuid);

 return(err);
}

The tool options help function (optional)

long fz_tool_cbak_opts_help(
 mod fz_string_td help,
 long max_len
);

This function is called by form•Z to display a help string that describes the detail of what the tool
does. This string is shown in the key shortcut manager dialog and the help dialogs. The help
parameter is a pointer to a string which can handle up to max_len characters. It is recommended
that the tool help string is stored in a .fzr file so that it is localizable . The display area for help is
limited so form•Z currently will ask for no more than 256 characters.

long fz_tool_cbak_opts_help(
 mod fz_string_td help,
 long max_len
)

{
 long err = FZRT_NOERR;

 /* Get the help string from the script’s resource file */
 err = fzrt_fzr_get_string(my_rfzr_refid, 1, 2, help);

 return(err);
}

The tool options interface template function (optional)

long fz_tool_cbak_opts_iface_tmpl(
 fz_fuim_tmpl_ptr tmpl_ptr
);

This function is called by form•Z when the interface for the tool options is needed. This template
is displayed inside the tool options palette when the tool is active and in a dialog when the user
invokes the dialog from the icon. The form•Z interface template functions should be called to
construct the interface of the palette in this function. Please see section XXX for more details on
the fuim template functions that are available for scripts. As scripts are more limited in scope than
plugins, the range of fuim functions is smaller and only certain dialog interface items can be
constructed by a palette script.

The following sample is a template which creates a number of different interface items.

#define MY_TOOL_RSRC_ID 1
#define MY_TOOL_TOOL_OPTS_NAME 1
#define MY_TOOL_BASE_TYPE 2
#define MY_TOOL_DYNAMIC 3
#define MY_TOOL_PRESET 4
#define MY_TOOL_RADIUS 5

3.7.4 Tool Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 517

#define MY_TOOL_RATIO 6

long my_tool_base_type;
fzrt_boolean my_tool_tool_opts_fixed;
double my_tool_radius;
double my_tool_ratio;

long fz_tool_cbak_opts_iface_tmpl(
 fz_fuim_tmpl_ptr tmpl_ptr
)
{
 long i,g1;
 fz_string_td menu_items[],name;
 long err;

 fzrt_fzr_get_string(my_rfzr_refid,MY_TOOL_RSRC_ID,
 MY_TOOL_TOOL_OPTS_NAME,name);

 if((err = fz_fuim_script_tmpl_init(tmpl_ptr,name,0,

MY_TOOL_TMPL_UUID,0)) == FZRT_NOERR)
 {
 for(i = 0; i < 8; i++)
 { fzrt_fzr_get_menu_string(my_rfzr_refid,1,i+2,menu_items[i]);
 }

fzrt_fzr_get_string(my_rfzr_refid,MY_TOOL_RSRC_ID,
MY_TOOL_BASE_TYPE,name);

 g1 = fz_fuim_script_new_menu(tmpl_ptr,FZ_FUIM_ROOT,FZ_FUIM_FLAG_NONE,
 FALSE,name,menu_items,8);
 fz_fuim_script_item_range_long(tmpl_ptr,g1,my_tool_base_type,0,7,
 FZ_FUIM_FORMAT_INT_DEFAULT,FZ_FUIM_RANGE_NONE);

fzrt_fzr_get_string(my_rfzr_refid,MY_TOOL_RSRC_ID,
MY_TOOL_DYNAMIC,name);

 g1 = fz_fuim_script_new_radio(tmpl_ptr,FZ_FUIM_ROOT,
FZ_FUIM_FLAG_NONE,name);

 fz_fuim_script_item_unary_bool(tmpl_ptr, g1, my_tool_tool_opts_fixed, 0);

 fzrt_fzr_get_string(my_rfzr_refid,MY_TOOL_RSRC_ID,

MY_TOOL_PRESET,name);
 g1 = fz_fuim_script_new_radio(tmpl_ptr,FZ_FUIM_ROOT,

FZ_FUIM_FLAG_NONE,name);
 fz_fuim_script_item_unary_bool(tmpl_ptr, g1, my_tool_tool_opts_fixed, 1);

 fzrt_fzr_get_string(my_rfzr_refid,MY_TOOL_RSRC_ID,

MY_TOOL_RADIUS,name);
 g1 = fz_fuim_script_new_text_edit(tmpl_ptr,FZ_FUIM_ROOT,

FZ_FUIM_FLAG_NONE,name);
 fz_fuim_script_item_range_double(tmpl_ptr,g1,my_tool_radius,0.0,0.0,
 FZ_FUIM_FORMAT_FLOAT_DISTANCE,FZ_FUIM_RANGE_MIN);

 fzrt_fzr_get_string(my_rfzr_refid,MY_TOOL_RSRC_ID,

MY_TOOL_RATIO,name);
 fz_fuim_script_new_slider_edit_pcent_double(tmpl_ptr,FZ_FUIM_ROOT,

name,my_tool_ratio,
 0.0,1.0,0.0,100.0,
 FZ_FUIM_RANGE_MIN | FZ_FUIM_RANGE_MIN_INCL |
 FZ_FUIM_RANGE_MAX | FZ_FUIM_RANGE_MAX_INCL,NULL);

 }
 return(err);
}

3.7.5 Utility Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 518

3.7.5 Utility Scripts

Utility scripts are designed to execute a task which is either less frequently used or an item in the
form•Z interface is not desired. Utility scripts are best used on tasks that are linear in nature (like
batch processing). Utility scripts are not loaded by form•Z at startup. This allows form•Z to start
up faster and use less memory. Utility scripts are not listed in the Extensions Manager dialog and
they do not need to be located in the Extensions Manager’s search paths.

The user invokes a utility script by selecting the Run Utility… item from the Extensions menu. The
user is then prompted with a standard file open dialog to select the scripts executable file (.fsb) or
script source file (.fsl) to run. If a source file is selected, it is first compiled to create the script
executable. If any compile errors occur, the utility is not executed.

When the utility script is invoked, form•Z loads the utility script, calls the utility main execution
function to execute the script and then the script is unloaded. The script can call form•Z API
functions (including interface) in the main execution function to perform its task. While a utility is
executing no other tasks can take place in form•Z (except network rendering communication).
Control remains within the utility until the script has completed its task. To provide the best user
experience is recommended that you provide the ability to cancel the operation and provide a
progress bar for time-consuming tasks.

There are two variants to the utility scripts, system and project. System utilities are not dependent
on a project window. Project utilities are dependent on a project window and are expected to
function on the provided project window. A script that renders all of the form•Z projects in a
directory is an example of a system utility.

3.7.5.1 System Utility

System utilities are defined by tagging the script in its header with the script_type keyword
and the proper identifier as follows:

script_type FZ_UTIL_SYST_EXTS_TYPE

The user invokes a system utility script by selecting the Run Utility… item from the Extensions
menu. A system utility can also be invoked from another plugin or script by calling the API
function fz_syst_script_exec_util, or fz_syst_plugin_exec_util. The desired utility
is specified by its location and file name.

System utility call back functions.

System utility scripts are implemented by defining one callback function. This is the function that
is invoked by form•Z when the utility script is selected by the user.

The main execution function (required)

long fz_util_cbak_syst_main();

This is the main function for a System utility. When the script is invoked, this function is called to
perform the work of the script. All execution for the script is done inside this function (or local
script functions called from this function). When execution flow exits this function, the script is
unloaded.

3.7.5 Utility Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 519

long fz_util_cbak_syst_main()
{
 long err = FZRT_NOERR;

 /* Do utility work, call API functions etc. */

 return(err);
}

3.7.5.2 Project Utility

Project utilities are defined by tagging the script in its header with the script_type keyword and
the proper identifier as follows:

script_type FZ_UTIL_PROJ_EXTS_TYPE

The user invokes a project utility script by selecting the Run Utility… item from the Extensions
menu. A project utility can also be invoked from another plugin or script by calling the API function
fz_proj_script_exec_util, or fz_proj_plugin_exec_util. The desired utility is
specified by its location and file name.

Project utility call back functions.

Project utility scripts are implemented by defining one callback function. This is the function that is
invoked by form•Z when the utility script is selected by the user.

The main execution function (required)

long fz_util_cbak_proj_main(
 long windex
);

This is the main function for a project utility. When the script is invoked, this function is called to
perform the work of the script. All execution for the script is done inside this function (or local
script functions called from this function). When execution flow exits this function, the script is
unloaded.

long fz_util_cbak_proj_main(
 long windex
)
{
 long err = FZRT_NOERR;

 /* Do utility work with windex, call API functions etc. */

 return(err);
}

3.7.6 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 520

3.7.6 Object types

In form•Z, there is a large number of object types, also called controlled objects. They are, for
example, extrusions, enclosures, cubes, cones, cylinders, spheres, tori, sweeps, stairs etc. A
controlled object stores its generation parameters in a data block that is maintained with the
object. The parameters can be displayed in a dialog editing environment, which can be invoked
form the Query dialog. The parameters of some controlled objects can also be edited graphically
through the Edit Controls tool. It is possible to create custom object types in a script

Object type script type

Object type scripts are defined by tagging the script in its header with the script_type keyword
and the proper identifier as follows :

script_type FZ_OTYP_EXTS_TYPE

Object type call back function set.

Object type scripts are implemented by defining a set of callback functions. Some of these
functions are optional, while others are required. Each of these functions is described in the
following sections. As with all other script types, the object type script must implement the
fz_script_cbak_info callback function, which defines basic information about the script. This is
discussed in more detail in section 3.3.

The name function (required)

long fz_otyp_cbak_name (

long windex,
fz_objt_ptr objt,
fzrt_ptr parm,
fz_string_td str,
long max_str
);

The name function defines a name for the object type. This name will show up in the form•Z
interface, whenever object types are listed. The name function must assign a string to the
function's name argument. The length of the string assigned cannot exceed max_len characters.
An example of a name function is shown below.

long fz_otyp_cbak_name(
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 mod fz_string_td str,
 long max_len
)
{
 long err = FZRT_NOERR;

 str = "Star - SDK Script Sample";

 return(err);
}

The objt and parm parameters may be passed as NULL. In this case a name for all objects of

3.7.6 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 521

this type should be returned. If objt and parm are passed in, a particular object of this type
exists, and the type name may be further specified based on the parameters of the object. For
example, the sweep object type in form•Z works this way. When its name function is called with
NULL, it returns "Sweep". However, if it is called with a particular object as the parameter, the
returned name contains which type of sweep it is, for example, "Axial Sweep", or "Two Source
Sweep". Other object types do not make such a distinction and always return the same name,
such as spheres, nurbz or symbols. It is recommended that the object type name is stored in a
.fzr resource file and retrieved from it, when assigned to the name argument, so that it can be
localized for different languages. In the example above, this step is omitted for the purpose of
simplicity.

The info function (required)

long fz_otyp_cbak_info (
 mod long flags
);

form•Z needs to know some basic information about the object type, for example, whether the
object type is always smooth, always facetted or both. This information is defined in the flags
argument. This argument should be set with the bit encoded flags defined in the enum
fz_otyp_flags_enum. Setting a bit in the flags argument of the function enables the
functionality described by the bit. Setting a bit can be done with the FZ_SETBIT utility function. In
case of the star object, it is defined to always generate facetted model type objects and also
chooses to let form•Z handle the reversing of the object topology. The info function for the star
object type is shown below.

long fz_otyp_cbak_info (
 mod long flags
)
{
 flags = 0;

 FZ_SETBIT(flags,FZ_OTYP_ALWAYS_FACET);
 FZ_SETBIT(flags,FZ_OTYP_HANDLE_RVRS);

 return(FZRT_NOERR);
}

A complete description of all object type flags follows:

FZ_OTYP_NON_UNI_SCALE
Certain parametric data cannot be scaled non uniformly. For example, local coordinate system
with its own x, y and z axes would be distorted and even skewed with a non uniform scaling. In
such a case, this bit should not be set. If a non uniform scale is applied to the object, the control
parameters are automatically dropped by form•Z. Other parametric data can be scaled non
uniformly. This is the case, for example, with nurbZ curves, which are defined by a set of control
points. Scaling the control points also scales the evaluated shape of the curve. In this case, the
bit should be set. The object can then be scaled non uniformly without loosing the parameters
data.

FZ_OTYP_NO_RENDER
When this bit is set, the object will not be rendered in high end rendering modes, such as
RenderZone. They will only be rendered in the interactive rendering modes. If the bit is not set,
the object will always be rendered. This flag is expected to be used less frequently. It may be
applied to object types, which are temporary in nature.

FZ_OTYP_NO_SYS_FLIP

3.7.6 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 522

When this bit is set, the object cannot be transformed so that a coordinate system changes from
left hand to right hand without dropping the object to a plain object. Such a transformation occurs,
for example, when mirroring about a plane or when scaling with one of the scale factors being
negative and the other ones positive. If this bit is not set, such transformations are allowed and
the object controls are not dropped.

FZ_OTYP_ALWAYS_SMOOTH
When this bit is set, the object is always a smooth object. In other words, its model type is always
smooth. It is not possible to have both, FZ_OTYP_ALWAYS_SMOOTH and
FZ_OTYP_ALWAYS_FACET set. However if none are set, the object may be smooth or facetted.

FZ_OTYP_ALWAYS_FACET
When this bit is set, the object is always a facetted object. In other words, it never has a smooth
object representation. It is not possible to have both, FZ_OTYP_ALWAYS_SMOOTH and
FZ_OTYP_ALWAYS_FACET set. However if none are set, the object may be smooth or facetted.

FZ_OTYP_HANDLE_RVRS
When this bit is set, the parametric representation of the object cannot be reversed in direction. In
this case, form•Z will reverse the object facets after a reverse operation occurred. If this bit is not
set, it is the responsibility of the object type to reverse its parametric
data. This is usually done in the fz_otyp_cbak_rvrs callback function.

FZ_OTYP_EXPL_PER_PART
When this bit is set, the explode operation may yield multiple volumes for this object. When this
bit is not set, the object is always represented by only one volume. In the Convert Options dialog,
the Per Part check box will be added if this bit is set.

FZ_OTYP_NESTED_CURVE_CNTRL
When this bit is set, the object type is assumed to define an open or closed curve, which lends
itself as the source for a number of other derivative objects, such as sweep, helix or revolved
objects.

The parameter count function (recommended)

long fz_otyp_cbak_parm_count(
 mod long count
);

The parameter count function tells form•Z, through how many parameters the object type is
defined. This number may not only include the parameters exposed to the user in the dialog
interface, but also hidden parameters that may be necessary to store additional information.

long fz_otyp_cbak_parm_count(
 mod long count
)
{
 count = 6;
 return(FZRT_NOERR);
}

The parameter info function (recommended)

long fz_otyp_cbak_parm_get_info2 (
 long parm_indx,
 mod fzrt_UUID_td parm_uuid,
 mod fz_string_td parm_name,
 mod fz_type_enum parm_type,

3.7.6 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 523

 mod fz_fuim_format_int_enum parm_format_int,
 mod fz_fuim_format_float_enum parm_format_float,
 mod fz_fuim_item_type_enum parm_fuim_item,
 mod long parm_range,
 fz_type_ptr parm_range_min,
 fz_type_ptr parm_range_max,
 mod long flags
);

The parameter info function returns a number of informational values about a particular
parameter. form•Z may invoke this function, for example, to automatically save a parameter's
value to file. form•Z typically calls this function by looping over the number of parameters
returned by the parameter count function (fz_otyp_cbak_parm_count). The only input
argument to the info function is parm_indx. This is the nth parameter of the object relative to the
parameter count. All other function arguments are output arguments. Each parameter needs to
have a unique id. This id is returned by the parm_uuid argument. The name of the parameter,
as it appears in a dialog is returned by parm_name. The data type of the parameter is defined by
parm_type. The interface format for integer and floating point parameters are returned by
parm_format_int and parm_format_float. The choice of dialog interface control by which
the parameter is shown in a dialog is defined by parm_fuim_item. Whether or not the
parameter value has lower and upper range limits is returned by parm_range. The min and max
ranges are set in parm_range_min and parm_range_max. The flags argument defines
additional attributes of the parameter. They are bit encoded. The allowable bits for the flags
argument are :

FZ_OTYP_PARM_NO_ANIM_BIT
When this bit is set, form•Z cannot animate the parameter.

FZ_OTYP_PARM_READ_ONLY_BIT
When this bit is set, the parameter cannot be changed through the fz_otyp_cbak_parm_set
function.

FZ_OTYP_PARM_ANIM_LEVEL1_BIT
When this bit is set, the parameter is considered a good parameter for animation. The parameter
usually represents a fluid state. That is, a small change in the parameter causes a small change
in the object. This makes it meaningful for animation. It is therefore added to the object's track list,
by default, when keyframing the object. An example for such a parameter would be the radius of
a sphere.

FZ_OTYP_PARM_ANIM_LEVEL2_BIT
When this bit is set, the parameter is considered a secondary parameter for animation. Usually,
the parameter represents a state, that is not fluid. That is, a change in the parameter causes the
object to take on a significantly different shape. While such a parameter can be animated, it is not
added to the object's track list, by default, when keyframing the object. An example for such a
parameter would be the type of a spherical object (tetrahedron, hexahedron, octahedron ...).

FZ_OTYP_PARM_HIDDEN_BIT
When this bit is set, the parameter is considered hidden, when the dialog interface is build. This
may be the case, for example, when a parameter is used for storage of data only, but not for
modification by the user.

The parameter info function for the star object type is shown below.

long fz_otyp_cbak_parm_get_info2 (
 long parm_indx,
 mod fzrt_UUID_td parm_uuid,

3.7.6 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 524

 mod fz_string_td parm_name,
 mod fz_type_enum parm_type,
 mod fz_fuim_format_int_enum parm_format_int,
 mod fz_fuim_format_float_enum parm_format_float,
 mod fz_otype_fuim_item_enum parm_fuim_item,
 mod long parm_range,
 fz_type_ptr parm_range_min,
 fz_type_ptr parm_range_max,
 mod long flags
)
{
 long lval;
 double fval;

 switch (parm_indx)
 {
 case 0 :
 parm_uuid = STAR_PARM_TYPE_ID;
 parm_name = "Base Type";
 parm_type = FZ_TYPE_LONG;
 parm_format_int = FZ_FUIM_FORMAT_INT_DEFAULT;
 parm_fuim_item = FZ_FUIM_ITEM_MENU;
 lval = 0;
 fz_type_set_long(lval,parm_range_min);
 lval = 7;
 fz_type_set_long(lval,parm_range_max);
 flags = 0;
 break;

 case 1 :
 parm_uuid = STAR_PARM_RADIUS_ID;
 parm_name = "Radius";
 parm_type = FZ_TYPE_DOUBLE;
 parm_format_float = FZ_FUIM_FORMAT_FLOAT_DISTANCE;
 parm_fuim_item = FZ_FUIM_ITEM_TEXT;
 parm_range = FZ_FUIM_RANGE_MIN;
 fval = 0.0;
 fz_type_set_double(fval,parm_range_min);
 flags = 0;
 break;

 case 2 :
 parm_uuid = STAR_PARM_RATIO_ID;
 parm_name = "Ray Ratio";
 parm_type = FZ_TYPE_DOUBLE;
 parm_format_float = FZ_FUIM_FORMAT_FLOAT_PERCENT;
 parm_fuim_item = FZ_FUIM_ITEM_SLIDER_TEXT;
 parm_range = FZ_FUIM_RANGE_MIN |
 FZ_FUIM_RANGE_MIN_INCL |
 FZ_FUIM_RANGE_MAX |
 FZ_FUIM_RANGE_MAX_INCL;
 fval = 0.0;
 fz_type_set_double(fval,parm_range_min);
 fval = 1.0;
 fz_type_set_double(fval,parm_range_max);
 flags = 0;
 break;

 case 3:
 parm_uuid = STAR_PARM_ORG_ID;
 parm_name = "Origin";
 parm_type = FZ_TYPE_XYZ;
 flags = 0;
 FZ_SETBIT(flags,FZ_OTYP_PARM_HIDDEN_BIT);
 break;

3.7.6 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 525

 case 4:
 parm_uuid = STAR_PARM_XAXIS_ID;
 parm_name = "X Axis";
 parm_type = FZ_TYPE_XYZ;
 flags = 0;
 FZ_SETBIT(flags,FZ_OTYP_PARM_HIDDEN_BIT);
 break;

 case 5:
 parm_uuid = STAR_PARM_YAXIS_ID;
 parm_name = "Y Axis";
 parm_type = FZ_TYPE_XYZ;
 flags = 0;
 FZ_SETBIT(flags,FZ_OTYP_PARM_HIDDEN_BIT);
 break;

 }

 return(FZRT_NOERR);
}

The parameter get state name function (recommended)

long fz_otyp_cbak_parm_get_state_str (
 fzrt_UUID_td parm_uuid,
 long indx,
 mod fz_string_td str
);

This function should be implemented, if an integer or boolean parameter is displayed as a menu
item in a dialog. Given the parameter's uuid, this function returns the nth string associated with
the nth state of that parameter. This function may also be used if the parameter is shown through
a set of radio buttons. The get state name function is mainly used when form•Z automatically
builds a dialog interface and by the animation track editor interface.

long fz_otyp_cbak_parm_get_state_str (
 fzrt_UUID_td parm_uuid,
 long indx,
 mod fz_string_td str
)
{
 if (parm_uuid == STAR_PARM_TYPE_ID)
 {
 switch (indx)
 {
 case 0 : str = "Tetrahedron"; break;
 case 1 : str = "Hexahedron"; break;
 case 2 : str = "Octahedron"; break;
 case 3 : str = "Dodecahedron"; break;
 case 4 : str = "Icosahedron"; break;
 case 5 : str = "Soccer Ball"; break;
 case 6 : str = "Geodesic Level 1"; break;
 case 7 : str = "Geodesic Level 2"; break;
 }
 }

 return(FZRT_NOERR);
}

3.7.6 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 526

The init function (recommended)

long fz_otyp_cbak_init (
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm
);

form•Z calls this function to initialize the parameters of the object with default values. The
storage for the parameters has already been allocated by form•Z and is passed in to this function
as the parm parameter. The object to which the parameters belong and the project in which the
object resides are passed in as well. The init function for the star object type is shown below.

long fz_otyp_cbak_init (
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm
)
{
 long lval;
 double dval;
 fz_xyz_td xyz;

 lval = 0; fz_objt_edit_parm_set(windex,obj,STAR_PARM_TYPE_ID,lval);
 dval = 12.0; fz_objt_edit_parm_set(windex,obj,STAR_PARM_RADIUS_ID,dval);
 dval = 0.5; fz_objt_edit_parm_set(windex,obj,STAR_PARM_RATIO_ID,dval);

 xyz = {0,0,0}; fz_objt_edit_parm_set(windex,obj,STAR_PARM_ORG_ID,xyz);
 xyz = {1,0,0}; fz_objt_edit_parm_set(windex,obj,STAR_PARM_XAXIS_ID,xyz);
 xyz = {0,1,0}; fz_objt_edit_parm_set(windex,obj,STAR_PARM_YAXIS_ID,xyz);

 return(FZRT_NOERR);
}

The regeneration function (required)

long fz_otyp_cbak_regen (
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm
);

The regeneration function is called when form•Z needs to recreate the shape of the object based
on the current settings of the object's parameters. This may be necessary, for example, after the
display resolution attribute of the object was edited, or a parameter of the object was altered
through the edit dialog, invoked from the Query dialog. This function constitutes the real essence
of the object type, as it defines the steps necessary to create the final form of the object, executed
by calling various form•Z API functions. There are a number of ways to create the object's shape.
One would be to construct one face at a time, using the API fz_objt_fact_create_face.
This process is illustrated in the regenerate function of the star object type shown below.

long fz_otyp_cbak_regen (
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm
)
{
 long rv = FZRT_NOERR;

fz_xyz_td rxyz,rot,pnt[],vec,star_origin,xaxis,yaxis;
 double radius,star_radius,star_rad_ratio;
 long i,n,ncord,nsegt,ncurv,nface,ncord2,nsegt2,ncurv2,nface2;

3.7.6 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 527

 long sindx,shead,snext,pindx[3],lval;
 fz_map_plane_td local_mplane;
 fz_objt_ptr temp_obj;
 fz_objt_spid_type_enum spid_type;
 fz_objt_spid_cnstr_opts_ptr spid_opts;
 fzrt_boolean bval;
 long star_base_type;

 if(parm != NULL)
 {

 star_otyp_get_mplane(windex,obj,local_mplane);
 fz_objt_fact_reset(windex, obj);

 fz_objt_edit_parm_get(windex,obj,STAR_PARM_TYPE_ID,star_base_type);
 fz_objt_edit_parm_get(windex,obj,STAR_PARM_RADIUS_ID,star_radius);
 fz_objt_edit_parm_get(windex,obj,STAR_PARM_RATIO_ID,star_rad_ratio);
 fz_objt_edit_parm_get(windex,obj,STAR_PARM_ORG_ID,star_origin);
 fz_objt_edit_parm_get(windex,obj,STAR_PARM_XAXIS_ID,xaxis);
 fz_objt_edit_parm_get(windex,obj,STAR_PARM_YAXIS_ID,yaxis);

 fz_math_3d_vec_rotation_xyz(xaxis,yaxis,rot);

 radius = star_radius * (START_RATIO_MIN +

star_rad_ratio * (START_RATIO_MAX - START_RATIO_MIN));
 rxyz.x = radius;
 rxyz.y = radius;
 rxyz.z = radius;
 spid_opts = NULL;

 switch (star_base_type)
 {
 case 0 : spid_type = FZ_OBJT_SPID_TYPE_TETRA; break;
 case 1 : spid_type = FZ_OBJT_SPID_TYPE_HEXA; break;
 case 2 : spid_type = FZ_OBJT_SPID_TYPE_OCTA; break;
 case 3 : spid_type = FZ_OBJT_SPID_TYPE_DODECA; break;
 case 4 : spid_type = FZ_OBJT_SPID_TYPE_ICOSA; break;
 case 5 : spid_type = FZ_OBJT_SPID_TYPE_SOCCER; break;
 case 6 :
 case 7 :
 spid_type = FZ_OBJT_SPID_TYPE_GEO;
 fz_objt_cnstr_spid_opts_init(windex,spid_opts);
 if (star_base_type == 6) lval = 2;
 else lval = 4;

fz_objt_cnstr_spid_opts_set(windex,spid_opts,
FZ_OBJT_SPID_PARM_GEO_NUM_SUBDIV,lval);

 bval = TRUE;
 fz_objt_cnstr_spid_opts_set(windex,spid_opts,

FZ_OBJT_SPID_PARM_GEO_BY_LEVEL,bval);
 break;

 }

 if((rv = fz_objt_cnstr_spid(windex,rxyz,spid_type,

star_origin,rot,spid_opts,temp_obj)) == FZRT_NOERR)
 {
 fz_objt_get_face_count(windex,temp_obj,

FZ_OBJT_MODEL_TYPE_FACT,nface);
 fz_objt_get_curv_count(windex,temp_obj,

FZ_OBJT_MODEL_TYPE_FACT,ncurv);
 fz_objt_get_segt_count(windex,temp_obj,

FZ_OBJT_MODEL_TYPE_FACT,nsegt);
 fz_objt_get_point_count(windex,temp_obj,

3.7.6 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 528

FZ_OBJT_MODEL_TYPE_FACT,ncord);

 ncord2 = ncord + nface;
 ncurv2 = 0;
 nface2 = 0;
 nsegt2 = 0;
 for(i = 0; i < ncurv; i++)
 {
 fz_objt_curv_get_segt_count(windex,temp_obj,i,

FZ_OBJT_MODEL_TYPE_FACT,n);
 ncurv2 += n;
 nface2 += n;
 nsegt2 += n * 3;
 }

 if((rv = fz_objt_fact_allocate(windex,obj,

nface2,ncurv2,nsegt2,ncord2)) == FZRT_NOERR)
 {
 /* COPY SPHEROID POINTS */
 for(i = 0; i < ncord; i++)
 { fz_objt_point_get_xyz(windex,temp_obj,i,

FZ_OBJT_MODEL_TYPE_FACT,pnt[i]);
 }
 fz_objt_fact_add_pnts(windex,obj,pnt,ncord);

 /* CREATE STAR TIP POINTS */
 radius = star_radius - radius;
 for(i = 0; i < nface; i++)
 {
 fz_objt_alys_get_face_cog(windex,temp_obj,i,

FZ_OBJT_MODEL_TYPE_FACT,pnt[i]);
 fz_math_3d_create_unit_vec(star_origin,pnt[i],vec);
 pnt[i] += vec * radius;
 }
 fz_objt_fact_add_pnts(windex,obj,pnt,nface);

 /* CREATE FACES */
 for(i = 0; i < ncurv; i++)
 {
 fz_objt_curv_get_segt_count(windex,temp_obj,i,

FZ_OBJT_MODEL_TYPE_FACT,n);

 fz_objt_curv_get_sindx(windex,temp_obj,i,

FZ_OBJT_MODEL_TYPE_FACT,shead);
 sindx = shead;
 do
 {
 fz_objt_segt_get_next(windex,temp_obj,sindx,

FZ_OBJT_MODEL_TYPE_FACT,snext);

 fz_objt_segt_get_start_pindx(windex,temp_obj,

sindx,FZ_OBJT_MODEL_TYPE_FACT,pindx[0]);
 fz_objt_segt_get_end_pindx(windex,temp_obj,

sindx,FZ_OBJT_MODEL_TYPE_FACT,pindx[1]);
 pindx[2] = ncord + i;

 fz_objt_fact_create_face(windex,obj,

pindx,3,NULL);

 } while ((sindx = snext) != shead);
 }

 /* LINK FACES */
 fz_objt_fact_link_faces(windex,obj);
 }

3.7.6 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 529

 if (spid_opts) fz_objt_cnstr_spid_opts_finit(windex,spid_opts);

 fz_objt_edit_delete_objt(windex, temp_obj);
 }
 }

 return(rv);
}

Another method to create the object's shape would be to use a sequence of higher level API
construction functions. These will create temporary objects, which can be combined using editing
API function to yield the final object. The temporary objects used along the way need to be
deleted and the content of the final object copied into the object passed into the regeneration
function. For example, the star object could be constructed by creating a number of pyramids (the
star's rays), transforming them to attach to the faces of a spheroid object and then using the
boolean union tool to join the all together into the final shape. The intermediate objects all need to
be deleted. In this case, the direct creation process clearly is the better approach.

The finit function (optional)

long fz_otyp_cbak_finit (

long windex,
fz_objt_ptr objt,
fzrt_ptr parm
);

form•Z calls the finit function whenever an object of the given type is deleted. The function is
expected to take whatever action is necessary, when an object of this type ceases to exist. Note
that it is not necessary to delete the basic storage for the object's parameters, which is passed in
this function as the parm argument. In case of the star object, the finit function is not necessary
as no special steps are necessary when the object is deleted.

The transform function (optional)

long fz_otyp_cbak_tform (
 long windex,
 fz_objt_ptr objt,
 fzrt_ptr parm,
 fz_mat4x4_td tform
);

form•Z calls the transform function whenever an object is transformed (moved, rotated, scaled
and/or mirrored). When an object contains positional geometric properties, such as an origin or
3d points they need to be transformed as well. Points can be transformed with the math API
function fz_math_4x4_multiply_mat_xyz. If an object contains a linear dimension, such as
a radius, only the scale factor of the matrix need to be applied. This scale factor can be extracted
with the math API fz_math_4x4_mat_to_trl_scl_rot. The transform function for the star
object type is listed below.

long fz_otyp_cbak_tform (
 long windex,
 fz_objt_ptr objt,
 fzrt_ptr parm,
 fz_mat4x4_td tform
)
{

 fz_xyz_td org,xaxis,yaxis,xaxis_pt,yaxis_pt,scl;

3.7.6 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 530

 double radius;

 fz_math_4x4_mat_to_trl_scl_rot(tform,NULL,scl,NULL);

 fz_objt_edit_parm_get(windex,objt,STAR_PARM_ORG_ID,org);
 fz_objt_edit_parm_get(windex,objt,STAR_PARM_XAXIS_ID,xaxis);
 fz_objt_edit_parm_get(windex,objt,STAR_PARM_YAXIS_ID,yaxis);
 fz_objt_edit_parm_get(windex,objt,STAR_PARM_RADIUS_ID,radius);

 xaxis_pt = xaxis + org;
 yaxis_pt = yaxis + org;

 fz_math_4x4_multiply_mat_xyz(tform, org);
 fz_math_4x4_multiply_mat_xyz(tform, xaxis_pt);
 fz_math_4x4_multiply_mat_xyz(tform, yaxis_pt);

 xaxis = xaxis_pt - org;
 yaxis = yaxis_pt - org;
 radius *= scl.x;

 fz_objt_edit_parm_set(windex,objt,STAR_PARM_RADIUS_ID,radius);
 fz_objt_edit_parm_set(windex,objt,STAR_PARM_ORG_ID,org);
 fz_objt_edit_parm_set(windex,objt,STAR_PARM_XAXIS_ID,xaxis);
 fz_objt_edit_parm_set(windex,objt,STAR_PARM_YAXIS_ID,yaxis);

 return(FZRT_NOERR);
}

The geometry function (optional)

long fz_otyp_cbak_geom(
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 mod fz_map_plane_td plane,
 mod fz_xyz_td center,
 mod fz_xyz_mm_td bbox
);

form•Z calls the geometry function to retrieve basic geometric information about the object. It
should be implemented if the object has its own, local coordinate system. For example, a sphere
has its own x, y and z axis, which describe the location and orientation of the sphere in 3d space.
The plane parameter returns the origin and rotation of the object's coordinate system in world
space. This information is used, for example, to draw the object axes in wireframe. The center
parameter returns the object's origin in the coordinate space of the object. Usually the center
would be set to {0.0, 0.0, 0.0}, but may have different values, depending on the nature of the
object. The bbox parameter returns the extent of the object along its x, y and z axis. If this
function is not implemented by the plugin, the information is calculated from the facetted data of
the object. For example, the center is computed as the average of all coordinate points of the
object. The geometry function for the star object type is shown below.

long fz_otyp_cbak_geom(
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 mod fz_map_plane_td plane,
 mod fz_xyz_td center,
 mod fz_xyz_mm_td bbox
)
{

3.7.6 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 531

 double radius;
 fz_xyz_td org,xaxis,yaxis,xaxis_pt,yaxis_pt;
 long err = FZRT_NOERR;

 if(parm != NULL)
 {
 fz_objt_edit_parm_get(windex,obj,STAR_PARM_ORG_ID,org);
 fz_objt_edit_parm_get(windex,obj,STAR_PARM_XAXIS_ID,xaxis);
 fz_objt_edit_parm_get(windex,obj,STAR_PARM_YAXIS_ID,yaxis);

 xaxis_pt = xaxis + org;
 yaxis_pt = yaxis + org;

 fz_math_3d_map_plane_from_pts(xaxis_pt, org, yaxis_pt, plane);

 center.x = 0.0;
 center.y = 0.0;
 center.z = 0.0;

 fz_objt_edit_parm_get(windex,obj,STAR_PARM_RADIUS_ID,radius);
 bbox.xmin = bbox.ymin = bbox.zmin = -radius;
 bbox.xmax = bbox.ymax = bbox.zmax = radius;
 }

 return(err);
}

The cvsl function (optional)

fzrt_error_td fz_otyp_cbak_cvsl (

long windex,
fz_objt_ptr obj,
fzrt_ptr parm,
mod fz_xyz_td cog,
mod double volume,
mod double surf_area,
mod double length,
mod long result
);

The cvsl function is called by form•Z to retrieve the center of gravity, volume, surface area and
length (abbreviated cvsl) of an object. This function should be implemented, when the object type
can provide more accurate values, than those computed from the facetted or smooth topology
and geometry of the object. Since not all of these properties can be calculated for an object, the
result parameter returned to form•Z tells which properties were computed by the function, by
setting certain bits to on.
bit 0: center of gravity was calculated
bit 1: volume was calculated
bit 2: surface area was calculated
bit 3: perimeter length was calculated
For example, the perimeter length can only be calculated for curve like objects but not for solids.
Therefore, for solids, bit #3 should not be set.

The key points function (optional)

long fz_otyp_cbak_get_key_pnts(
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,

3.7.6 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 532

 mod long knt,
 long pnt_indx,
 mod fz_xyz_td pnt
);

form•Z calls the key points function to get important points from the object, which may not be part
of the object's actual geometry. For example, the key points of an arc are its center, its start and
end point. This function is called in two modes. If pnt_indx is passed as -1 the function only
needs to determine how many key points there are and pass that value back in the knt
parameter. If pnt_indx is passed as 0 or greater, it identifies which key point to set in the pnt
function argument. The key points function for the star object type is shown below.

long fz_otyp_cbak_get_key_pnts(
 long windex,
 fz_objt_ptr obj,
 fzrt_ptr parm,
 mod long knt,
 long pnt_indx,
 mod fz_xyz_td pnt
)
{
 long err = FZRT_NOERR;
 fz_map_plane_td local_mplane;

 knt = 1;

 if(pnt_indx == 0)
 {
 star_otyp_get_mplane(windex,obj,local_mplane);

 pnt.x = 0.0;
 pnt.y = 0.0;
 pnt.z = 0.0;

 fz_math_3d_map_plane_to_world(local_mplane, pnt);
 }

 return(err);
}

3.7.6 Object Type form•Z SDK (v6.0.0.0 rev 05/30/06) 533

3.8 Developing and debugging Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 534

3.8 Developing and debugging scripts

3.8.1 Editing Scripts

form•Z Script environment

The Script Editor is an environment that allows you to edit and compile form•Z Scripts. The Script
environment is available whenever a Script Window is selected, or by clicking on the New

Script menu item or the Open item, both in the File menu. This environment is useful for a
quick edit-compile-test cycle without the need to leave the form•Z Application to edit the script
file. The Script Editor also exists as a standalone application. That is, it only offers the script
editing environment. No modeling or drafting windows can be opened in the Script Editor
application. With the exception of the utility scripts, it is necessary to restart form•Z to see the
changes made to a script after it was compiled. With the Script Editor as a standalone application,
it is possible to run the Editor application all the time to edit and compile the script, while starting
and quitting form•Z to test the script.

The Script window is a basic text editor. Typing text into this window will enter the text at the
current insertion point indicated by a flashing vertical bar. The insert point can be changed by
clicking once in the contents of the script window. The insert point is changed to the spot that is
clicked. The insertion point may also be changed by using the navigational arrow keys. Pressing
the left or right arrow keys will move the insertion point one character left or right respectively.
Pressing the up or down arrow keys will move the insertion point up or down one line
respectively.

You may select text by clicking and dragging the mouse over the text you wish to select, or you
can double-click to select a word or triple-click to select a line of text. Typing text with a range of
text currently selected will replace the selected text with the newly typed text.

All of the text in the script window is styled with the same font and font size, which can be set in
the Script Preferences described below. It is recommended that a fixed width font be used so that
all lines of text can be lined up to indicated nesting levels in the script language.

The menu bar of the Script Editor has 6 menus: File, Edit, Window, Search, Script, and
Help. The following sections will describe the menu items that are available in the standalone
application. The menus for the Script Editor environment in the form•Z Application will contain
additional menu items, that do not directly affect Script Editor windows. These menu items are
described in the form•Z Application User's Manual.

3.8.1.1 The File Menu

New Script

The New Script item opens a new form•Z Script window. The Script Window is used to create
and edit your form•Z script. The new window becomes the active window and appears above all
other windows. The contents in a new Script window are not stored on disk until it is saved to a
file using Save, or Save As... discussed below.

Open...

This item will open an existing file. If the file was already open, it will bring the previously opened
window to the top of all other windows. The file may be a form•Z Script or any other form•Z
native file format. Other form•Z native file formats include form•Z Project files, form•Z Libraries

3.8 Developing and debugging Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 535

and form•Z Imager Sets. These are discussed elsewhere in the manual.
Close

This command will close the active script window. If changes have been made since the last save
command, an alert will be displayed prompting you to save change or close without saving. After
the window is closed the previously active window becomes the active window.

Save

This command will save the currently active Script window. The Script windows is saved as a text
file with the extension .fsl. On Macintosh it will additionally have the Finder type of 'TEXT'. If the
window has not been saved before, this command will display the Save As... dialog. The default
name of a file the first time it is saved is ScriptN.fsl where N is a decimal number indicating which
New Script window was created.

Save As…

This command will save the contents of the currently active Script window to a new file. This
command is usually executed the first time a window is saved or your want the contents saved to
a different file. It will display a standard Save As dialog. By default the file is saved in the users
Documents folder. After the file has been saved to a new file, the title of the script window now
reflects the new filename, and all subsequent Save commands will save the file to the new file.

Save A Copy As...

This command will save the contents of the currently active Script window to a new file. It
resembles the Save As... command in that it displays the standard Save As dialog, but it does not
change the title of the window, and all subsequent Save commands will still save to the original
file, if it has been saved previously. If the file has not been saved previously, then the title remains
ScriptN and the first Save command will invoke the Save As... dialog.

Revert To Saved

This command will change the contents of the window to the state it was at the time of the last
save. It will display an alert that requests confirmation before the command is completed. The
Undo and Redo states are reset. This command cannot be undone.

Page Setup...

This command will display the system's standard printer Page Setup dialog. This dialog contains
settings for the current printer's page attributes, such as orientation, scale, and page size.

Print...

This item will print the contents of the current Script window. It will display the standard Print
dialog. From this dialog you may print all pages or a selected page range. Lines of text are not

3.8 Developing and debugging Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 536

wrapped at the page edge. Lines of text that are too long to fit on the page will be truncated.
Setting the Paper Size, scale, or orientation will affect how much of the line is printed to the age.
The text is printed using the current font family and font size selected in the Script Preferences.

Quit/Exit

This command will terminate the application. All open Script windows are closed. If there are any
unsaved changes in a window, an alert is displayed asking to save or discard changes before
closing the window, or to cancel the quit command. After all windows have been closed, the
application terminates.

3.8.1.2 The Edit Menu

Undo

Redo

These commands will revert or reapply changes made since the file was opened with the Open...
command or created with the New Script command. The script environment supports multiple
undo and redo commands and undo across Save... command.

The Undo command will revert the contents of the window to the state prior to the last action.
Actions that can be undone are typing text, Cut and Paste Commands, Shift Right and Shift Left
commands, and Replace commands.

When the Undo command is selected after typing text, all text that was typed since the last non-
typing action, changing the position of the insertion point or selecting text is removed. If the prior
state included selected text, the selected text is recovered and re-selected.

The Redo command will reapply the previous Undo action. It is available after the Undo command
has been executed and before another action is taken. After another action has been taken after
executing the Undo command, the previous Undo commands cannot be redone.

Cut

This command will delete the currently selected text and place it on the system clipboard. The
text will replace any previous text that was placed in the system clipboard with the Cut or Copy
commands. This includes text that was placed on the system clipboard by another application.
Once the text has been placed on the system clipboard, it can be pasted into another location in
the script window, into a different script window, or another application that supports pasting text
from the system clipboard. If no text is selected, this command is disabled.

Copy

This command will place the currently selected text on the system clipboard. The text will replace
any previous text that was placed in the system clipboard with the Cut or Copy commands. This
includes text that was placed on the system clipboard by another application. Once the text has
been placed on the system clipboard, it can be pasted into another location in the script window,
into a different script window, or another application that supports pasting text from the system
clipboard. If no text is selected, this command is disabled.

3.8 Developing and debugging Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 537

Paste

This command will Paste the text from the system clipboard into the current script window.
Pasting text from the system clipboard will insert the text from the system clipboard at the current
insertion point or selection range. If text is selected the selected text is deleted and replaced with
the text from the clipboard. This command is disabled if there is no text currently on the system
clipboard.

Balance

This command will find balanced pairs of enclosure characters. This command is useful for
finding the corresponding open or close character to a function or if-then block.

Enclosure characters are defined to be parentheses '(' and ')', braces '{' and '}', and brackets '['
and ']'. The balanced pairs and all text between the balanced pairs are selected. A balanced pair
of enclosure characters are defined to be an opening and closing character of the same type with
zero or more balanced matching pairs between the them.

The Balance command will select the smallest balanced pair from the current insertion point or
the beginning of a selection range. If no balanced pair can be found, the system will beep and
leave the current selection or insertion point unchanged.

This is useful for finding mismatched braces, or for indenting blocks of code to improve
readability.

Shift Right
Shift Left

These commands will indent or outdent a selection of lines. This command is useful for indenting
a block of text inside a function or if statement to denote the level of block enclosures.

The Shift Right command will selected the current line or lines of text and insert a tab character at
the beginning of each line. If the current selection range is not an entire line the selection range is
extended to the beginning of the line that contains the selection range start and the end of the line
that contain the end of the selection range.

The Shift Left command command will remove the beginning tab character or spaces at the
beginning of each line. As with the Shift Right command the selection range is extended to
include the entire lines. If there is no tab character at the beginning of the line, but there are
spaces at the beginning of the line, the spaces will be removed. The number of spaces removed
is defined by the current Tab Spaces setting in the Script Preferences dialog. If there are no tab
characters or spaces at the beginning of the line, the line is left unchanged.

Key Shortcuts

This command will display the Key Shortcuts dialog. You can assign short cut keys for all
commands in the Script Editor from this dialog. To add and change a key shortcut, select the
command from the list on the left. The current key shortcut for the command is shown in the

3.8 Developing and debugging Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 538

Shortcut window on the right, with a brief description of the command above that. To add a new
key shortcut, click the Add button, to edit an existing key shortcut click the Edit button. The
corresponding Add Shortcut or Edit Short dialog will be displayed. The key shortcuts for the
Script Editor environment in the form•Z Application may not conflict with key shortcuts set for the
form•Z Project environment.

For a more detailed discussion on editing key shortcuts see section 3.2.5 in the form•Z User's
Manual.

Preferences

Script Preferences

The script preference category applies to settings when a Script window is the currently active
window.

Output Directory:

This defines where the compiled script file is located. The Compiled script file has the same base
filename as the source script file but has a .fsb extension.

 With Source File:

The compiled script file is placed in the same folder as the source file.

 Custom:

Defines a specific folder that will contain all compiled script files.

The specified custom folder is displayed below the Custom radio button. By default, the current
folder is defined as the custom directory for compile script files.

To change the folder click the Choose button. This will display a standard Choose folder dialog to
locate the folder to use as the custom output directory, and click OK.

Tab Spaces:

This defines how many spaces a tab character will take up in the script window. This also affects
how many spaces are removed from the beginning of the line during the Shift Left command.

 Font Size:

This defines the size of the font to use in the script window.

 Font:

This defines the font family to use in the script window. All text displayed in the script window or
printed is drawn with this font.

 Syntax Coloring:

3.8 Developing and debugging Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 539

This will enable the coloring of keywords, function names, comments and constants in the script
window. This is useful for quickly determining what is a reserved keyword or function name, and
also for finding code that has been inadvertently commented out.

The text in the editor window are colored as follows:

Keywords - blue
Function names - cyan
Constants - gold
Comments - red
Quoted strings - light grey
Everything else - black

3.8.1.3 The Window Menu

Close

This command will close the currently active window. This is the same selecting the Close
command from the File menu in the script environment.

Close All

This items works as in the main form•Z Menu

Windows

Following the Close All command on the menu is a list of all currently opened windows. To
change the currently active window, select it from the list. This will cause the selected window to
move to the top of all other windows, and make it the currently active window. If the window
selected is not a script window, the script environment will be replace with the environment for the
selected window.

3.8.1.4 The Search Menu

The items in this menu control the search and replace functionality of the script environment.

Find...

This item will display the Find... dialog. From this dialog you can set the search string, and the
replacement string. To set the search string, click in the edit field next to Find and type the string
to search for. To set the replacement string, click in the edit field next to Replace and type the
replacement string.

 Match whole word:

This will enable whole word matching. When match whole word is enabled, Find..., Find Next,
and Find Previous will find the search string only if the found string contains non-alpha and non-
numeric characters before and after it.

3.8 Developing and debugging Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 540

 Case Sensitive:

This will enable case sensitive searching. When case sensitive is enabled, Find..., Find Next, and
Find Previous will find the search string only if the found string matches exactly in upper and
lower case with the search string.

 Wrap At End of File:
This will cause the Find action to continue the search from the top of the file if a match is not
found between the current insertion point and the end of the file. The Find Previous command will
continue it search backward from the end of the file if a match is not found between the current
point and the top of the file.

Click OK in the Find... dialog to close the dialog and find the next occurrence of the search tring
from the current insertion point. If the search string is found, the found string is selected. If the
search string is not found, the system will beep.

Find Next

This item will find the next occurrence of the search string from the current insertion point or the
end of the current selected text. It is enabled only if the search string has been set with either
Find... command or the Set Search String command.

Find Previous

This item will find the previous occurrence of the search string from the current insertion point or
the beginning of the current selected text. It is enabled only if the search string has been set with
either Find... command or the Set Search String command.

Set Search String

This item will set the current search string with the currently selected text, but no search is
executed. The match whole word and case sensitive settings are left unchanged. This item is only
available when text is selected.

Replace

This command will replace the currently selected text with the replacement string only if the
selected text matches the search string.

Replace and Find Next

This command will replace the currently selected text with the replacement string only if the
selected text matches the search string and then find the next occurrence of the search string.

Replace All

This command will search for the search string and replace it with the replacement string over
the entire file. The current match word and case sensitive settings are used in the search and
replace operation.

3.8 Developing and debugging Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 541

3.8.1.5 The Script Menu

Check Syntax

This command will check the syntax of the current script file.

Compile

This command will compile the current script file and if there are no errors it will generate the
compiled script file in the directory specified by the Script Preferences Output Directory setting.

The Help Menu

form•Z Web Site...

This command will launch the operating system's default web browser and opens the Home Page
of the auto•des•sys, Inc. web site (http://www.formz.com), where a variety of information about
our products as well as support material can be found.

form•Z Web Support...

This command works as for the previous item, except that it takes ou to the Technical Support
page of our web site (http://www.formz.com/support/index.html).

email Tech Support...

This command opens your operating system's default email application and sets a blank email
addressed to the form•Z Technical Support department (support@formZ.com).

3.8.2 Creating Script Files form•Z SDK (v6.0.0.0 rev 05/30/06) 542

3.8.2 Creating script files

3.8.2.1 New Script...

New Script…

Choosing this command will bring up the New Script dialog, shown in Figure 3.8.2.1.1, which
presents many options for creating new scripts.

Figure 3.8.2.1.1: The New Script dialog.

With the New Script... command, a blank text edit window can be opened in which the script
commands can be typed, edited and compiled. In order to facilitate the creation of a script
extension in form•Z, the New Script... command also offers the option to automatically create the
source code that is the same for each type of script. This allows the user to focus on writing the
actual functionality of the script rather than needing to retype the required structure of the script.
In other words, this option automatically creates the source code for a given script type, based on
some options that the user selects. The script is complete, containing all the required functions
and compiles without errors. The user simply has to fill in the code which constitutes the specific
functionality of the script. Places in the script where the user is expected to fill in his/her own code
are explicitly marked.

3.8.2 Creating Script Files form•Z SDK (v6.0.0.0 rev 05/30/06) 543

3.8.2.2 Common Script Options
There are several options that are common to all scripts, except empty scripts.

Allow Debugging: This checkbox will add a line to the header of the script that indicates that
debugging of the script is allowed. If this checkbox isn't checked, debugging is not set up in the
script.

Create fzr File: This checkbox indicates whether an fzr file should be created alongside the fsl
file. An fzr file is a text file that contains all the string resources for a script. If this option is
checked, any strings in the script that can be stored in the fzr file will be. This option is highly
recommended for any script that may be run by users in other languages as an fzr file helps to
facilitate localization of scripts. In the header section of the fsl file will be defines for each of the
strings stored in the fzr file.
The fzr file that is created will be named using the base name of the fsl file with a language
indicator and an fzr extension. For example, if the script was named "My Script.fsl" and the
computer language is set to English, the fzr file would be named "My Script.ENU.fzr". The fzr file
name can be changed after creation so long as the name is also changed where used in the fsl
file. If this option is selected, the fzr file is opened for editing along with the fsl file.
The basic layout of an fzr file is shown below.
FZRF, 40, CHAR=MAC,
STR#, 1,
"My Operator Tool",
"My Operator Tool Help String",
FZND,

An fzr file uses a comma-separated value (CSV) file format, meaning that every entry in the file is
separated by a comma. New lines between each string are not required, but make reading easier.
The first line is the header. The FZRF indicates this is an fzr file. The 40 is a required entry. The
CHAR=MAC indicates the character set of the fzr file, in this case Mac OS. If the fzr file is created
on a Windows machine, it will read CHAR=WIN. The next line STR#,1, indicates that all the
following entries are strings. This section is terminated by the entry FZND. The 1 in the line is the
index for this group of strings. There can be multiple groups of strings to group like items
together, but the New Script command will only create one group.

#define TOOL_STR_ID 1
#define TOOL_STR_NAME 1
#define TOOL_STR_HELP 2
Within the fsl file, defines are added to the top of the file for accessing the strings in the fzr file.
The first define indicates the group the string belongs to, in this case it will always be 1.
#define TOOL_STR_ID 1
Following this define is a series of defines that act an an index to the correct line in the group.
Strings are indexed in the the fzr file starting from 1.
In order to retrieve a string in an fzr file, the following is used:
fzrt_fzr_get_string(_tool_rsrc_ref, TOOL_STR_ID, TOOL_STR_NAME, name);
This function will get the correct string out of the fzr file. These are set up automatically in the fsl
file. The _tool_rsrc_ref is a global variable the points to the fzr file. It is set up with a call to
fzrt_fzr_open, which is placed in the proper place in the fsl file by the New Script command. The
next two entries are the string group and string entry respectively. The final entry is a variable to
hold the string.

File Name: This edit field indicates the file name of the fsl file. An fsl file will always have the
extension ".fsl". That means that entering a name without an extension, or an extension other
than fsl, will cause form•Z to add the extension to the name.

3.8.2 Creating Script Files form•Z SDK (v6.0.0.0 rev 05/30/06) 544

Following the File Name option are three mutually exclusive options used to indicate where the
fsl file is to be saved.
Use Scripts Folder: This option will save the fsl file in the default scripts folder, which is a folder
named "Scripts" in the same folder as the application.
Use Documents Folder: This option will save the fsl file to the documents folder of your
computer.
Custom: This option allows the user to specify a location other than the two options above.
Clicking the Choose Location... button will bring up a dialog where the user can choose the
location for the fsl file.
It is recommended to use the Scripts folder because by default form•Z searches this folder for
scripts at startup. The path where scripts are currently set to be saved to is displayed below the
Custom radio button in the Location group.

In addition to the settings above, there are some items in scripts that are set to default values. All
default values can be edited after the fsl file has been created or left as they are. There are
certain default values that are set to values that are recommended to be edited after the file has
been created, though these values can be left as-is. If the default value is a string, it will be set to
"***". The help string and vendor name are two such examples. If fzr files are used, be sure to
check it for any default strings.

In addition to setting up default code, there will also be comments throughout the code to indicate
areas that should be edited. Comments in the code are bracketed by "/* */". If the comment
begins with "<<<<", it indicates an area where code generally should be added or modified. All
functions have a header comment area where at least a description of the function and whether
the function is optional or required is stated.

Clicking the OK button will create the script and open the fsl file for all scripts except for empty
scripts. Empty scripts will not create a file on the disk but will instead open an empty editable text
window. All the other script types will have the fsl file created in the location specified and opened
into a text window. If the Create fzr File option is selected, the fzr file will be created in the same
location as the fsl file and opened into a text window. Once the fsl file is open, it can be edited,
saved, or compiled. If the generated fsl file is compiled, prior to editing, it will compile without
errors. Note that when an fzr file is created and opened it is not a compilable file type and will give
errors if compilation is attempted.

3.8.2.3 Empty Scripts
The simplest option available is to create an empty script. An empty script isn't a type of script but
is instead a way to create an empty editable text window. There are no additional options
available when creating an empty script. As opposed to all the other script types, this script type
does not create a file on the disk, but instead opens an empty editable text window.

3.8.2.4 RenderZone Shader Scripts
When a pixel in an image is rendered, the shaders needed to compute the final pixel color are
executed in a specific order. This order is referred to as the shader pipeline. The sequence is:
color, bump, reflection, transparency, background, foreground. Each of the shader type scripts
are described below.

3.8.2 Creating Script Files form•Z SDK (v6.0.0.0 rev 05/30/06) 545

Color Shader Scripts
This is the first step of the shader pipeline. The color shader of the material assigned to the
surface on which the pixel lies is executed. This defines the unshaded pixel color. The options to
create a color shader script are shown in Figure 3.8.2.4.1.

Figure: 3.8.2.4.1: The Color Shader Script options in the New Script dialog.

Menu Title: This option indicates the name of the script. The name entered here will be used for the name of
the script and will appear in the Color menu of the Surface Style Parameters dialog.

Texture Space: This option indicates the type of texture space.
If wrapped is chosen, then the texture space is 2D, and the line fz_shdr_set_wrapped(TRUE); is
added to the fz_shdr_cbak_colr_set_parameters callback function.
If solid is chosen, then the texture space is 3D, and the line fz_shdr_set_solid(TRUE); is added
to the fz_shdr_cbak_colr_set_parameters callback function.
If unknown is chosen, neither 2D nor 3D is set up, and no lines are added to the
fz_shdr_cbak_colr_set_parameters callback function.
Use "Scale" Parameter: This option is mainly useful for shaders that create a pattern. Setting
this option will add the Scale field in the shader options dialog. By default, the scale is set to
100%. This option adds the line fz_shdr_set_scale_parm(1.0); to the
fz_shdr_cbak_colr_set_parameters callback function.
Use "Area Sampling" Parameter: This option is mainly used for shaders that have patterns.
Selecting this option will turn on area sampling, which is helpful in reducing moire artifacts in the
pattern. Setting this option will add the Area Sampling check box in the shader options dialog.
This option adds the line fz_shdr_set_area_sample_parm(TRUE); to the
fz_shdr_cbak_colr_set_parameters callback function.
Use "Noise" Parameter: This option is used to add the standard noise parameters to a shader.
Setting this option will add the Noise menu and # of Impulses field to the shader option dialog.
The default type of noise is "better" with number of impulses set to 3. This option adds the line
fz_shdr_set_noise_parm(FZ_SHDR_TURB_TYPE_BETTER, 3); to the
fz_shdr_cbak_colr_set_parameters callback function. This option also adds the lines
fz_shdr_get_noise_type(_ntype); and fz_shdr_get_noise_impulses(_nimpulse); to the
fz_shdr_cbak_colr_pre_render callback function, which store the impulse and noise type in global
variables for use in the fz_shdr_cbak_colr_pixel callback function.
Use "Fuzz" Parameter: This option is used to add fuzz to a shader. Setting this option will add
the Fuzz slider and edit field to the shader option dialog. This option adds the line
fz_shdr_set_sld_flt_parm("fuzz", 0.0, 1, 1, PARAM_ID_FUZZ); to the
fz_shdr_cbak_colr_set_parameters callback function.
Set Up x "Color" Parameters: This option is used to add a number of colors to the shader.
Setting this option will add a number of color selections in the shader options dialog. The default
for each color is white. This option adds the lines

3.8.2 Creating Script Files form•Z SDK (v6.0.0.0 rev 05/30/06) 546

colr = {1.0, 1.0, 1.0};
fz_shdr_set_col_parm("color 1", colr, PARAM_ID_COLR_1); for each of the number of color
parameters chosen to the fz_shdr_cbak_colr_set_parameters callback function.

Use "Average Color" Callback: This option will create the average color callback function in the
script. The default action for this callback is to average all of the colors set with the Set Up x
"Color" Parameters option. If this option is not selected, form•Z will substitute a 50% gray.

Bump Shader Scripts
This is the second step of the shader pipeline. The bump shader of the material assigned to the
surface on which the pixel lies is executed. This defines a new normal direction at the pixel, which
is important for the reflection calculation that comes next. The options for creating a bump shader
script are shown in Figure 3.8.2.4.2.

Figure 3.8.2.4.2: The Bump Shader Script options in the New Script dialog.

Menu Title: This option indicates the name of the script. The name entered here will be used for
the name of the script and will appear in the Bump menu of the Surface Style Parameters
dialog.

Texture Space: This option indicates the type of texture space.
If wrapped is chosen, then the texture space is 2D, and the line fz_shdr_set_wrapped(TRUE); is
added to the fz_shdr_cbak_bump_set_parameters callback function.
If solid is chosen, then the texture space is 3D, and the line fz_shdr_set_solid(TRUE); is added
to the fz_shdr_cbak_bump_set_parameters callback function.
If unknown is chosen, neither 2D nor 3D is set up, and no lines are added to the
fz_shdr_cbak_bump_set_parameters callback function.
Use "Scale" Parameter: This option is mainly useful for shaders that create a pattern. Setting
this option will add the Scale field in the shader options dialog. By default, the scale is set to
100%. This option adds the line fz_shdr_set_scale_parm(1.0); to the
fz_shdr_cbak_bump_set_parameters callback function.
Use "Area Sampling" Parameter: This option is mainly used for shaders that have patterns.
Selecting this option will turn on area sampling, which is helpful in reducing moire artifacts in the
pattern. Setting this option will add the Area Sampling check box in the shader options dialog.
This option adds the line fz_shdr_set_area_sample_parm(TRUE); to the
fz_shdr_cbak_bump_set_parameters callback function.
Use "Noise" Parameter: This option is used to add the standard noise parameters to a shader.
Setting this option will add the Noise menu and # of Impulses field to the shader option dialog.
The default type of noise is "better" with the number of impulses set to 3. This option adds the line
fz_shdr_set_noise_parm(FZ_SHDR_TURB_TYPE_BETTER, 3); to the
fz_shdr_cbak_bump_set_parameters callback function. This option also adds the lines
fz_shdr_get_noise_type(_ntype); and fz_shdr_get_noise_impulses(_nimpulse); to the
fz_shdr_cbak_bump_pre_render callback function, which store the impulse and noise type in

3.8.2 Creating Script Files form•Z SDK (v6.0.0.0 rev 05/30/06) 547

global variables for use in the fz_shdr_cbak_bump_pixel callback function.
Use "Fuzz" Parameter: This option is used to add fuzz to a shader. Setting this option will add
the Fuzz slider and edit field to the shader option dialog. This option adds the line
fz_shdr_set_sld_flt_parm("fuzz", 0.0, 1, 1, PARAM_ID_FUZZ); to the
fz_shdr_cbak_bump_set_parameters callback function.
Set Up x "Amplitude" Parameters: This option is used to add a number of amplitudes to the
shader. Setting this option will add a number of amplitude selections in the shader options dialog.
The default amplitude is 10% with an inclusive range of 0 - 100%. This option adds the line
fz_shdr_set_sld_flt_parm("amplitude 1", 0.0, 1, 1, PARAM_ID_AMPL_1); for each of the number
of amplitude parameters chosen to the fz_shdr_cbak_bump_set_parameters callback function.

Reflection Shader Scripts
This is the third step of the shader pipeline. The reflection shader of the material assigned to the
surface on which the pixel lies is executed. The unshaded pixel color, generated by the color
shader is augmented with shading information from all lights in the scene. If a bump shader other
than None was used, the altered surface normal direction will be used to create bump patterns
from the shading calculation. The shaded color is returned by the reflection shader. The options
for creating a reflection shader script are shown in Figure 3.8.2.4.3.

Figure 3.8.2.4.3: The Reflection Shader Script options in the New Script dialog.

Menu Title: This option indicates the name of the script. The name entered here will be used for the name of
the script and will appear in the Reflection menu of the Surface Style Parameters dialog.

Set Up "Ambient" Parameter: This option is used to set the standard ambient reflection
parameter. Setting this option will add the Ambient Reflection group in the shader options
dialog. This option adds the line fz_shdr_set_ambient_parm(x); , where x is the value entered in
the edit field, to the fz_shdr_cbak_refl_set_parameters callback function.

Set Up "Diffuse" Parameter: This option is used to set the standard diffuse reflection
parameter. Setting this option will add the Diffuse Reflection group in the shader options dialog.
This option adds the line fz_shdr_set_diffuse_parm(x); , where x is the value entered in the edit
field, to the fz_shdr_cbak_refl_set_parameters callback function.

Set Up "Specular" Parameter: This option is used to set the standard specular reflection
parameter. Setting this option will add the Specular Reflection group in the shader options
dialog. This option adds the line fz_shdr_set_specular_parm(x, 0.01); , where x is the value

3.8.2 Creating Script Files form•Z SDK (v6.0.0.0 rev 05/30/06) 548

entered in the edit field, to the fz_shdr_cbak_refl_set_parameters callback function.

Set Up "Reflectivity" Parameter: This option is used to set the standard reflectivity reflection
parameter. Setting this option will add the Reflectivity Reflection group in the shader options
dialog. This option adds the line fz_shdr_set_mirror_parm(x); , where x is the value entered in the
edit field, to the fz_shdr_cbak_refl_set_parameters callback function.

Set Up "Transmission" Parameter: This option is used to set the standard transmission
reflection parameter. Setting this option will add the Transmission Reflection group in the
shader options dialog. This option adds the line fz_shdr_set_transmission_parm(x, 1.0); , where x
is the value entered in the edit field, to the fz_shdr_cbak_refl_set_parameters callback function.

Set Up "Glow" Parameter: This option is used to set the standard glow reflection parameter.
Setting this option will add the Glow Reflection group in the shader options dialog. This option
adds the line fz_shdr_set_glow_parm(x); , where x is the value entered in the edit field, to the
fz_shdr_cbak_refl_set_parameters callback function.

Transparency Shader Scripts
This is the fourth step of the shader pipeline. The transparency shader of the material assigned to
the surface on which the pixel lies is executed. The transparency of the pixel is returned by the
shader and retained by form•Z. The options for creating a transparency shader are shown in
Figure 3.8.2.4.4.

Figure 3.8.2.4.4: The Transparency Shader Script options in the New Script dialog.

Menu Title: This option indicates the name of the script. The name entered here will be used for
the name of the script and will appear in the Transparency menu of the Surface Style
Parameters dialog.

Texture Space: This option indicates the type of texture space.
If wrapped is chosen, then the texture space is 2D, and the line fz_shdr_set_wrapped(TRUE); is
added to the fz_shdr_cbak_trns_set_parameters callback function.
If solid is chosen, then the texture space is 3D, and the line fz_shdr_set_solid(TRUE); is added
to the fz_shdr_cbak_trns_set_parameters callback function.
If unknown is chosen, neither 2D nor 3D is set up, and no lines are added to the
fz_shdr_cbak_trns_set_parameters callback function.

Use "Scale" Parameter: This option is mainly useful for shaders that create a pattern. Setting
this option will add the Scale field in the shader options dialog. By default, the scale is set to
100%. This option adds the line fz_shdr_set_scale_parm(1.0); to the
fz_shdr_cbak_trns_set_parameters callback function.

3.8.2 Creating Script Files form•Z SDK (v6.0.0.0 rev 05/30/06) 549

Use "Area Sampling" Parameter: This option is mainly used for shaders that have patterns.
Selecting this option will turn on area sampling, which is helpful in reducing moire artifacts in the
pattern. Setting this option will add the Area Sampling check box in the shader options dialog.
This option adds the line fz_shdr_set_area_sample_parm(TRUE); to the
fz_shdr_cbak_trns_set_parameters callback function.

Use "Noise" Parameter: This option is used to add the standard noise parameters to a shader.
Setting this option will add the Noise menu and # of Impulses field to the shader option dialog.
The default type of noise is "better" with number of impulses set to 3. This option adds the line
fz_shdr_set_noise_parm(FZ_SHDR_TURB_TYPE_BETTER, 3); to the
fz_shdr_cbak_trns_set_parameters callback function. This option also adds the lines
fz_shdr_get_noise_type(_ntype); and fz_shdr_get_noise_impulses(_nimpulse); to the
fz_shdr_cbak_trns_pre_render callback function, which store the impulse and noise type in global
variables for use in the fz_shdr_cbak_trns_pixel callback function.

Use "Fuzz" Parameter: This option is used to add fuzz to a shader. Setting this option will add
the Fuzz slider and edit field to the shader option dialog. This option adds the line
fz_shdr_set_sld_flt_parm("fuzz", 0.0, 1, 1, PARAM_ID_FUZZ); to the
fz_shdr_cbak_trns_set_parameters callback function.

Set Up x "Transparency" Parameters: This option is used to add a number of transparencies to
the shader. Setting this option will add a number of transparency selections in the shader options
dialog. The default transparency for each option is 100% with an inclusive range of 0 - 100%.
This option adds the line fz_shdr_set_sld_flt_parm("transparency 1", 1.0, 1, 1,
PARAM_ID_TRNS_1); for each of the number of transparency parameters chosen to the
fz_shdr_cbak_trns_set_parameters callback function.

Use "Average Transparency" Callback: This option will create the average color callback
function in the script. The default action for this callback is to average all of the transparencies set
with the Set Up x "Transparency" Parameters option. If this option is not selected, the average
transparency for a shader is set to 0% (fully opaque).

Background Shader Scripts
This is the fifth step of the shader pipeline. If the transparency value from step 4 is more than 0.0
(i.e. there is some level of transparency) the background shader is executed. The color from the
background shader and the shaded color from step 3 are mixed using the transparency value and
returned by the shader. The options for creating a background shader are shown in Figure
3.8.2.4.5.

Figure 3.8.2.4.5: The Background Shader Script options in the New Script dialog.

Menu Title: This option indicates the name of the script. The name entered here will be used for
the name of the script and will appear in the Background menu of the RenderZone Options
dialog in the Scene tab and Background group.

Use "Scale" Parameter: This option is mainly useful for shaders that create a pattern. Setting
this option will add the Scale field in the shader options dialog. By default, the scale is set to

3.8.2 Creating Script Files form•Z SDK (v6.0.0.0 rev 05/30/06) 550

100%. This option adds the line fz_shdr_set_scale_parm(1.0); to the
fz_shdr_cbak_bgnd_set_parameters callback function.

Use "Noise" Parameter: This option is used to add the standard noise parameters to a shader.
Setting this option will add the Noise menu and # of Impulses field to the shader option dialog.
The default type of noise is "better" with number of impulses set to 3. This option adds the line
fz_shdr_set_noise_parm(FZ_SHDR_TURB_TYPE_BETTER, 3); to the
fz_shdr_cbak_bgnd_set_parameters callback function. This option also adds the lines
fz_shdr_get_noise_type(_ntype); and fz_shdr_get_noise_impulses(_nimpulse); to the
fz_shdr_cbak_bgnd_pre_render callback function, which store the impulse and noise type in
global variables for use in the fz_shdr_cbak_bgnd_pixel callback function.

Use "Fuzz" Parameter: This option is used to add fuzz to a shader. Setting this option will add
the Fuzz slider and edit field to the shader option dialog. This option adds the line
fz_shdr_set_sld_flt_parm("fuzz", 0.0, 1, 1, PARAM_ID_FUZZ); to the
fz_shdr_cbak_bgnd_set_parameters callback function.

Use "Average Color" Callback: This option will create the average color callback function is the
script. The default action for this callback is to average all of the colors set with the Set Up x
"Color" Parameters option. If this option is not selected, form•Z will substitute a 50% gray. This
option adds the lines
colr = {1.0, 1.0, 1.0};
fz_shdr_set_col_parm("color 1", colr, PARAM_ID_COLR_1);
to the fz_shdr_cbak_bgnd_set_parameters callback function.

Foreground Shader Scripts
This is the sixth and final step of the shader pipeline. The foreground shader is also known as the
Depth Effect shader. The depth effect shader is executed. It uses the color from step 5. A new
color is calculated using the depth information of the current pixel. This color is returned and
becomes the final pixel color in the image. The options for creating a background shader are
shown in Figure 3.8.2.4.6.

Figure 3.8.2.4.6: The Foreground Shader Script options in the New Script dialog.

Menu Title: This option indicates the name of the script. The name entered here will be used for
the name of the script and will appear in the Shader menu of the RenderZone Options dialog in
the Scene tab and Environment group.

Use "Scale" Parameter: This option is mainly useful for shaders that create a pattern. Setting
this option will add the Scale field in the shader options dialog. By default, the scale is set to
100%. This option adds the line fz_shdr_set_scale_parm(1.0); to the
fz_shdr_cbak_fgnd_set_parameters callback function.

Use "Noise" Parameter: This option is used to add the standard noise parameters to a shader.
Setting this option will add the Noise menu and # of Impulses field to the shader option dialog.
The default type of noise is "better" with number of impulses set to 3. This option adds the line
fz_shdr_set_noise_parm(FZ_SHDR_TURB_TYPE_BETTER, 3); to the

3.8.2 Creating Script Files form•Z SDK (v6.0.0.0 rev 05/30/06) 551

fz_shdr_cbak_fgnd_set_parameters callback function. This option also adds the lines
fz_shdr_get_noise_type(_ntype); and fz_shdr_get_noise_impulses(_nimpulse); to the
fz_shdr_cbak_fgnd_pre_render callback function, which store the impulse and noise type in
global variables for use in the fz_shdr_cbak_fgnd_pixel callback function.

3.8.2.5 Palette Scripts
A palette is a floating window that contains an interface for a feature or set of related features.
The interface is composed of a variety of interface elements (buttons, radio buttons, check boxes,
etc.) provided by the form•Z interface manager (fuim). Palette scripts are extensions that
complement the form•Z palettes and behave consistently with the form•Z palettes.
Palettes are available in system and project levels. System palettes are global in nature and do
not require a project window index while project palettes require a project or window index and
are expected to operate on project information for a provided project,

The New Script.. command will create an empty palette, with an indicator as to where to add
interface code. The options for creating a system or project palette script are shown in figure
3.8.2.5.1.

System Palette Scripts

Figure 3.8.2.5.1: The Project Palette Script options in the New Script dialog.

Menu Title: This option indicates the name of the script. The name entered here will be used for
the name of the script and will appear in the Palettes menu.

Create Notification Callbacks: This checkbox indicates whether to add all the notification
callbacks to the fsl file. See section 3.1.8.8 for more details.

Project Palette Scripts
Menu Title: This option indicates the name of the script. The name entered here will be used for
the name of the script and will appear in the Palettes menu.
Create Notification Callbacks: This checkbox indicates whether to add all the notification
callbacks to the fsl file. See section 3.1.8.8 for more details.

3.8.2.6 Command Scripts
A command in form•Z is an action that is invoked from a menu item or a key shortcut. Command
scripts are extensions that complement the form•Z commands and behave consistently with the
form•Z commands. Command scripts are available in system and project levels. A system
command is global in nature and does not require a project window index. These are typically
utility actions for which it is desirable to have access to the utility in the form•Z interface. A project
command requires a project or window index and are expected to operate on the project
information for a provided project. Project commands are unavailable when there is no open
project window. The options for creating a system or project command script are shown in Figure
3.8.2.6.1.

3.8.2 Creating Script Files form•Z SDK (v6.0.0.0 rev 05/30/06) 552

System Command Scripts

Figure 3.8.2.6.1: The Project Command Script options in the New Script dialog.

Menu Title: This option indicates the name of the script. The name entered here will be used for
the name of the script and will appear in the Extensions menu.
Create Notification Callbacks: This checkbox indicates whether to add all the notification
callbacks to the fsl file. See section 3.1.8.8 for more details.
Add To Menu: This option indicates whether the command should appear in the extensions
menu or not. This option is selected by default.

Project Command Scripts
Menu Title: This option indicates the name of the script. The name entered here will be used for
the name of the script and will appear in the Extensions menu.
Create Notification Callbacks: This checkbox indicates whether to add all the notification
callbacks to the fsl file. See section 3.1.8.8 for more details.
Add To Menu: This option indicates whether the command should appear in the extensions
menu or not. This option is selected by default.

3.8.2.7 Tool Scripts
Tool scripts are extensions that complement the form•Z tool set and behave consistently with the
form•Z tools. They appear in the form•Z interface in the icon tool palettes just like a form•Z tool.
Tools can either be operators or modifiers. An operator creates or edits the form•Z project data
(objects, lights, etc.) through graphic manipulation in the form•Z project window. A modifier is a
tool that controls a setting that affects a group of operators. The New Script... command only
handles operator type tools. This is because modifier type tools are less frequently used and
require more user decision than a simple dialog can present. Please see the SDK documentation
for further information on modifier tools. The options for creating an operator tool script are
shown in Figure 3.8.2.7.1.

Operator Tool Scripts

3.8.2 Creating Script Files form•Z SDK (v6.0.0.0 rev 05/30/06) 553

Figure 3.8.2.7.1: The Bump Shader Script options in the New Script dialog.

Tool Title: This option indicates the name of the script. The name entered here will be used for
the name of the script and the tool title.

Create Notification Callbacks: This checkbox indicates whether to add all the notification
callbacks to the fsl file. See section 3.1.8.8 for more details.

Add To Palette: This option indicates whether the tool should appear in the tool palette or not. If
this option is not selected, the tool will only be accessible via a key shortcut (which is not set up
by default).

Adjacent: This option indicates how the tool's icon will be placed in the tool palette. If this option
is enabled, the position of the icon will be determined by the location chosen in the Tool
Adjacency dialog, brought up by clicking the Choose Location... button. If the option is disabled,
the tool's icon will be placed in a group at the bottom of the tool palette where all other extensions
with option disabled are placed.

The Tool Adjacency dialog (Figure 3.8.2.7.2) is opened by clicking the Choose Location...
button next to the Adjacent check box. It presents a list of all the tools in the tool palette.
Selecting a tool will cause the new tool to be positioned adjacent to it. The Adjacent to which
side option indicates which of the edges of the tool selected in the list the new tool will be
positioned.

3.8.2 Creating Script Files form•Z SDK (v6.0.0.0 rev 05/30/06) 554

Figure 3.8.2.7.2: The Tool Adjacency dialog.

Create Icon: This option sets up the script to load an icon file out of a TIFF file. It also creates
two TIFF files that are placeholders for the script. They can be used as-is, but it is recommended
that they be edited in a graphics program (like Photoshop) to reflect the nature of the script. The
two TIFF files that are created will be named based on the base name of the fsl file with a color
indicator and a TIF extension. For example, if your script was named "My Script.fsl", the black
and white TIFF file would be named "My Script_bw.TIF" and the color TIFF file would be named
"My Script_color.TIF". The TIFF file names can be changed after creation so long as the name is
also changed where used in the fsl file. If this option is not selected and the tool is set to be in the
tool palette, form•Z will assign a default icon to the tool.

The Click Based and Pick Based options are mutually exclusive and indicate how mouse clicks
are handled by the tool.
Number Of Clicks: This option indicates how many clicks the tool expects to do its job.
Number Of Picks: This option indicates how many picked objects the tool expects to do its job.

A click based tool is mainly used for creating new objects. The mouse clicks should be interpreted
by the script as input used to create the object. By default, clicks are handled as XYZ points,
though the script can be later edited to change this. A click based tool will also add several
additional callbacks.

Prompt callback: This function handles text input from the prompt window. By default, the script
is set up to interpret input as XYZ points, though the script can be later edited to change this. This
function should most likely work the same as the click function, except handling text input instead
of mouse clicks.

Track callback: This function is used to update any interactive input as the mouse moves in the
window.

Cancel callback: This function is called by form•Z when a tool is interrupted. A tool can be
canceled by the user using the key cancel key shortcut or by form•Z if a form•Z operation ID
executed that cancels the current operation (selecting another tool for example). This function is
used to cleanup any data that was generated during the execution of the tool.
Undo callback: This function is called by form•Z when the user selects the undo menu item from
the Edit menu during the execution of the tool. This function is used to back the input up to the
state of the previous click.
Redo callback: This function is called by form•Z when the user selects the redo menu item from
the Edit menu during the execution of the tool. This function is used to move the input up to the
state of the previously undone click.

A pick based tool is mainly used for editing and derivation.
The pick based tool created will handle both pre picking and post picking. The picks are
interpreted as object picks, but the script can be later edited to pick by other topological levels.

3.8.2.8 Utility Scripts
Utility scripts are designed to execute a task which is either less frequently used or an item in the
form•Z interface is not desired. Utility scripts are best used on tasks that are linear in nature (like
batch processing). Utility scripts are not loaded by form•Z at startup. This allows form•Z to start
up faster and use less memory. Utility scripts are not listed in the Extensions Manager dialog and
they do not need to be located in the Extensions Manager’s search paths. There are two variants
to the utility scripts, system and project. System utilities are not dependent on a project window.

3.8.2 Creating Script Files form•Z SDK (v6.0.0.0 rev 05/30/06) 555

Project utilities are dependent on a project window and are expected to function on the provided
project window.

System Utility Scripts
System utility scripts are simple scripts that are run from the extension menu. These differ from
project utility scripts in that they operate independently of any particular project window. There
are no options to choose in the system utility script. All the functionality of the script takes place in
the fz_util_cbak_syst_main callback function.

Project Utility Scripts
System utility scripts are simple scripts that are run from the extension menu. These differ from
system utility scripts in that they operate on the active project window. There are no options to
choose in the system utility script. All the functionality of the script takes place in the
fz_util_cbak_proj_main callback function.

3.8.3 Debugging Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 556

3.8.3 Debugging Scripts

After writing and successfully compiling a script, form•Z will load the script the next time form•Z
is started and enable the functionality defined by the script. For example, when a color shader
script is located in on of the directories, searched by form•Z at startup for scripts and plugins, the
color shader is automatically added to the Color menu in the Surface Style Parameters dialog. It
is often necessary to check that the statements in the script function perform the correct task.
This process is called debugging. form•Z offers an environment, where the source code of the
script is displayed in a window, and the developer can step through the script code, one
statement at a time. The same environment also displays a list of all variables in a function and
their current values. To invoke this debugging environment two steps need to be taken. First, the
script source needs to include the header identifier:

script_debug TRUE

at the top of the script source file. This tells form•Z, that this particular script is meant for
debugging. Second, the Use Script Debugger item in the Extensions menu needs to be selected.
This enables the debugging mode in form•Z. As soon as the form•Z script debugging mode is
enabled and a function in a script which is labels with the script_debug identifier is about to be
executed, the Script Debug dialog is invoked, as shown below.

3.8.3 Debugging Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 557

Executing a single statement

At this point, the execution of the script is suspended at the first statement of the function, which
is highlighted. The developer may execute the highlighted statement by pressing the Step Over
button at the bottom of the dialog. After the statement's execution, the next statement is
highlighted. Pressing the Step Over button again will go to the next statement in the function, etc.
When the last statement in the function is reached, usually a return statement, and executed,
the Script Debug dialog is closed and control is returned to form•Z.

Setting break points

At the left border of the display of each statement a dash is shown. When clicking on it, it is
changed to a star. This symbolizes a break point. When pressing the Run button at the bottom of
the dialog, all statements up to the breakpoint are executed without stopping. This allows the
developer to quickly move to a specific location in the source code, without having to press the
Step Over button repeatedly. Clicking on the star will return to a dash and the breakpoint is
removed. If Run is pressed and there are no break points set, the entire script will execute
without stopping again, and the dialog will disappear.

Stepping into a function

If the current statement is a function call, and the Step Over button is pressed, the function and all
its statements are executed. If the Step In button is pressed and the function is a script function
(as opposed to a form•Z API function), the next statement highlighted will be the first statement
in that function. The display window will scroll, so that this statement will appear in the middle of
the window. The statements in the stepped in function can be executed in the same manner by
pressing the Step Over button. When the last statement is reached and executed, the display
jumps back out to the place where the Step In button was pressed and the next statement after
the function call is highlighted.

Stepping out of a function

After pressing the Step In button to step through the statements of a function call, the developer
may exit the function in one step by pressing the Step Out button. This will execute all the
remaining statements in the function and stop at the next statement after the function call. This is
equivalent to pressing the Step Over button until the last statement in the stepped in function is
reached. Note, that if Run would be pressed inside a stepped in function, all the remaining steps
in the script, including the ones outside the stepped in function would be executed. If no break
points would be set, the script would continue to execute and the Script Debug dialog would be
closed.

Variable display

Below the source window is a list window which displays all the variables in the current function
and all the global variables. Recall, that a global variable is defined in a script outside of a
function's body and can be accessed by all functions in a script. To display the function or global
variables, the respective tab at the top of the list needs to be selected. The variable list consists
of three columns. The left most column shows the variable's type. The center column contains the
variable's name and the right column displays the current value of the variable. As the developer
steps through the script's statements, the values of the variables will be updated. For example, if

3.8.3 Debugging Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 558

a statement increases the value of an integer variable by 10, the value display will reflect that
change after the statement was executed with the Step Over button.

Changing the value of a variable

The value of some variable types cannot be displayed directly in the list window. For example, a
matrix contains too many individual members (16 for a 4 by 4 matrix). Array variables also don't
show their content in the list window directly. When double clicking on an entry in the variable list
window, a dialog is invoked which displays the content of that variable and also allows the
developer to edit the variable's value. Depending on what kind of variable it is, the dialog takes on
a different layout. For example, for an integer variable, the dialog contains a single text edit field.
For a 4 by 4 matrix the 16 members are displayed in 16 text edit fields laid out in a 4 by 4 grid.

The variable editor dialog for a 4x4 matrix variable

The variable editor dialog for a floating point variable

3.8.3 Debugging Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 559

For array variables, the dialog consists of a scrolled list which contains each array member and
an edit section below, which displays the content of the currently selected array member in the list
above.

The variable editor dialog for an array of xyz points

If the content of a variable is changed in that dialog and OK is pressed, the variable's value is
updated in the variable list of the debugging dialog. This allows the developer to alter the
execution of a script by manually changing variables. This may be useful for example, to force the
script to execute certain statements, which otherwise would only execute rarely occurring
conditions.

Debugging scripts with multiple callback functions

When debugging a utility script, form•Z has to invoke only one callback function, the main utility
function. The Script Debug dialog is invoked before the first line of this main function is executed
(see above). Other script types have more than one callback function. In case of a tool script,
there may be quite a few. When the script file is set to debug mode with the

script_debug TRUE

3.8.3 Debugging Scripts form•Z SDK (v6.0.0.0 rev 05/30/06) 560

statement at the top of the source file, the Script Debug dialog is invoked each time any of the
callback functions of the tool script is invoked. Quite possibly, the developer is not interested to
debug all functions, but only a few, maybe even only one particular one. In this case, the
continuous presence of the Script Debug dialog is quite annoying. In order to debug just one, or a
few selected functions, the script_debug statement at the top of the source file should be
changed to :

script_debug 2

Now, by default the Script Debug dialog will not be invoked for any function. In order to debug a
specific function, the keyword debug needs to precede the return type in the function header. For
example :

debug long fz_tool_cbak_select(long windex)
{
 …

 return(FZRT_NOERR);
}

Now only those functions, which are specifically tagged for debugging cause the Script Debug
dialog to pop up, when the function is invoked.

To summarize :

script_debug TRUE

causes the Script Debug dialog to be invoked for all callback functions, whereas

script_debug 2

causes the Script Debug dialog to be invoked only for those callback functions, that have the
debug keyword in their function header. In either case, the Use Script Debugger item in the
Extensions menu must be selected to activate debug mode.

